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Abstract

Production Planning (PPC) optimization in the operation of industrial production plants
enables to achieve energy savings and improve energy efficiency. To provide decision
support in production planning, simulation-based methods are particularly well-suited
for complex production system to assess different planning scenarios and evaluate them
with regard to their energy demand.

To this end, a hybrid discrete/continuous modeling approach based on the Discrete-Event
System Specification (DEVS) is investigated in this thesis. Hybrid modeling allows to
accurately capture material flows as discrete entities on one hand and continuous energy
flows on the other hand, in the production as well as for other domains, such as heating
or cooling, up to the thermal building envelope, including their dynamic interactions.

A meta-heuristic optimization procedure for operative production planning evaluates
energy efficiency together with other production goals (delivery tardiness, storage costs,
etc.) as part of a multi-objective optimization. The procedure follows a hybrid Variable
Neighborhood Search (VNS) meta-heuristic and uses the hybrid simulation for the
energetic evaluation of production programs. The VNS uses special energy-related
operators, for example to optimize the set-up times of heating ovens, in order to save
energy.

Furthermore, to support the modeling process of such DEVS-based simulations in practical
applications, a domain-specific model abstraction is designed, which allows to describe
hybrid simulation models in an intuitive way. The method is based on a Model-Driven
Engineering (MDE) process and defines a component-based meta-model for production
systems. Concrete implementations can be derived from the abstract specification by
means of model transformations.

Proof-of-concept implementations are realized to evaluate the individual contributions
and case studies from industry demonstrate the practical applicability. The hybrid
simulation approach was implemented in its entirety as a simulator prototype, together
with reusable model components, which can be used by practitioners to design new
application models with reduced efforts. Altogether, these methods contribute to the
integration of energy efficiency aspects into modern PPC systems and to increase energy
efficiency in production.






Kurzfassung

Im operativen Betrieb von industriellen Anlagen lassen sich durch optimierte Produkti-
onsplanung und -steuerung (PPS) gezielt Energieeinsparungen erreichen und die Energie-
effizienz verbessern. Zur Entscheidungsunterstiitzung bieten sich gerade bei komplexen
Produktionssystemen simulationsbasierte Methoden an, die es ermoglichen, unterschiedli-
che Planungsszenarien zu vergleichen und hinsichtlich ihres Energieeinsatzes zu bewerten.

Dafiir wird in der vorliegenden Arbeit ein hybrider diskret/kontinuierlicher Modellie-
rungsansatz untersucht, der auf der Discrete-Event System Specification (DEVS) basiert.
Die hybride Modellierung erlaubt es einerseits die Materialfliisse als diskrete Entitéten,
andererseits auch die zeitkontinuierlichen Energiefliisse sowohl in der Produktion als auch
fiir andere Doménen, wie Heizung oder Kiihlung, bis hin zur thermischen Geb&udehiille
akkurat zu erfassen, mitsamt ihrer dynamischen Interaktionen.

Fin meta-heuristisches Optimierungsverfahren zur operativen Produktionsplanung be-
wertet die Zielgréfle der Energieeffizienz gemeinsam mit anderen Produktionszielen
(Liefertreue, Lagerhaltungskosten, etc.) im Rahmen eines multikriteriellen Zielsystems.
Das Verfahren basiert auf einer Variable Neighborhood Search (VNS) und verwendet
die hybride Simulation zur energetischen Bewertung der Produktionsprogramme. Die
VNS verwendet spezielle energiebezogene Operatoren, beispielsweise zur Optimierung
der Riistzeiten von Heizofen, um unnétigen Energieverbrauch einzusparen.

Zur gezielten Unterstiitzung des Modellierungsprozesses DEVS-basierter Simulationen in
der praktischen Anwendung wird auflerdem eine doméanenspezifische Modellabstraktion
konzipiert, die es erlaubt, derartige hybride Simulationsmodelle auf intuitive Art und
Weise zu beschreiben. Die Methode basiert auf einem Model-Driven Engineering (MDE)
Prozess und definiert ein komponentenbasiertes Meta-Modell fiir Produktionssysteme.
Mittels Modelltransformationen lassen sich aus der abstrakten Spezifikation konkrete
Implementierungen ableiten.

Zur Evaluierung der einzelnen Beitridge werden prototypische Implementierungen entwi-
ckelt. Fallstudien aus der Industrie dienen zur Demonstration der praktischen Anwend-
barkeit. Der hybride Simulationsansatz wurde in seiner Gesamtheit als prototypischer
Simulator implementiert, zusammen mit wiederverwendbaren Modellkomponenten, mit
deren Hilfe mit reduziertem Aufwand neue Applikationsmodelle entworfen werden kon-
nen. Insgesamt tragen diese Methoden dazu bei, Energieeffizienzaspekte in moderne
PPS-Systeme zu integrieren und damit die Energieeffizienz in der Produktion zu steigern.
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CHAPTER

Introduction

1.1 Motivation

Energy efficiency has become an increasingly important topic in industrial engineering
in recent years, on the one hand due to legislative pressure, but also because of the
significant potential for economic savings as well as reducing ecological impact [184, 59].
It is estimated that the manufacturing industry, as one of the largest energy consumers,
has up to 35-60% energy savings potential, depending on the sector [33]. Moreover, 97%
of production companies consider the topic of energy efficiency as important, according
to a survey [190]. In addition to the primary goals of factory planning, inventory and
capacity optimization, the planning and reduction of energy consumption will become an
increasingly important factor.

Besides designing energy-efficient production plants, energy can be saved by improving
the operational performance of existing plants, primarily through efficient Production
Planning and Control (PPC). Energy-aware PPC strategies can influence energy demand
and energy costs during operation, for example by shifting the production of energy-
intensive products to the night hours where energy is often cheaper, or during midday in
case more solar energy is available [129]. However, the PPC systems currently used in
industry for the most part do not consider energy aspects at all, or if they do then only
in a very simplified way by means of static calculations [261].

The transition towards energy-aware PPC therefore requires to provide the planning
operator with sophisticated decision-support tools that are able to represent and analyze
the complexity of the planning situation [249]. However, these tools cannot evaluate the
energy consumption of production as an isolated target, but instead have to weigh it
against other production goals, such as delivery tardiness, storage costs or throughput.
Being able to view the problem as a whole requires complex multi-criteria optimization.




1.

INTRODUCTION

Energy efficiency must be seen as part of a multi-objective system of production targets.
Such complex multi-objective optimization problems with often time-dependent con-
straints are hard to solve for real-world industrial production planning problems. Modern
solutions typically rely on heuristic or meta-heuristic methods [295]. Meta-heuristics allow
to explore the search space efficiently and effectively, especially if they are customized
to the particular problem [129]. These methods evaluate different planning scenarios in
a systematic and iterative manner by quantifying their fitness for a given optimization
target [115] in order to ultimately achieve an optimal configuration.

As one of the challenges, these methods need to be able to reliably and accurately assess
the impact of production on the overall energy demand. Because of the complexity of
modern production systems, static calculation methods are no longer sufficient or would
be difficult to manage. Instead, simulation-based methods are gaining interest because
they enable to capture the complexity and dynamics of real-world problems without the
limiting assumptions many other approaches have. Simulations can deliver calculated
energy demands from production schedule forecasts and thus support decision-making in
production planning [280, 152, 137, 138]. They allow to consider more complex systems
than conventional analytical models, while offering more accurate predictions and overall
improving planning quality [181, 252].

In order to be able to perform comprehensive energetic investigations within industrial
facilities, the underlying simulation models have to capture the complexity of the un-
derlying system with sufficient level of detail. The models have to incorporate aspects
from different engineering domains, in particular production machinery with its material
flow, energy infrastructure, logistics and building physics. For example, the interaction
of a production oven generating waste heat affects heating and cooling demand of the
surrounding building. Similarly, the actual setup time for pre-heating the oven depends
on such conditions as the temperature of the products having been produced before,
and this setup time in turn affects the production throughput and scheduling [129].
Incorporating energy considerations in production logistics simulations with their time-
dependent interactions in an accurate manner requires advanced modeling and simulation
approaches that combine discrete and continuous dynamics. While material flow entities
can intuitively be modeled using discrete-event methods, energy flow (including transient
effects) is best described using time-continuous dynamics with differential equations.
Integrating discrete and continuous modeling methods as part of a hybrid modeling
and simulation approach remains a challenging task [39]. As [235] points out, only few
publications so far focus on hybrid systems in the context of production simulation.

Hybrid discrete/continuous simulation in practice requires coupling discrete-event methods
with differential equation solvers in a way that is not only efficient (in terms of runtime)
but also formally sound (in order to produce accurate results). One common approach is to
couple discrete and continuous simulation tools as part of a so-called co-simulation [130].
As a drawback of that approach, the user is forced to split the overall model into
different sub-models along the boundary of discrete/continuous modeling, thereby loosing
component modularity. It quickly becomes cumbersome to maintain and reuse these
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kinds of models. A more promising approach in this context uses a formal model
description based on an extended Discrete-Event System Specification (DEVS) for hybrid
systems [320]. Discrete-Event System Specification (DEVS) has a sound basis as a formal
model description in the academic field. In practical industrial applications, however, it
has experienced little adoption so far [130, 135]. A comparison with other co-simulations
also shows the potential benefits of the DEVS approach, especially for modular component-
based and hierarchical hybrid modeling as well as tighter integration of continuous and
discrete model parts while maintaining potentially better performance [135]. So far, no
alternative hybrid discrete/continuous simulation approaches are known that aim at
industrial planning optimization [261].

Practical computer-aided decision support solutions for deployment in real-world ap-
plications require a lot of manual development effort to derive simulation models and
optimization algorithms of a particular system [172]. In addition, engineers need to
overcome the gap that exists between solutions proposed by research and the actual
needs and implementations in the industry. In [47], the authors investigate this gap for
integrating energy efficiency into production management and they conclude that many of
the existing tools are not suitable for practical deployment due to the lack of practicability
and comprehensiveness. Modern solutions based on the Model-Driven Engineering (MDE)
methodology can help to mitigate this gap and systematically manage the development
process of concrete application models [40].

Managing the system complexity is a key element for real-world applicability. In software
design, this can be enabled mainly by two approaches: abstraction and separation
of concerns [194]. Abstraction can be achieved through conceptual modeling, which
avoids unnecessary implementation details during the early development stages and helps
communicating concrete solutions to production managers and other stakeholders [172].
Separation of concerns can be achieved by by employing component-based modeling that
allows to compose models from reusable components in a bottom-up manner. Model
components provide modularity in simulation, which is a necessary prerequisite for model
reuse in an attempt to reduce the effort necessary to develop new application models.

1.2 Research Objective and Hypotheses

To overcome the obstacles mentioned above, this thesis conducts research into methods
for simulation-based optimization in production planning of complex production systems.
The overarching aim of this work is to support the integration of energy aspects into
modern PPC solutions. In particular, we ask the question:

How can we facilitate the use and adoption of simulation-based optimization
techniques for decision support in practical energy-aware production planning
to increase enerqy efficiency in industry?
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This is not a trivial task for real-world applications as meta-heuristic optimization
techniques have to be employed that require hybrid simulation in the background for
assessing energy consumption in conjunction with the material flow. In addition, methods
are required that support the engineering of such models in practice and to simplify
modeling for application engineers.

From this research question, we can derive three research hypotheses that are to be
examined in the scope of this thesis:

Hypothesis 1: A simulation approach based on DEVS is feasible for developing hybrid
simulation models of real-world production systems that are modular, reusable and facilitate
separation of concerns.

Hypothesis 2: The integration of material and energy flow simulation enables meta-
heuristic optimization techniques to provide energy-aware production planning.

Hypothesis 3: A Model-Driven Engineering (MDE) workflow provides a suitable
methodology for engineering hybrid simulation models in practical applications. It offers
an intuitive model abstraction and formally sound way of model specification that en-
ables modular composition, reuse and allows to derive and configure hybrid DEVS-based
simulations.

We are concerned in particular with practical requirements, such as modularity, component
reuse and runtime efficiency, that are necessary to apply the methods in practice.

As the DEVS-based approach to hybrid simulation is not yet established in industrial
applications, we are especially interested in how it performs against common solutions
using co-simulation. Intuitively, it seems that DEVS-based simulation entails more
development effort to implement a working simulation. However, it promises some
interesting advantages that are to become apparent only after conducting some real-world
case studies.

1.3 Scope of the Work

A central aspect is the practical applicability of the developed methods. For this purpose,
it is important to support the implementation process on one hand and to put special
focus on a high reusability of the simulation models on the other hand. To this end,
novel contributions in three areas are presented:

Hybrid Simulation: A method for hybrid discrete/continuous simulation of produc-
tion systems is investigated that employs a formal model description based on DEVS. The
hybrid approach allows to accurately capture the material flows (discrete) in a production
plant as well as the energy flows (continuous, using differential equations) including their
dynamic interactions. Unlike co-simulation, which often uses ad hoc coupling and is
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very error-prone in implementation, the DEVS-based method is component-oriented and
allows integrated hybrid modeling at component level, thus allowing for component reuse.
The practical applicability is demonstrated in several case studies that are based on real
applications, for which a library of reusable hybrid and modular component models is
developed. In a first step, an initial prototype implementation is conducted in MATLAB,
which then serves as a basis to develop a standalone hybrid simulator implementation.

Meta-heuristic multi-objective Optimization: Based on the hybrid simulation, a
multi-criteria optimization method for operative production planning is developed, which
specifically considers the energy consumption in the target system. The optimization
method aims at sequencing and time scheduling a given list of production jobs while min-
imizing energy demand together with other production goals. This includes optimizing
setup times to reduce energy demand and increase production throughput. The procedure
combines a Variable Neighborhood Search (VNS) meta-heuristic with Variable Neighbor-
hood Descent (VND) and Simulated Annealing (SA) for local search and diversification,
and employs the simulation for energetic evaluation of different production schedules. The
Variable Neighborhood Search (VNS) uses energy-related operators and neighborhoods,
for example to optimize the setup times of thermal processes in order to save unnecessary
energy consumption. The combination of General Variable Neighborhood Search (GVNS)
meta-heuristic with hybrid simulation for industrial production planning is novel in the
literature.

Model and Simulation Engineering: In an effort to support the engineering process
of concrete production planning applications, and especially the modeling process of
domain-specific DEVS-based simulations, an approach for conceptual modeling of inter-
disciplinary production systems is developed that allows the user to describe such models
by instantiating, connecting and configuring component models in an intuitive manner by
abstracting away irrelevant implementation details from the user. The method is based
on a model-driven development process and defines a domain-specific specialization in the
form of a component-based meta-model for the domain of production systems. From the
abstract model description, system-specific implementations of executable simulations can
be derived by means of model transformations. This separation of high-level specification
and specific implementation promises better flexibility in the modeling process and
significant advantages in managing the complexity of real-world applications.

It is important to note that we deliberately focus on the methods for applying hybrid
simulation-based optimization in industry rather than on the application cases themselves.
For one thing, the concrete parametrization of the case study simulations is not in the
scope of this work. There are several companion publications that have resulted from
the same research projects, in which the current thesis is also located, that explain these
complementary aspects in more detail, in particular [256, 261]. However, the fact that
the case studies are still derived from real production plants ensures the applicability of
the methods and relevance for real-life applications.



1.

INTRODUCTION

1.4 Methodology

In this section, the basic methodology is outlined for testing the stated hypotheses. As
mentioned, we are concerned more with practical requirements than a pure theoretical
analysis, which is why we base our work on a research methodology from applied research.
The work follows an experimental design science methodology for information systems
research [305, 214] supported by use cases to frame the research activities. The use cases
stem from multiple research projects and are derived from real production facilities. This
ensures that the research stays goal-oriented and that the results are relevant to practice
and applicable. In particular, use cases are considered from an industrial bakery.

These use cases impose certain requirements on the end result regarding scope and
functionality as well as performance and usability. In addition, special focus lies on
reusability and modularity of hybrid model components.

In a first step, a survey of the current state of the art is conducted to identify relevant
related work on simulation-based methods for energy efficiency in industry. Special
focus is being put on hybrid discrete/continuous simulation, and we go into detail
regarding hybrid co-simulation. We discuss some of the challenges that face these current
approaches when applying them in practice and then outline a general concept how
hybrid simulation-based optimization can be integrated into a planning module as part
of an industrial information system.

As part of the design and development phase, a DEVS-based modeling formalism is
investigated regarding its applicability for hybrid simulation in an industrial context.
Modeling and execution issues are highlighted and test cases are implemented in the
experimental MatlabDEVS simulator. This also serves as a basis for a first use case
implementation that allows to estimate how this approach is suited for real-world ap-
plication. Common white-box modeling techniques are used for deriving the simulation
component models. Based on the first proof of concept, a standalone hybrid DEVS
simulator is developed that serves for execution of the use case examples. These artifacts
are iteratively refined and extended during development.

In the next step, we investigate the benefits of using hybrid simulation within a simulation-
based meta-heuristic optimization method and show how optimization results can be
improved using more accurate modeling. We demonstrate the feasibility of this method on
a flow shop scheduling problem of an industrial bakery. Different scenarios are compared
and we highlight the potential benefit of considering energy as an optimization target.

Subsequently, a meta-model is formalized that captures the domain-specific features and
concepts for high-level (platform-independent) model specification, following a Model-
Driven Engineering (MDE) paradigm with iterative and incremental refinement. In
addition, model-to-model and model-to-text transformations are developed that are able
to generate platform-specific executable implementations from the high-level specifica-
tion. Besides a MatlabDEVS implementation, we are also interested in transformations
into purely discrete implementations. By implementing the meta-model and model
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transformations, we can provide proof-of-concept implementations of a case study that
demonstrates the modeling workflow.

Finally, an evaluation of the modeling workflow as well as the generated simulation
models by means of feasibility analysis in case studies concludes whether the approach is
suitable for application in an industrial context. In particular, we highlight the balance
between flexibility and complexity of the engineering method and whether or not the
envisioned modeling workflow is able to improve reuse of hybrid component-based models.

1.5 Structure of the Thesis

The thesis is organized as follows: In Chapter 2, we present some relevant background
regarding energy efficiency in industry and PPC systems. Then in Chapter 3, we review
the related work and relevant state of the art published in the literature. Based on this,
we outline the general concept for energy-aware production planning within industrial
information systems in Chapter 4. We also discuss an approach for conceptual modeling
based on components, called Cubes, and how this approach frames the subsequent research.
In Chapter 5 we formalize hybrid DEVS-based simulation, develop a library of Cube
components and demonstrate its application on different case studies. Chapter 6 then
goes into detail regarding meta-heuristic simulation-based optimization for production
planning. It presents a novel procedure based on a hybrid VNS/SA algorithm and applies
it on a case study in different scenarios. Then in Chapter 7, we discuss a formalization
of the model and simulation engineering workflow based on a MDE methodology. We
conclude in Chapter 8 with a discussion of the proposed research hypotheses and outline
possible future work.

Parts of this thesis have also been published in other papers over the course of multiple
research projects. The most relevant ones are [136, 135, 229, 130, 252, 133, 132, 129, 28,
29, 134].






CHAPTER

Background

Due to the application-oriented nature of our work, we first present some relevant
background for the industrial domain. We introduce some relevant terminology and
discuss Production Planning and Control (PPC) systems as well as industrial information
systems.

2.1 Energy Efficiency in Industry

2.1.1 Energy in Industry

In order to be able to manufacture products in an industrial plant, it is necessary to
supply the plant with physical energy, in one form or another. This is called energy
utilization or energy consumption. From a purely physical standpoint, the latter term is
obviously not correct considering that energy cannot be ’consumed’ but only converted
to other forms of energy. From a more practical standpoint, however, it could be argued
that, since usable energy is converted during production into energy that is no longer
usable (or used) in a technical process (e.g. diffuse waste heat), the energy can be

regarded as "consumed" in this sense’.

Before arriving at the consumer, the energy is usually converted in a multistage process,
starting from primary energy that occurs in nature (e.g. oil, but also wind or solar
energy), via secondary energy for transport and storage (e.g. gasoline or electric energy),
to final energy (e.g. electric energy after transport losses), as depicted in Figure 2.1. The
final energy is the one being billed to the customer [140]. Within the plant, the final
energy is further converted into usable energy for production (e.g. mechanical energy
for machining or heat from electricity). All these conversion processes come with energy

!This notion was later picked up within the research project Balanced Manufacturing (BaMa), to
guide the development of a method for attributing CO2 footprint to processes and products within the
production. See [256] for more details.




2.

BACKGROUND

10

losses — in many cases less than 30% of the primary energy arrive as usable energy.
However, the actual efficiency heavily depends on the conversions involved [140]. During
production, the majority of usable energy dissipates as waste heat. Experimental studies
on profiling the power consumption during machining showed that for metal cutting
operations (milling, turning, etc.), only between 3% and 30% of the energy that is used to
power electric drives, spindles etc., ends up stored in the material itself (e.g. as residual
stresses, chip formation) [172, 82].
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Figure 2.1: Energy conversion chain in industry

When looking at Figure 2.1, one interesting conclusion emerges: An increase in energy
savings is all the more effective (in terms of primary energy, e.g. for climate protection),
the later it is achieved in the energy conversion chain. For example, saving 1 kWh of
compressed air in production can lead to saving 20 kWh of primary energy in the form
of coal [140]. This demonstrates the importance of investigating energy efficiency in
production for its (magnified) ecological impact.

For the economic success of industrial companies, however, energy consumption itself is
often not as important as the associated energy consumption costs. In practice, companies
will not necessarily optimize energy alone, but instead together with other (economic)
targets, as part of a holistic optimization within an energy-aware PPC solution [261].
Hereby, the costs represent a common economic reference unit for different production
factors (e.g. storage, transport), which allows to make these different factors comparable
in terms of their economic impact (e.g. storage costs compared against energy costs).

An important factor in defining energy consumption costs are the continuous changes in
energy prices [250]. This is especially true for large companies, which often buy electric
energy on the electricity exchange market [261]. The fact that electrical energy is difficult
to store makes it necessary to constantly adjust the production and consumption. The
price of electricity may thus change over the course of the day according to supply and
demand [202]. At night, when there is less demand, electricity is usually cheaper.

For the consumer, a variable energy price implies that saving energy does not necessarily
mean the same as saving energy costs. Instead, the variability in energy prices opens an
additional degree of freedom: Even if the overall energy demand stays the same, it might
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still be possible to save energy costs, e.g. by shifting the production into the nighttime
when energy costs are lower [261]. However, this approach almost certainly affects other
aspects (e.g. changing storage costs or personnel demand?) and it must be assured to not
negatively affect the production goals (e.g. delivery timeliness). The energy (and energy
costs) must therefore always be considered together with other production parameters.

Other possibilities to save energy costs (without necessarily saving the amount of energy
consumed) include production smoothing, i.e. leveling out peak energy loads that would
cause higher energy prices. Production smoothing is often done as part of longer-term
production planning, which covers a longer time span than short-term PPC as well as
strategic decisions [154]. More details on PPC are discussed in Section 2.2.

2.1.2 Energy Efficiency

In general terms, technical energy efficiency commonly measures the ratio of usable
energy output to energy input into a process [211]:

E usable
Ein

NEnEff = (2.1)

Regarding the energy input Fi,, a distinction can be made between different levels of
energy efficiency, depending on whether primary, secondary or final energy is used. The
more challenging part, however, is determining what constitutes a usable energy output
Eysable- This strongly depends on the context of investigation [186]. In [211], the author
defines energy efficiency even more broadly as

useful output

B (2.2)

TEnEff =

by potentially considering any form of useful output of a production process, system
or economic sector, giving rise to a number of different categories of energy efficiency
indicators (physical-thermodynamic, economic, etc.). Useful output could for example be
the number of pieces produced or the economic turnover generated from them. Since we
are more concerned with the technical perspective on energy efficiency rather than the
economic one, we will focus on physical-thermodynamic indicators for energy efficiency.

The term energy efficiency is often mixed with other terms, such as energy savings or
energy productivity. While energy savings describes the composition of non-use of energy
and energy efficiency (e.g. changing light bulbs and decreasing their duty cycle), energy
productivity relates energy consumption to economic performance (e.g. turnover, value
added). On the one hand, such ratios are certainly more meaningful than pure energy
consumption figures. On the other hand, it is crucial to choose the right ratios so as not
to create distorted results and enable targeted energy management [140].

2For example, shifting production into the nighttime might save energy costs, but increase personnel
costs.

11



2.

BACKGROUND

12

This shows that it is not trivial to accurately — and objectively — quantify energy efficiency.
Issues arise when interpreting these indicators. For example, energy efficiency of a factory
may decrease because of higher mechanization (and therefore higher energy use) rather
than deteriorating technical efficiency. For economic indicators, changing energy or
material prices over time might also lead to distorted interpretations [261]. The author
of [211] provides an interesting discussion on the methodological issues in valuating energy
efficiency many people are not aware of.

Nonetheless, what is important for our work is that one of the major ways® to increase
energy efficiency is by decreasing the energy input Ej,, see Equation (2.2) [186, p.15].

There are also other indicators that can be found in the literature. For example, the
Specific Energy Consumption (SEC)

_ Ein
Physical output

SEC (2.3)

is an energy intensity measure and the inverse of the energy efficiency indicator. For
unit manufacturing processes, the SEC is more favorable than energy efficiency as a Key
Performance Indicator (KPI) [186] and is in this context often referred to as Energy per
Piece® [139).

Combining energetic measures with physical units, like in Equation (2.2) and Equa-
tion (2.3), has the advantage that these figures can be objectively measured while also
directly reflecting what consumers are actually requiring in terms of an end use service
(e.g. Energy per Piece). This is why this kind of measure of energy efficiency is widely
used in the industrial and commercial sector [186].

This has an interesting implication for simulation: When using simulation for evaluating
energy efficiency in terms of these indicators, it is required that both energetic and
physical (e.g. products) figures need to be considered, perhaps even be included in the
dynamic simulation in order to dynamically align these figures and allow for more detailed
evaluations. This motivates using a hybrid discrete/continuous simulation approach.

2.1.3 Improving Energy Efficiency in Industry

There are several studies in the literature which attest the industry a substantial energy
saving potential, between 35% and 60%, depending on the sector [33]. The industry
accounts for 30-40% of the overall primary energy consumption [267], and a large portion
of this could potentially be saved by implementing effective energy efficiency measures [70].

Starting with a broad view on energy efficiency in industry, several fields of action have
been identified in the literature, including [202, 261]

3The other possibility would of course be to maximize useful output by given energy input. However,
we consider this out of scope for our work.

4This indicator is also of interest insofar as it can be interpreted as a kind of energy footprint of the
product, similar to a CO2 footprint. This has been elaborated further in [260].
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« substituting renewable energy sources (wind, photovoltaics, hydropower, etc.),
o more efficient and low-emission power plants and energy conversion technology,
o more efficient industrial processes,

e energy recovery and energy reuse and

e improving planning and operation in production.

In the current work, we are concerned primarily with the last action, i.e. improving
planning and operation of production facilities to save energy. This falls under the
umbrella term energy Demand-Side Management (DSM), which includes all measures for
energy management at the side of consumpation (as opposed to energy generation or
distribution) [210, 250, 185].

When looking at where energy can be saved on the demand side, different levels of
granularity are commonly distinguished [186, 261]:

o Machine/Component Level: This involves structural changes, such as using
more efficient equipment and technology, as well as optimal choice of process
parameters and improved process planning, such as avoiding idle times.

¢ Production Line: Across multiple production components, optimized production
planning involves selecting the best possible process variants as well as scheduling
products in an energy-optimal manner, e.g. avoiding peak loads or producing
the most energy-intensive products at times when the most renewable energy is
available.

e Factory Level: This includes construction and structural measures, like improv-
ing building insulation as well as operational aspects aside from the immediate
production, like controlling auxiliary systems, Technical Building Services (TBS)
(e.g. lighting) and Heating, Ventilation and Air Conditioning (HVAC).

e Supply Chain: Considering multiple factories, their interactions may be coordi-
nated in a way that leads to an energetically optimal overall outcome on a global
scale, resulting in a industrial symbiosis [87]. This might involve different factories
within the supply chain as well as multiple production sites within a company.
Transport logistics plays an important role, as does product life cycle analysis.

In the current work, we focus on the production line and factory level. At each one of
these levels, energy is consumed and planning and operation decisions can be made that
influence energy use [87]. It is difficult to quantify how much of the overall energy is
attributed to which level, because it heavily depends on the industrial branch and the
technologies involved. However, many high-technology companies have in common that
a significant energy share — more than 50% in some cases — falls into areas outside of

13
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the main production process, meaning production periphery such as TBS and HVAC.
Traditionally, controlling the production periphery focused on availability and reliability —
detailed coordination with the production is usually not considered [261]. Controllers
typically regulate between fixed temperature thresholds instead of the control strategy
being adaptive to the current production program. For example, it would be possible
to adjust heat storages in anticipation of higher production utilization and a resulting
increase in heat recovery [190]. This example underlines the importance of investigating
the production facility as a whole for energy efficiency.

2.2 Production Planning and Control Systems

In general, Production Planning and Control (PPC) is concerned with the operative,
temporal and quantitative planning, control and monitoring of all production processes
that are necessary in the production of goods and commodities [302]. The goal of PPC
in every company is to optimize the production system, by planning and managing
the materials and capacities based on the customer needs. The temporal variations
in demand, production and purchasing raw materials need to be coordinated in an
optimal way through planning in order to make the production system work efficiently.
Today, PPC forms the core area in operations management of every industrial production
company [289)].

Figure 2.2 shows the elements of PPC, summarized as a high-level process and inspired
by the Aachen PPC model (see [248, 191] for more details) and other literature [158, 241,
111, 293, 323].

The overall PPC process consists of production planning and production control. While
production planning generally involves planning resources, material and capacity as well
as scheduling of future production jobs, production control is concerned with monitoring
the current production execution. These tasks are usually complemented by Sales and
Operations Planning (S&OP) and possibly further cross-sectional tasks, such as inventory
management, order management, etc. [248].

The overall planning tasks take place on multiple levels with different time horizons’:

e Long-term: Starting from the top of Figure 2.2, S&OP involves production
demand and sales planning based on customer orders, forecast projections and
other market information — typically within the following year or longer. Long-term
planning strategies are motivated by high pressures for high product availability
and fast delivery in many supply chains against the background of increasingly
volatile customer demand and pressure for cost and resource efficiency [293]. The
result is a demand plan (Dplan) forecast determining which quantities of a given
product should be available for delivery in which time period.

5The actual length of these time horizons strongly depends on the sector and types of products. For
a typical job shop production, short-term planning covers around 1-2 weeks, while medium-term and
long-term planning tasks often have time horizons of several months and up to one year, respectively [177].
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Figure 2.2: Process of PPC, complemented by S&OP. The figure also shows some of the
relevant documents involved: demand plan (Dplan), production plan (Pplan) and work
plan (Aplan).

¢ Medium-term: Based on the demand forecast, primary production and require-
ments planning tries to derive an aggregate resource and capacity plan on a
medium-term horizon. The result is a rough production program under consider-
ation of limited production capacity [248]. Depending on the complexity of the
production process and the supply chain, primary production planning may be very
simple or become more complex. In any case, rough process simulations are able to
support medium-term planning, e.g. to identify capacity bottlenecks.

e Short-term: In the final stage, resources and material requirements are planned in
detail on product level on a short-term horizon. The demand is calculated against
warehouse stocks and decisions are made for either in-house production or external
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procurement [248]. Detailed time scheduling and sequencing as well as allocation
to machines and resources for the in-house production have to be planned based on
a work plan (Aplan) that defines the process parameters (e.g. baking temperature
and duration in an oven) and production procedure for each product type. This
planning stage is also the most important one for energetic optimization, since
scheduling (e.g. shifting start times into the night hours), sequencing (e.g. to
exploit energetic synergies between jobs) and machine allocation (e.g. using an
alternative machine that requires less energy) allows to exert the most influence on
the energy demand during planning [261]. The result is a detailed production plan
(Pplan) that specified which product is produced when on which machine(s).

After the planning is complete, the scheduled and allocated jobs can be released for
production, at which point the production control takes over to monitor the production
execution.

The described processes are usually supported by operative PPC software systems, which
are an integral part of industrial Enterprise Resource Planning (ERP) and Manufacturing
Execution System (MES) systems [191]. These will be discussed in more detail in the
next section.

2.3 Industrial Information Systems

The tasks involved in PPC are supported by computer-aided tools, which are part of
the industrial information system within an automated production environment. The
following provides a brief overview of these systems in order to be able to place the PPC
systems in the proper context.

Traditionally, the system architecture of an industrial ICT system has been described
as a pyramid structure [48], illustrated in Figure 2.3 and further formalized also in the
IEC 62264 standard [144]. It is divided into five main functional levels with different IT
components and communication technologies. Components communicate within their
level (horizontal) as well as with neighboring levels (vertical).

Each level is responsible for its own tasks within an automated production. Depending
on these tasks, specific technologies and communication standards have evolved that
characterize the different levels.

The first level from below (Field Level) handles direct communication with the technical
manufacturing process (which itself may be interpreted as being on Level 0) through
sensors and actuators, which collect process data end execute commands for controlling
energy and material flow [173]. It also contains the communication infrastructure on the
field level traditionally consisting of diverse field bus protocols and industrial networks.

On the second level, i.e. the Control Level, the process data (e.g. temperature, switch
positions) provided by the Field Level is used by local controllers to derive output actions
to be sent back to actuators on the Field Level to control individual machines or facilities
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according to specified set points and control targets. These local controllers are commonly
implemented in Programmable Logic Controller (PLC) systems because of their flexibility,
ease of use and robustness [297].

The main task of the Supervisory Level is to merge the resources from the levels from
below via a suitable communication network with a host computer in order to obtain
a holistic view of the production processes. A so-called Supervisory Control and Data
Acquisition (SCADA) system are used as process control systems for monitoring and
central control. SCADA systems collect and analyze real-time feedback data, such as
status messages, but also energy consumption data from measuring devices, which they
receive from the Control Level in order to prepare and display them to an operator and
perhaps raise alarms if deviations occur. They also specify set points and targets for
the Control Level by taking production instructions from the level above (i.e. the Plant
Level) and deriving subtasks to be distributed to the controllers below.

On the Plant Level, all elements from the Supervisory Level are aggregated into a
functional and organizational whole, called Manufacturing Execution System (MES)
[316, 164]. Tt forms an interface between the technical control system on the lower
levels and the business-oriented management level. The main tasks of the MES include
material, operations, personnel and quality management and, in particular, detailed
planing and control of the production. To achieve this, the primary planning data coming
from the ERP system (see below) are broken down into individual production steps, and
restrictions, such as machine and personnel capacities, are taken into account. The result
of these planning activities is a detailed production plan, which is then transferred to the
operative level below [164, 191]. From the Supervisory Level, (aggregated) feedback data,
such as current order status, actual start and finishing times of jobs, machine data, and
also aggregated energy consumption data, is received, which is collected and processed
within the Production Data Acquisition (PDA) system. The PDA allows to identify
deviations from the planned data and, if necessary, take appropriate control measures, as

17
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well as to derive KPIs for the management level.

The top layer, i.e. the Management Level, is located on the global enterprise level and
contains different computer applications, collectively called Enterprise Resource Planning
(ERP) system. The ERP system collects in a central place all strategic and operational
planning information as well as production feedback data from the lower layers relevant
for enterprise management. The ERP level is responsible for all strategic tasks, such as
order processing, finance and accounting or sales and distribution, as well as all long-term
and medium-term production planning tasks as part of PPC, see also Figure 2.2.

The feedback data from the production (i.e. the technical process) moves through the
levels from bottom to top and is successively aggregated — the planning information, on
the other hand, goes from top to bottom and is successively translated into increasingly
detailed control instructions. The pyramid shape comes from the number of components
contained in each level. While the ERP system usually consists of a few centralized
computer applications (processing large amounts of data), the bottom level may involve
a large number of decentralized field components on the shop floor (each of them only
processing a few data points).

While the traditional automation pyramid as a reference model emphasizes the strong
hierarchical structure, the exact implementation of the levels may vary from company
to company and often looks very different in other automation domains. Levels can
sometimes be omitted or combined with other levels. In the literature, there are many
different designs that differ in the number of levels and the exact names of the levels [192].

Some authors understand the Plant Level as being the combination of Supervisory Level
and MES.

In recent years, modern industrial communication technologies in the context of Industry
4.0 [153, 38] and smart manufacturing [217, 179, 155, 75] have begun to increasingly flatten
and soften the hierarchy of the automation pyramid by unifying the communication within
the layers (horizontal integration) as well as across layers (vertical integration) [189].
Especially in the lower levels, the traditionally very heterogeneous infrastructures are
increasingly being replaced by new technologies for industrial communication, e.g. Open
Platform Communications (OPC) [147, 322] and more recently OPC Unified Architecture
(OPC) and other Industrial Internet of Things (IIoT) technologies [321]. More information
on this topic can be found in [150, 38, 217].

After presenting some of the background relevant for integrating simulation-based methods
into industrial information systems, in the next chapter we discuss some related work,
including hybrid co-simulation and other simulation-based methods.



CHAPTER

Related Work

In contrast to Chapter 2, where the basic terminology and relevant background have
been presented, this chapter focuses on the state of the art on hybrid simulation and
related fields. We discuss hybrid co-simulation in particular because of its stand as state
of the art.

3.1 Literature Review on Simulation-based Optimization
in Production

3.1.1 Optimization Methods

Since optimization in a complex solution space with simultaneous objectives is a diffi-
cult problem to solve, practical multi-objective optimization has spawned a wealth of
approaches and solution methods [143, 90]. A general overview is given in [37, 308,
102], while [295] focuses on optimization in the food manufacturing industry. In general,
combinatorial multi-objective solution methods can be categorized in [239]

e exact methods that guarantee finding an optimal solution, such as gradient meth-
ods [18], dynamic programming [23], or Mixed-Integer Programming (MIP) [218],
and

 approximate/heuristic methods, including meta-heuristic, without guarantee that an
optimal solution is found, such as greedy search [98], Simulated Annealing (SA) [290],
Evolutionary Algorithms [255] or Variable Neighborhood Search (VNS) [127].

Usually, exact optimization is the method of choice if the optimization problem can
be solved with effort that grows polynomially with the problem size. For NP-hard
problems, however, where exact methods need exponential effort, even medium-sized
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problem instances often become intractable using exact methods. In these cases, heuristic
and meta-heuristic optimization methods can still provide a satisfactory solution. They
often show good performance for many NP-complete problems and problems of practical
relevance [239)].

3.1.2 Meta-heuristics

While heuristic methods are problem-specific as they exploit properties of the problem and
are typically derived from previous experiences with similar problems, meta-heuristics
rely on a problem-independent high-level search strategy [317] to efficiently explore
the solution space, often employing a combination of intensification and diversification
mechanisms to escape from local optima and still perform a robust search [108]. As
both are approximate approaches, they do not guarantee to find an optimal solution,
however, they typically manage to find a feasible solution that is satisfactory for practical
applications in a feasible time and with feasible computational effort. They are especially
suited in cases when finding a global optimal solution is either impossible or impractical.

In recent years, research in the area of combinatorial optimization has shifted towards
hybridization of meta-heuristics with other optimization techniques towards more problem-
specific solutions [31]. These hybridizations include combinations of different meta-
heuristics as well as combinations with exact algorithms (employed e.g. to solve specific
sub-problems) and problem-specific heuristics. For example, a population-based Genetic
Algorithm can serve as global search mechanism for exploration in combination with
local search procedures during the intensification phase. In [310], a hybrid Evolutionary
Algorithm is proposed in combination with Simulated Annealing for solving a multi-
objective optimization. Similarly, [1] describes a hybridization with a multi-objective
Tabu Search and a Genetic Algorithm.

In the context of industrial production planning, various heuristic and meta-heuristic
solution methods have been proposed [156, 311, 2]. According to [295], meta-heuristic
and customized multi-objective heuristic approaches are well-suited for applications
in real-life industrial production planning problems (which typically are NP-hard), in
contrast to exact approaches that require simplified models. Similarly, [311] compare
different algorithms for near-optimal solutions after having encountered difficulties using
an exact approach. Meta-heuristics allow to explore the search space more efficiently
and effectively, especially if they are tailored to the individual problem [119]. Different
meta-heuristic algorithms, such as Evolutionary Computation, Tabu Search, Particle
Swarm Optimization (PSO) or Simulated Annealing (SA) have been successfully applied
to various logistics optimization problems [253].

Besides population-based meta-heuristics, like Genetic Algorithms, Ant Colony Optimiza-
tion [86] or Particle Swarm Optimization [80], which work with a population of candidate
solutions to concurrently sample different regions of the solution space, single-solution-
based methods, also called trajectory methods, iterate over a single solution are more
exploitation-oriented and usually need fewer simulation evaluations, which improves over-
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all computation time. Among these trajectory methods, Variable Neighborhood Search
(VNS) algorithms have shown excellent capability for solving scheduling problems [238].
This is in accordance with other publications, e.g. [312, 3, 238], which have successfully
applied VNS for job scheduling problems in the production domain. In [106], the authors
compare different optimization methods for simulation-based optimization of production
plans, in which VNS also leads to the best results.

3.1.3 Optimization of Energy Efficiency in Production

Numerous studies on the optimization of energy efficiency in production have been
published in the literature. A comprehensive overview can be found in [235]. Some of
the described methods focus on optimization without the use of simulation. The main
strategies involve analyzing energy consumption in production and choosing energy-
efficient process alternatives as well as addressing non-productive times including start-up
and shutdown phases.

For example, the authors in [89] employ a graph-based approach in combination with
Dijkstra and A* search algorithms for finding the most energy-efficient production state
during unproductive times in production.

In [61], the authors investigate energy consumption reduction in production through
effective control of machine start-up and shutdown schedules considering given produc-
tivity requirements and evaluating energy performance. They formulate a constrained
optimization problem and discuss a greedy search algorithm for obtaining operation
schedules.

Wang et al. [294] accomplish energy reduction in iron and steel batch production by using
an integrated optimization model for optimal load scheduling and reduction of energy
peaks. They formulate a non-linear optimization problem and introduce linearization
techniques to derive a Mixed-Integer Linear Programming (MIP) model.

The authors of [84, 83] investigate the detailed energy consumption of production machines
in different operating states in an effort to derive possible measures to reduce energy
base load and optimize machine occupancy by addressing non-productive phases, such as
standby, set-up and shutdown. Time and energy studies are carried out in different case
studies to quantify the economical and environmental impact from a life cycle perspective.

Similar work has been conducted by Hacksteiner [122] and Diir et al. [169] at TU Wien.
They aim to determine relevant energy efficiency and productivity Key Performance
Indicators (KPIs) of machine tools based on measurement data for electricity and
compressed air. The data are recorded via SCADA software and stored in a database.
They divide the energy profile into base, process and peak load to determine energy
efficiency and processing time.

All of these approaches have in common that they are based on measurement data and/or
employ static modeling techniques for representing production systems. In the following,
we will focus more on related works in the context of simulation.
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3.1.4 Simulation-based Methods for Energy Efficiency in Production

An overview of approaches that employ simulation for improving energy efficiency in
production systems is given in [261]. These methods agree that they see simulation as
a promising tool that allows detailed modeling and analysis of complex systems [138]
not only static, but dynamic over time, thus capturing the interactions between system
components.

In the following, we will briefly discuss some of the more prominent related works
that have been published in the literature. Many of them employ Discrete-Event (DE)
simulation at its core, like the work of Thiede and Hermann [280, 139, 138, 282]. They
extend the DE simulation with a simplified representation of the energy system and
an evaluation module for optimization. The production machines are modeled with
discrete operating states and associated power demands and time durations, which are
stored in a production program that is executed and accumulates the energy input over
time. The simulation model incorporates the production machines as well as Technical
Building Services (TBS), and a separate PPC module handles production planning. The
simulation is implemented in AnyLogic with additional Java code and evaluation and
visualization in MS Excel. The TBS model is mostly based on algebraic equations for
energy and flow balance. Initially, no Ordinary Differential Equations (ODEs) were used
for continuous simulation of the TBS system. In later developments, the approach was
extended to include a building model (in EnergyPlus) and a physical simulation of the
machinery (in MATLAB/Simulink), as part of a multi-level co-simulation [247, 281].

A somewhat similar approach found in the literature is that of Junge [152]. His solution
is also based on co-simulation and features simulation models for the material flow,
energy flow as well as the building. The models are implemented in different simulation
environments and coupled using a custom-built framework with a basic fixed-interval
coupling strategy. The energetic simulation of the production facilities is based on
interpolated measurement data, so no dynamic interactions can be taken into account.
The production planning optimization is carried out via different heuristics taking into
account energy efficiency. For example, energy-intensive products are scheduled at night,
assuming lower temperatures during these hours. Critical parameters, such as lot size
and threshold values, are determined using meta-heuristic parameter optimization. The
method is applied on a case study of plastic injection moulding. A disadvantage of this
co-simulation approach is its limited reusability. The co-simulation must be redesigned
for new application cases and the model couplings have to be reimplemented. This
requires considerable effort and knowledge.

We will go into more detail regarding co-simulation in Section 3.2, and in Section 3.3 we
will discuss a more comprehensive co-simulation case study that has been developed by
us in the course of a previous project.

Haag [120, 121] developed a concept to model the energy flows in all production facilities,
including peripheral equipment. It uses a Discrete-Event Simulation (DES) and the
modeling is based on machine states and power levels, which are stored in a database.
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This applies to the main production processes as well as the peripheral equipment, which
is divided into classes for modeling. The simulation is implemented in the software
Plant Simulation, with parameters being read from MS Excel. The concept also includes
a description of the planning optimization, which, however, was only carried out in a
simplified case study. Potential extensions that are mentioned include modeling of the
dynamic thermal behavior, the use of more sophisticated optimization algorithms and a
more detailed modeling of the production processes and the periphery.

The approach described in [299, 300] is also based on DES and also uses state-based
power levels for energy modeling. However, they extend this approach and define energy
blocks for each machine type and process step, which are stored in databases and can be
used for process modeling by combining them together to obtain the total energy demand.
They call this the EnergyBlocks methodology. In addition to a more detailed modeling,
this method has the main advantage of improved flexibility, since the energy blocks can
be recombined and reused for new products. Auxiliary equipment, such as TBS, can also
be included. However, this method requires a detailed preparation of energy profiles as
energy blocks with corresponding plant states for different products. Furthermore, the
energetic behavior can only be represented deterministically and dynamic interactions
cannot be incorporated.

In [131], a multi-domain modeling approach for machine tools is described that aims at
quantitative assessment of energy saving measures in metal-cutting production processes.
It addresses electrical, mechanical as well as thermal aspects of machine tools, which
are combined into a single dynamic simulation model. The implementation is based on
object-oriented acausal modeling in MATLAB /Simscape [279] similar to Modelica [104].
A case study of a turning lathes serves as demonstration and for evaluation of the
approach.

More strongly focused on optimization is the approach described in [228], which also uses
DES for energy-oriented machine allocation planning. Various meta-heuristic optimization
approaches are investigated and the Genetic Algorithm (GA) is identified as the most
suitable one. The GA is extended by a hybridization with a local search procedure to
accelerate the convergence. The method is applied to a case study in the field of textile
production. The simulation is implemented in Plant Simulation with deterministic energy
demands. The planning optimization focuses on a sequential planning of orders. As
a simplification, only identical parallel plants are considered. A disadvantage of this
approach is the long computation time of the GA optimization, which has been bound
for reasons of practicability and at the expense of solution quality.

Romer and Strassburger [236, 234] investigate a hybrid simulation approach combining
System Dynamics (SD), DES and Agent-Based Modeling (ABM) for energy efficiency
analysis in production. They distinguish multiple modeling levels, ranging from indi-
vidual processes via process chains up the the macro level computing the total energy
consumption. The authors also argue that continuous modeling in combination with a
discrete approach to map the material flows and logistic processes allows to show the
complex interactions between material flow and energy usage in production closer to
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reality. They apply the approach to a use case scenario in the mechanical processing of
die-casting parts, where the simulation model is implemented in AnyLogic.

In [215], Peter and Wenzel also describe a co-simulation approach for hybrid simulation
with bidirectional interaction between a DE material flow simulation and a Continuous-
Time (CT) energy model using a communication middleware with TCP /IP interfaces.
Plug-ins control data exchange, time synchronization as well as project management.
They apply the approach on a case study from the automotive industry sector and
demonstrate the interaction between production processes and energy flows through
coupled simulation. They also discuss Key Performance Indicators (KPIs) for measuring
the energy consumption for individual material flow items [301].

Schmidt and Pawletta [244, 212] also developed a hybrid simulation approach for describ-
ing resource consumption in industrial processes. Instead of using co-simulation, their
approach is based on the Discrete-Event and Differential Equation System Specification
(DEV&DESS) modeling formalism (see also Section 5.2) and the implementation is
embedded into MATLAB/SimEvents, for which they develop a custom model library.
Their components are divided into three main parts: the material flow aspect, the process
physics model and a process control layer that maps the local process control operations
of the component, modeled as state machines. As part of a case study, they describe a
hybrid model of an industrial hardening furnace.

This simulation approach based on DEV&DESS allows a more integrated hybrid modeling
on the component level compared to a co-simulation method and is similar to the method
described in Chapter 5. However, their MATLAB/SimEvents implementation seems a bit
cumbersome in some places and requires some workarounds due to the restrictions posed
by the simulation environment. This in turn hinders scalability and general reusability
of this solution.

3.1.5 Discourse

Some solutions combine simulation models with optimization techniques for systematically
finding optimal scenario configurations. Due to the complexity of the system and the
optimization problem, most of these techniques rely on heuristic or meta-heuristic
methods.

The literature shows that most approaches employ DES with discrete state-based power
levels that uses deterministic energy profiles and only allows very simplified consideration
of dynamic energetic interdependencies. Similar approaches have also been published
in [306, 242, 54, 54]. Most of them do not include production periphery or building
facilities in the energy consumption.

Besides DES, co-simulation is also represented, which couples together more than one
simulation model in different variants. Only few publications describe fully dynamic
hybrid simulation with tight integration of material and energy flows that also captures
their dynamic interactions [235]. However, most of these use simulation in a scenario-based
manner without systematic meta-heuristic optimization.
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3.2 Coupled Simulation

One intuitive approach to Modeling and Simulation of hybrid systems is to couple CT
and DE simulators together and exchange data at runtime to form an overall hybrid
simulation. While this approach has some obvious merits, it comes with significant
challenges and drawbacks. To give an overview, this section presents the state of the
art and some relevant background regarding coupled simulation. First, we discuss the
concepts and terminology related to coupled modeling and simulation in general as well as
co-simulation in particular. After that, we will discuss challenges of hybrid co-simulation
as well as applications of co-simulation for energy simulation.

3.2.1 Methods for Simulation Coupling

Apart from classical modeling and simulation in a single Modeling and Simulation (M&S)
environment, more and more approaches try to couple multiple equation solvers and/or
multiple simulation methods or environments [50, 97, 125, 198]. In many cases, these
approaches were born out of necessity to solve a particular simulation problem, for
example coupling models of physical systems with controller algorithms for mechatronic
systems [114, 198], or in Smart Grid simulation where power systems are coupled with
communication network simulation [66]. In [130], a classification of coupling methods is
given, presented in Table 3.1.

Table 3.1: Classification of methods for coupled simulation (adapted from [130])

Monolithic simulation Dlszzﬁﬁfe{: solflrll;;(l)?ltlon
(single solution procedure) P
procedures)
1\‘/Ionohthlc. modeling I: Classical simulation II: Model separation
(single modeling method)
Distributed Modeling
(multiple modeling III: Model coupling IV: Co-simulation
methods)

This classification can be applied to continuous systems' as well as hybrid discrete/contin-
uous models, which is why it used general terms like solution procedure and modeling
method. For a continuous model, a solution procedure would be a numerical ODE solver.
For discrete-event models, the solution procedure involves the event scheduler as part of
the simulation engine. Typical modeling methods are for example Ordinary Differential

!The authors of [291, 245] originally provided a similar classification for purely continuous models.
The classification has been extended in [130] and is further generalized here.
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Equation (ODE) modeling, System Dynamics (SD), Agent-Based Modeling (ABM), or
DE.

Classical simulation (Quadrant I), i.e. modeling and simulation using a single simulation
tool without coupling, is still the most common method. The simulation tool provides a
modeling environment and a suitable model description language tailored to a particular
domain. It can perhaps span multiple physical areas of engineering (e.g. Modelica) and
often comes with libraries of pre-defined modeling elements that can be reused to build
complex models in a time-efficient manner [291]. The overall model is then compiled to
arrive at an executable simulation, during which a solution procedure (e.g. numerical
algorithm) is used. This solution algorithm is typically provided by the simulation
tool and tailored to work well in combination with the provided model description (e.g.
DASSL in combination with Modelica).

When using a single modeling method, the overall model may still be divided up to be
computed by multiple simulation algorithms. This is called model separation (Quadrant
IT). This can be employed for example to separate stiff equations for solving them with
individual step sizes, so-called multirate methods [245, 270]. One notable example of a
simulation tool for multirate simulation is MATLAB/Simscape, which allows to specify
local solvers for isolated parts of the physical network [279, 131].

In contrast, when implementing individual model parts using different modeling tools, but
a single solver, this method can be called model coupling (Quadrant III). The individual
models are usually exported from the different tools to be imported and simulated
in a common tool. The model export can be carried out by exporting equations or
simulation code, either as symbolic equations, source code or compiled code [245]. In
some cases, discretized equations are exported, effectively meaning that the numerical
solver algorithm is also part of the exported model, which is why this case falls under
co-simulation (Quadrant IV). One prominent example in this regard is the Functional
Mock-up Interface (FMI) [30].

Co-simulation (Quadrant IV) uses multiple modeling methods and multiple solvers.
In many cases, multi-domain or multi-disciplinary simulation models are divided into
mono-disciplinary sub-models which are then implemented in specialized simulation
environments [117]. One example of this approach is presented in Section 3.3 where a
simulation model of a production facility is divided into a sub-model for the building,
one for the energy infrastructure and one for the production machinery.

In [130], we provide a more precise definition of co-simulation:

Co-simulation (cooperative simulation) is a method for simulating heteroge-
neous (continuous, discrete or hybrid) system models (typically instationary
and time-dependent) by combining multiple sub-models and simulation algo-
rithms (integrators, event schedulers, etc.) from different simulation environ-
ments, where the sub-models exchange data during runtime via specialized
communication interfaces.
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Combining multiple modeling methods and multiple simulation algorithms for co-

simulation presents three immediate advantages compared to classic simulation [130,
291]:

¢ Modeling advantage: A coupled model may span multiple physical domains,
and each of these domains can be modeled using languages, methods and tools
especially suited for that particular domain. Domain experts are able to use tools
they are already familiar with, which provide advanced user interfaces and modeling
support, ultimately resulting in accelerated model development.

e Simulation advantage: Each domain sub-system may employ different compu-
tational algorithms (e.g. ODE solvers) tailored to the needs of the particular
sub-model (e.g. step size, implicit methods for stiff systems), resulting in a more
time-efficient co-simulation.

e« Engineering advantage: Individual sub-models may be developed in parallel by
different domain experts, thereby accelerating the model engineering process.

There are different ways to couple multiple sub-models to form a co-simulation. Figure 3.1
shows one possible classification of co-simulation couplings.

In the interfaced coupling, two (or more) sub-models may be run in parallel — and
independently — with their outputs being combined (via an interface) afterwards. The
integrated class incorporated continuous feedback and data exchange between the sub-
models during runtime. In the sequential coupling, one of the sub-models has to be run
first and its output is then fed to the next [271].

Sub-modell Sub-modell Sub-modell Sub-modell Sub-modell Sub-modell

Output, Output,
Results Results

(a) Interfaced (b) Integrated (¢) Sequential

Output,
Results

Figure 3.1: Classification of co-simulation couplings, adapted from [271]
The bottom half of Table 3.1 is sometimes also referred to as multi-method modeling [110] or
multi-formalism modeling [128]. This expresses that the sub-models use multiple different

modeling methods or formalisms. It does not necessarily imply hybrid discrete/continuous
modeling, since all of the employed methods may be of purely discrete (or continuous)
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nature [159]. In practice, it is not always obvious which model falls into which category
or which coupling is suited best for a given problem. The modeler has to decide what
fits best and where the sub-model boundaries lie.

From a purely modeling point of view, the term co-modeling may also be appropriate
to describe model coupling or co-simulation. However, this term is used more in the
area of embedded systems [19], specifically hardware/software co-design, although it can
sometimes also be found in connection with Cyber-Physical System (CPS) [42, 101].

3.2.2 Hybrid Co-Simulation

Hybrid co-simulation, as the name suggests, is a particular kind of co-simulation that
combines CT and DE modeling methods in a non-trivial manner in order to model
and simulate hybrid systems [5, 52]. The fundamental differences between these two
paradigms lie at the heart of many of the challenges of hybrid co-simulation [113]. For
example, while a CT state variable evolves continuously over time, meaning it is present at
every time instant ¢ € T', a discrete-event signal may be absent at some time instants and
assume multiple values at some other time instants (transiency) [67]. A DE simulation
unit has to receive inputs and produce outputs often at the precise time some event
occurs, while for CT co-simulation, a delayed response to the inputs is typical [113] (due
to the orchestrator, e.g. using Jacobi-type coupling strategy, see also [130]).

A typical example of such a hybrid system is a thermostat regulating the temperature
in a room [188], which is very similar to the controller used in our case study for an
industrial oven, see Section 5.5. The continuous simulation unit represents a room (or a
thermal mass in general) with temperature dynamics 7'(¢) including a source of heat P,
(e.g. a radiator):

ar 1
dt  m-cp

(Py-k—UA-T),  T(0)=Th, (3.1)

where m - ¢, is the thermal mass, UA the heat transfer coefficient and k& € {0,1} denotes
the control input. The discrete simulation unit is a controller that controls (on/off)
the heat source, depending on the current temperature sample 7;, which constitutes an
input for this simulation unit. The thermostat is modeled as a state machine, shown
in Figure 3.2.

Transitioning from one state to the other generates output events ¢ with values 0 and 1,
respectively. These values then have to be mapped to appropriate values of the input k
for the continuous unit. The difference between ¢ and k is that values for g only exist at
times when the state of the thermostat changes, whereas k has to be able to be evaluated
for any given time (i.e. continuous).

Obviously, these two simulation units cannot just be coupled together via output to
input assignments. Any orchestrator for this co-simulation setup has to reconcile the
differences between the continuous and discrete signals. This is what is referred to as
semantic adaptation [81, 284].
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T, >21°C

T, <19 °C

Figure 3.2: State machine model of a thermostat controller

The simplest (and most common) remedy is to use constant extrapolation, i.e. zero-order
hold” function, to convert from discrete to continuous signals:

k(t) = ZOH(q). (3.2)

On the other side, a sampling function is used to extract discrete events from the
continuous function 7'(¢):

T; = sample; (T'(t)). (3.3)

Essentially, these two function create a wrapper around one of the simulation units to
adapt signals to be compatible with the other unit. In general, two main approaches
are distinguished in the literature for hybrid co-simulation orchestration, depending on
where the wrapper is deployed [227, 113]:

e Hybrid DE: Every CT simulation unit is wrapped as a DE unit, for use with
DE-based orchestration.

e Hybrid CT: Every DE simulation unit is wrapped to become a CT unit, for use
with a CT-based orchestrator.

So, for the thermostat example, the hybrid DE approach would involve wrapping the
continuous simulation unit as a DE unit, using Equation (3.2) and Equation (3.3), with a
time advance that matches the size of the co-simulation step. As the hybrid DE approach
is more common, plenty of other examples can be found in the literature [171, 204, 17,
201, 178, 99, 227, 313, 318].

The Quantized-State Systems (QSS) approach [166, 32], presented in Section 5.2.6,
follows the same idea, but utilizes a different sampling than Equation (3.3), in particular
state-based quantization instead of time-based sampling.

For hybrid CT co-simulation, both Equation (3.2) and Equation (3.3) would be used
to wrap the thermostat controller into a CT simulation unit that takes as input the

2Zero-order hold is the term commonly used for digital-to-analog signal converters [148].
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continuous temperature signal and outputs the continuous signal k(t). Similar approaches
can be found in [81, 96, 225]. The FMI standard for co-simulation [30] is one prominent
example that employs the hybrid CT master algorithm for orchestration [276, 67].

Regardless of which approach is used, semantic adaptation between the CT and DE
simulation units is a non-trivial task, especially if certain properties of the constituent
systems have to be retained. Knowledge of the domain and the simulation units is
paramount [113].

3.2.3 Challenges

As mentioned above, different issues arise when coupling multiple models, in particular
(but not exclusively) in hybrid CT/DE couplings. The following gives a brief overview of
some of the most significant challenges, in order to paint a picture of the current state of
the art.

Semantic Adaptation: This issue was already discussed in Section 3.2.2. Semantic
adaptations arise due to the fundamental need to integrate different Models of Computa-
tion (MoCs). While generic wrappers based on the underlying Models of Computation
(MoCs) are possible [67], support for certain features (e.g. superdense time, rollback)
depends on the capabilities of the simulation units involved. Whether a hybrid DE
or hybrid CT approach for orchestration is more suited also depends on the current
application and co-simulation setup. There is simply no best choice for all scenarios [113].
Even further, the manner in which events or signals are exchanged between units may
need to be adapted at the technical level [284], for example changing how events are
encoded. While wrapper-based adaptations of simulation units are perhaps the most
intuitive solution, they introduce drawbacks of their own. Such a wrapper contains infor-
mation that is encoded either directly in one of the sub-models (i.e. requiring semantic
adaptations in the model for each co-simulation setup) or as part of the orchestration
middleware (therby loosing flexibility) [113].

Adaptive Step Size: While an orchestrator with fixed communication interval [130]
may be a simple solution, it is not the most efficient in terms of runtime. On the one
hand, a fixed communication interval that is too small may lead to unnecessary overhead.
On the other hand, events that occur between communication points experience a delayed
propagation, thereby decreasing accuracy. More advanced communication strategies
are needed in practice and several have been proposed in the literature [125, 36, 265,
99]. Still, accurately orchestrating discrete events and CT signals is still challenging,
in particular in distributed co-simulation setups [16] and the fact that many advanced
orchestration strategies require special features from the simulation units, e.g. rollback
and resetting capabilities.

Determinism: Deterministic behavior should be maintained regardless of coupling.
This either involves respecting the causality of events or ensuring that all possible
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interleavings of executions always lead to the same result (i.e. confluence) [112].

Discontinuities: Considering for example a CT simulation unit that allows discontin-
uous state changes (e.g. Modelica [196]). If such a unit uses a DE wrapper, then the
output signal of this wrapper, which is a series of time-stamped points, does not allow
to discern a steep change of a continuous signal form a true discontinuity (in the CT
model) [43, 182]. One possible remedy is to use extra information, e.g. an extra signal to
mark the occurence and time of a discontinuity, as employed by the FMI [30].

Algebraic Loops and Illegitimacy: Resolving algebraic loops, i.e. non-causal de-
pendencies between variables across simulation units, typically requires some fixpoint
iteration technique, even in purely CT co-simulation. Not only does this add compu-
tational overhead, but the iteration may fail to converge. An orchestrator needs to be
able to detect such a convergence failure as to not become stuck in an endless loop. An
algebraic loop of a CT system is related to the illegitimacy property of DE systems [24].
An illegitimate model means that an infinite number of events occur within a finite time
period [320, 166], thereby the simulation being unable to advance beyond this period.
Illegitimate models hav to be recognized and appropriate measures have to be taken [113].

Stability: For hybrid or switched systems, it is possible that a particular sequence of
events causes the system to become unstable, even if all the individual continuous modes
of operation are stable [112]. Research is still required into the conditions under which a
hybrid co-simulation system can become unstable, e.g. due to data quantization, change
of orchestration or propagation delays.

Modular Composition: For large-scale systems, simulation units have to be composed
modular and hierarchical [85]. Doing so involves multiple hierarchical orchestrators, which
not only increases overhead but also brings the risk of loosing compositional properties
like determinism or stability (see above). Constituent models should be able to be coupled
to other models in different contexts in order to provide some kind of reusability. In
co-simulation it is possible to get around the modularity aspect, but at a cost [113].

Standards for Hybrid Co-simulation: There is currently no well-established stan-
dard for hybrid co-simulation available. While there are the Functional Mock-up Interface
(FMI) for CT co-simulation [30] and the High Level Architecture (HLA) standard for DE
co-simulation [145, 71], both still have limitations for hybrid co-simulation. Extensions
have been proposed in the literature, both for High Level Architecture (HLA) [16] as well
as FMI [107, 276]. Broman et al. [43] proposed a set of test cases with their mathemati-
cally ideal unambiguous behavior, to test requirements for future hybrid co-simulation
standards. Particular issues involve handling of simultaneous events, zero-width glitches
and representation of time. They especially highlight the challenge involved in establish-
ing a hybrid co-simulation standard: "A standard that enables composition of simulation
tools has two conflicting objectives. It meeds to be sufficiently rigorous to define the
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meaning of a composition of components. And it needs to be flexible enough to embrace
industry-standard and established simulators. The former demands a rigorous semantics,
but the later creates pressure for less well-defined semantics.” [43].

3.3 Co-Simulation for Energy Efficiency

There are multiple examples of using co-simulation for energy applications. Many of them
revolve around research into smart grids [204, 187, 51, 85]. These applications typically
combine power system simulation (continuous) with a model of the communication
network (discrete), resulting in a hybrid model of a Cyber-Physical Energy System
(CPS) [146].

The following presents a case study of a co-simulation for investigating energy efficiency
in a production facility that we carried out previously as part of the research project
INFO? [28, 137, 134, 169]. The case study involves co-simulating the dynamic inter-
dependencies of production, energy supply network and building hull of a high-end
metal-cutting production plant. The goal was to provide assessments of different energy
saving measures and design variants during the planning process of the plant.

3.3.1 Reference Model

In order to coordinate systematic model development between the different sub-models
of different engineering domains, in a first step a reference model was developed that
formalizes and documents the overall system under consideration [183]. The reference
model provides a generic description of a production plant with a focus on energy flows.
It is intended to give the participating engineers an overview of the components the
system is comprised of an, more importantly, their interfaces and interactions with other
components, to guide concrete implementations of sub-models including corresponding
communication interfaces and their subsequent coupling to a co-simulation [130, 169].

Figure 3.3 shows an overview of the developed reference model of a production facility
as a network of 16 components with dynamic variable connections (black arrows) as
well as static parameter dependencies (green arrows). The reference model includes
general descriptions of components with their parameters and variables. Each component
represents a distinct part of the overall system that can be found in most typical industrial
production plants. The reference model includes planning components and parameter
references that are not part of a dynamic simulation, but rather provide additional
guidance for model parametrization based on planning data.

This generic reference model aims at providing a system overview and itself does not
describe a concrete implementation of the internal model of individual components.
Instead, it follows a black-box view of its components, thereby remaining independent of
any modeling language or simulation tool. This allows for more flexibility for adapting

3http://projektfinfo .org
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Lighting model

Lighting model
control aspects

Figure 3.3: Reference model for developing simulations of production facilities. The
model includes physical components (blue), information components (red) as well as
planning components that provide static parameters (green). Black arrows show dynamic
interactions between component variables. [130].

components to different specific implementations and requirements, in terms of model
complexity, level of detail or data availability.

To derive a concrete model instantiation, individual components from the reference
model may be pruned or condensed with other components to be encapsulated within a
single simulation sub-model [183]. Internal variables have to be exposed according to the
interfaces in the (condensed) reference model. The internal behavior can be implemented
using different simulation environments (see below), including DE and CT dynamics,
depending on which tool or modeling language is more suited for the sub-model at hand.

3.3.2 Co-simulation Implementation

After developing the reference model, the task was to apply it to a concrete case study
of a production plant and implement an overall dynamic co-simulation. The overall
co-simulation architecture is presented in Figure 3.4.

Three sub-models were developed in different simulation tools by different domain experts:
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Figure 3.4: Framework for co-simulation between MATLAB, EnergyPlus and Dymola.
The software middleware BCVTB handles synchronization and data exchange [130].

o Machines and production system (MATLAB/Excel): In order to be able to simulate
larger time periods (e.g. one week, up to an entire year) as part of a co-simulation,
it is necessary to employ a modeling approach for production machines that reduces
model complexity by only considering the main energy flows relevant for the overall
simulation. In this case, we opted for data-driven parametric models of discretized®
load profiles with a significantly lower temporal resolution than physics-based
high-fidelity models [131]. Detailed simulations together with measurement data
can aid parameter calibration and validation [28] by providing high-resolution
data, from which recurring operating states and corresponding energy levels can
be identified for parameterizing the load profiles [134]. This approach was used to
instantiate models for a pool of existing machine tools in the scope of the case study.
Implementation was carried out in Excel® in combination with MATLAB [277].
The model computes the enery demand for the machines as well as waste heat,
which serve as input for the energy system model and thermal building model,
respectively.

o Energy system (Dymola): The energy system sub-model describes all Technical
Building Servicess (TBSs), including equipment for supplying electric and thermal
energy, like pumps, chillers and photovoltaic system. In order to compare different
design variants [169], three different models of different energy systems have been
implemented using Dymola [72] and the Modelica modeling language. To increase

Tt is worth highlighting that this simplification results in a purely discrete time-driven model, as
opposed to a continuous model.
5This was done due to practical advantages in the course of the project.
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runtime efficiency, classical signal-flow-based modeling was employed instead of
the acausal equation-oriented approach typically associated with Modelica [105],
thereby leaving out unnecessary modeling details, reducing overhead and improving
numerical stability [130].

e Thermal building model (EnergyPlus): The third sub-model depicts a thermal
model of the building hull, including multiple thermal zones, that houses the
production. The model incorporates weather conditions as well as time schedules
for heating, cooling and lighting accounting for human occupation. The simulation
receives heat gains from the production machines etc. and calculated heating and
cooling demands for the energy system. The building sub-model was implemented
as a Building Information Modeling (BIM) intance [88] and then exported for the
simulation tool EnergyPlus [286].

These sub-models have to include additional interfaces necessary for co-simulation, which
can be derived from the condensed reference model. At runtime, these sub-models
interact by iteratively exchanging data via specialized software, so-called middleware,
see Figure 3.4. For the case study, we used a prototypical open-source software framework,
called Building Controls Virtual Test Bed (BCVTB) as middleware [304, 303]. The
co-simulation follows a client-server architecture, where the BCVTB acts as the server
for the simulator clients. The data exchange between client and server is carried out
via a BSD socket interface for interprocess-communication using the TCP /IP protocol,

which technically allows for the co-simulation to be run over a computer network [257].

The BCVTB employs a coupling strategy with fixed synchronization time step without
iteration [304] — so-called Jacobi-type coupling [130].

Managing the co-simulation as well as gathering and processing the simulation results of
the case study was also done in MATLAB, see Figure 3.4. MATLAB serves as a central
point of contact for the user to execute the simulation as well as visualize the results in a
graphical user interface [130].

Figure 3.6 presents the overall implementation in more detail, including the BCVTB
graphical user interface. More details on this case study and its implementation can be
found in [169, 130].

3.3.3 Results

The implemented co-simulation was used to compare different scenarios and parameter
settings of the case study in order to investigate the impact of different design variants
and energy saving measures on the overall energy efficiency [134]. A comparison between
results of three different energy system variants is shown in Figure 3.5. It is intended to
demonstrate the applicability of co-simulation for investigations into energy efficiency of
production facilities.

The figure shows that Scenario 3 is the variant most suitable for the case study. In
contrast, Scenario 1 is completely inept; a more detailed investigation uncovered that
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Figure 3.5: Comparison of annual final energy demand between three scenarios [130)].

this was due to inefficient operation of the involved absorption chillers (that produce
cooling energy for the building). For more details and further results, we refer to [169].

3.3.4 Discourse

Since the model is spanning several engineering domains (i.e. production machinery,
TBS, building hull), a coupled simulation approach using different modeling tools and
modeling formalisms seemed an intuitive choice. No single simulation tools was available
that would have met all of the requirements and would have been able to fully model the
complete system in the level of detail necessary to fully take advantage of the energetic
interactions across the domains [130]. For the same reason, a mere interfaced or sequencel
model coupling (see Figure 3.1) would not have been sufficient for this case study — only
integrated coupling allows iterative data exchange at runtime.

As mentioned, the BCVTB software only allows a fixed synchronization time step without
iteration, i.e. Jacobi-type coupling. Although this is the easiest coupling strategy to
implement®, it comes with significant restrictions [130]:

e Input variables have to be extrapolated between macro-steps, which increases
numerical errors and may even cause stability problems.

e When using a DE simulator client, events are not propagated immediately, but
only at the next synchronization point. This again increases errors and may lead
to unintended behavior. This makes BCVTB not well-suited for event-driven
sub-models.

Another drawback of the BCVTB software is its low-level data handling. Variables have
to be manually prepared and combined into a single data vector before being transmitted.

SPerhaps the biggest advantage of this simple coupling is that, since there is no repetition of macro-
steps, no external resetting of simulator clients is necessary, which not all simulation tools allow to
do.



3.3. Co-Simulation for Energy Efficiency

Not only is this cumbersome and error-prone, but also the semantics of data variables
gets lost. The data semantics is not fully specified in the reference model — instead, the
domain experts as well es the co-simulation engineer have to agree on common semantics
during implementation.

The reason this case study is shown here to this extent is because it later inspired the
work presented in the following chapters. The reference model in Figure 3.3 is similar

to the metamodel developed in the following (see Chapter 7), although less formalized.

They both have in common that their intention is to guide model development across
different domains by unifying component and interface descriptions. They ultimately
allow for better and more seamless integration between components of different domains
and modeling formalisms [130)].

37



3. RELATED WORK

-~ Machines simulation -
= MATLAB/Excel r

: Thermal building simulation h
EnergyPlus

Room_Ei
50 -
b iy s i
AddSubtract ]
1
t T 3. oot gm 1
- — 1 st 1
T P
i = s W
S0 oL
P proet
e E]G il
= a
i
- I
+ - 1 = ot o e
- C i
— m_ b
A Add!
B E
W26
+

Post-processing
MATLAB

~—— Dymola

Figure 3.6: Overall co-simulation implementation for the case study, including MATLAB,
Dymola and EnergyPlus simulations, coupled via BCVTB middleware [130].
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CHAPTER

Concept for Simulation-Based
Energy-Aware PPC

In this chapter, we want to discuss how energy aspects can be integrated into modern
Production Planning and Control (PPC) and Advanced Planning and Scheduling (APS)
systems by means of model and simulation-based methods. We discuss the general
architecture within the automation system and how the associated data are handled.
We then present an approach for conceptual component-based modeling of production
systems that builds the foundation for the hybrid simulation. The chapter concludes
with an overview of the general engineering workflow for developing component-based
simulation models for practical applications.

This also outlines the main contributions of this work presented in the subsequent
chapters: A method for modular hybrid modeling of production systems, a meta-heuristic
optimization procedure for energy-aware production scheduling, and a formalized workflow
for engineering application models.

4.1 Integrating Energy into PPC

The idea is to deploy a computer-aided planning module that is part of a PPC or
Advanced Planning and Scheduling (APS) system and provides a simulation component
for energetic assessment of different planning scenarios, see Figure 4.1. An optimization
component is able to use this energetic assessment and evaluate it as part of a multi-
objective optimization problem together with other production targets. However, the
goal is not to replace an entire industry-grade PPC system with all its data infrastructure,
but rather to exploit this infrastructure and extend it by an energy-aware planning tool.
This way, the planning module can be easily connected to the automation system in
order to obtain real-time data for parametrization.
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To provide simulation-based functionality, it is necessary to engineer an application
model of the production system in a suitable development environment. This can be
a programming environment, a modeling tool or a model editor that is tailored to the
task of modeling production systems. A more detailed discussion on this is provided in
Section 4.4.

EEE—
Planning Module
Editor «—— PPC
deploy __ LI Optimization
(ot |- ,
p z )
X deploy, ~ = T Simulation

\

\ ’ \
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Figure 4.1: Simulation-based planning module as part of a PPC system in the automation
pyramid architecture

During operation, a planning task is triggered periodically, e.g. once a week, once a day,
or more often, depending on the planning horizon. The PPC system holds the current
production program that is to be optimized. It transfers it to the planning module
and triggers the optimization task, which iteratively finds an optimal value. Thereby,
the simulation is used to evaluate different scenarios and planning variants based on
a given target function. Additional data from the PPC may also be included in the
target function, e.g. data on the current energy price, or shift schedules of the working
personnel. The final result is then returned to the PPC, which displays it to the human
operator as decision support and planning proposal.

The human operator is also required to provide the optimization target, i.e. which
additional part goals are to be included and how they are weighed against each other.

In order to provide real-life tangible, the simulation has to be parametrized based on real
data. This applies especially to the initial values, which, in contrast to static parameter
values, may be different for each planning run and ideally reflect the current state of
the real production system. The data for the initial values can ideally be taken directly
from the automation system, allowing them to always be up to date. However, this
requires adequate automation infrastructure and custom engineering. Providing such
data connections is not within the scope of this work and is therefore excluded in the
following.



4.2. Conceptual Modeling for Simulation

As mentioned, the planning module itself contains an optimization and a simulation
component, the exact interaction of which is explained in more detail in Chapter 6.
However, it is worth noting that it may make sense for certain applications to use the
simulation alone, without the optimization component, in order to manually evaluate
individual production scenarios and obtain predictions about future energy consumption.

4.2 Conceptual Modeling for Simulation

Conceptual modeling in general is a process that elicits the general knowledge about a
problem domain and comprises it into a Conceptual Model (CM) in order to develop a
solution for a given problem [205]. It involves the abstraction of a model from a real or
proposed system [232]. This can of course be applied to simulation studies as well, where
conceptual modeling shows the general knowledge about what is going to be developed in
a simulation model [233, 55]. A simulation CM is an abstract representation of a system
describing its elements, relationships, boundaries and assumptions without reference to
specific implementation details [100, 55]. A CM provides a means of communication
between the stakeholders in a project and avoids ambiguities. They can be specified in a
variety of communicative forms, such as diagrams, drawings, graphs, equations, images
or text [20].

Usually, a CM starts off as an informal (mental) model, which is gradually refined and
formalized to arrive at a description that can be implemented into a simulation model.
Conceptual modeling thereby marks the transition from analyzing the problem space to
system design in the solution space [40]. A CM in itself cannot be executed directly [55],
since it typically does not define execution semantics.

Transformation from the CM to an executable implementation is either done manually
by Software Engineering experts, or, depending on the level of model formalization, may
be automated by specifying transformation rules, techniques or patterns on the model.
This, however, requires a higher degree of formalization in the CM, thus shifting some of
the workload from implementation to modeling.

4.2.1 Frameworks, Tools and Languages for Conceptual Modeling

Research on simulation conceptual modeling has increased in recent years since conceptual
modeling traditionally being seen as a process that is almost completely performed
casually [55]. Different frameworks for conceptual modeling have been proposed in the
literature, some more formal than others. Robinson [230, 231] describes a conceptual
modeling framework consisting of five iterative activities: understanding the problem
situation, determining the modeling and general project objectives, identifying the model
outputs, identifying the model inputs, and determining the model content (scope and
level of detail). In [170], the authors recommend the use of soft systems methodology [60]
in undertaking knowledge acquisition and model abstraction and they provide examples
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in discrete-event simulation [55]. Different conceptual modeling frameworks for simulation
are presented in [274, 27].

Most of these frameworks include two sub-stages, which may be executed in parallel:
system structure definition and abstract behavior definition. This is commonly achieved
in conceptual modeling by combining different diagramming techniques [162].

Especially with regard to software engineering, the diagrams of UML [207, 118] are very
well suited for representing system structure and behavior, but also SysML is becoming
increasingly popular [141]. Besides such general-purpose modeling tools, various domain-
specific conceptual modeling languages have been defined for different simulation domains,
such as the Simulation Modeling Language (SimML) [6], Simulation Model Portability
Standard 2 (SMP2) [314] or BPMN [92], among others. In addition, ontologies also
provide a suitable means for simulation conceptual modeling, as suggested in [193, 254].

Although visual diagrams of some formalisms, such as Petri Nets [216] or DEVS [320], are
also used for conceptual modeling, despite the fact that these formalisms are not designed
as conceptual modeling languages, it requires that all of the stakeholders involved are
familiar with the formalism. The potential advantage of this approach is that the CMs
can be refined incrementally until the final full model basically becomes the simulation
model. However, in most cases, problem owners are not familiar with such a specialized
language and the CM is therefore difficult to communicate during the conceptual modeling
stage [55]. For practical applications, it is critical that the M&S expert and the software
engineer as well as the problem owner (e.g. customer) can understand the conceptual
model so that they can agree on it.

4.2.2 The Model Continuity Problem

As mentioned, CMs are not intended to be executed and thus provide no formal execution
semantics, in contrast to simulation modeling languages that do need to be executed.
A model continuity problem arises when there is no formal alignment between the
models when different modeling languages are used at different stages [55]. This puts the
responsibility in the hands of the simulation model programmer to ensure correctness
and quality of the model implementation. Although there are many languages and
tools for simulation conceptual modeling, special attention has to be put on semantic
model alignment to mitigate the problem of model continuity. In the next section, we
will present a concept for domain-specific model alignment in component-based system
modeling. Some approaches that take the idea of model continuity further by providing
more formal and precise semantics that enable the explicit use of the conceptual models
using formal transformations into an executable simulation [209].

4.2.3 Component-based Modeling

For developing and implementing simulation models of dynamic systems, many software
tools follow a component-based paradigm [68]. In this bottom-up approach, well-defined
model components encapsulate certain internal dynamics, which, when being composed
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with other components into larger models, together describe the overall model behavior.
The components interact with one another only via specified interfaces — they usually
cannot influence each other’s internal states directly. More precisely, in [44], the authors
define a component (in a rather broad, general and software-oriented notion) as

an independently deliverable piece of functionality providing access to its
services through interfaces.

Component-based modeling facilitates modularity and separation of concerns for man-
aging the complexity of large-scale models [133]. From a workflow perspective, it also
allows to distribute model development among different development experts. Such a dis-
tribution may take place along the domain boundaries (e.g. production, building, energy
system), as well as along the level of application, from application engineers, who develop
specific applications, to software engineers that provide the necessary computer-aided
engineering tools. Modeling and Simulation (M&S) experts can create libraries of model
components that are validated, trustworthy and well-documented. These components can
be instantiated for different applications and in different contexts, thereby facilitating
model reuse (in particular black-boz reuse). Reusing model components is crucial in an
attempt to reduce the effort and costs necessary for developing new application models [58,
68]. The importance of component-based development lies in its efficiency [79].

However, in order to retain modularity and composability, it is necessary to encapsulate
all aspects of a particular component within uniform component boundaries and adhere
to specified interface semantics. This can present a challenge in the context of hybrid
simulation, where discrete and continuous model aspects have to be combined in a
modular and runtime-efficient manner [133].

When implementing a component-based modeling paradigm in software, it is intuitive to
employ traditional Object-Oriented Programming (OOP) [46, 298]. This way, components
are implemented as classes which can be organized in a library of model components to be
instantiated and configured for different situations [183]. While both, component-based
modeling and Object-Oriented Programming (OOP) seem quite similar, they do have
certain differences [44, 269, 223]. Nevertheless, OOP has proven to have significant
advantages in software engineering and it is common enough that most software engineers
nowadays are familiar with it.

4.3 The Cube Concept

In an effort to manage the complexity during the analysis of real-world interdisciplinary
production systems, an approach for conceptual modeling is developed that facilitates
abstraction as well as communication between stakeholders. It encompasses the view of
different engineering domains (production, energy system, building, etc.) in a unified
concept.
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This approach divides the overall system from an energetic point of view into well-defined
manageable modules, called Cubes, which then allow a focused system analysis and
modeling independent from the surrounding environment [130]. A Cube may for example
be a baking oven, a machine, an electric chiller or a room within a building. Figure 4.2
depicts an example configuration of Cubes dividing a production facility in a hierarchical
manner.

Building
Production Hall Building Facilities
>l | = | featins le— Heater
: Material, Energy, ;
Machine [ - Solio i, -» Storage Chiller

Figure 4.2: Example of a production facility consisting of different Cubes

A Cube represents a real-world object that comprises a well-defined internal behavior
and interacts with its surroundings by exchanging energy, material and information flows.
The interfaces are defined on an abstract level in order to ensure interoperability and
applicability of the Cube concept on a variety of application cases as well as engineering
domains. In the current case, four different domains are distinguished: machines and
production processes, logistics, technical building services (i.e. energy system), and the
building. More details are given in [168, 130].

The Cube concept serves three main purposes: It allows to manage the complexity of
large-scale applications by divide and conquer, it facilitates communication between
stakeholders of different domains as well as the problem owner, and it defines a domain-
specific specialization of the component concept. Cube align intuitively with component-
based conceptual modeling, where models are built from well-defined components. In the
same way, Cubes can serve as building blocks in a simulation model [130].

From a modeling perspective, Cubes can incorporate discrete as well as continuous
behavior, in the form of material and energy flow. The energetic behavior can be modeled
by drawing energy balances around the borders and derive corresponding dynamic balance
equations. This way, transient dynamic behavior can be incorporated in order to analyze
time-dependent energy exchange between Cubes. For the discrete dynamics, entity-based
structure in combination with discrete events allow to simulate persistent and traceable
products (e.g. work pieces) and can intuitively be described using state diagrams. These
discrete and continuous aspects are often tightly intertwined and interfere with each
other. For example, the internal temperature of a baking oven needs to reach a certain
point before entities can be processed [130].
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In order to be able to build hybrid simulation models from Cubes, it is necessary to
implement them in a modular manner and provide them as part of high-level conceptual
modeling libraries [58]. For this reason, we follow a modular hybrid simulation approach
based on the Discrete-Event System Specification (DEVS), which is described in more
detail in Chapter 5.

The Cube concept was developed in the course of the research project Balanced Man-
ufacturing (BaMa) and is also described in related publications, e.g. [183, 256, 219,
261].

4.4 Engineering Workflow

Engineering planning modules for new applications, and in particular developing the
required simulation models based on Cubes follows the general workflow depicted in
Figure 4.3. The overall development process can be divided into different roles. As
part of a domain engineering process, a model engineer (who is typically a M&S expert)
develops conceptual models of Cube components that occur in the considered domain
and records them in the form of a Cube specification. This Cube specification can be
kept semi-formal and serves as the basis for communication with the software engineer.
It can employ different description tools, such as diagrams, formulas or even textual
descriptions. Based on this specification, a software engineer can implement the Cube as
a model and make it available in a repository.

During the application engineering process, an system engineer analyzes the production
system at hand and models it by taking Cube models from the repository and instantiating,
interconnecting and parameterizing them. In case Cubes are missing, they have to be
created in consultation with the model and software engineers in order to extend the
Cube library. The result of the application modeling task is a coupling specification,
which can be formalized in varying degrees, depending on the subsequent task where
a software engineer completes the implementation. More details are given below. In
addition to specifying the simulation model, the optimization component can also be
instantiated and calibrated to obtain a fully implemented planning module.

Depending on the scale of the project, some of the developer roles may of course coincide,
to the point where all roles are fulfilled by a single person. However, for large projects, it
usually makes sense to split up the development process.

For the concrete model implementation — be it application model or Cube specification —
different approaches can be chosen, which are compared in Figure 4.4. In the traditional
specification-driven paradigm, the model is recorded in a suitable manner (e.g. using
SysML diagrams), to be implemented manually by a software engineer. For Cube-
based application models, it is intuitive to implement them using an Object-Oriented
Programming (OOP) language [183]. However, this approach has the disadvantage that
the conceptual gap between problem specification and implementation is rather large,
which can quickly lead to misunderstandings and errors in the model. This can be
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Figure 4.3: Typical engineering workflow with domain engineering done by model
engineers and application engineering done by system engineers, both of which are
supported in the implementation by software engineers.

remedied by using a formalism-driven approach, for example based on DEVS, which
provides a formally sound infrastructure for implementing models [219]. This ensures
that the implementation stays consistent and that the behavior is always transparent.
On top of that, an additional layer for model-driven development may be introduced, in
order to specify models on a higher level and afterwards transform them into low-level
implementations.

In Chapter 5, we follow the formalism-driven approach for implementing Cube models,
whereas in Chapter 7, we investigate the mode-driven engineering paradigm.

& Cubes Cubes Cubes
Application/
Model Engineer Model-driven
Layer
i
DEVS DEVS
Y Y
‘ OOP OOP oop

Software
Engineer

Figure 4.4: Different model engineering paradigms: specification-driven (left), formalism-
driven (middle) and model-driven (right).
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In summary, the overall concept can be divided into three main modules, depicted in
Figure 4.5. These modules build on one another with the latter modules being optional
in its implementation. For example, simulation may be used independently from the
optimization to predict energy consumption in certain scenarios. The results can then
be fed into an existing PPC/APS system, which takes over the systematic optimization.
Similarly, it is also possible to implement simulation models with or without the Model
Engineering layer, as already illustrated in Figure 4.4.

This optional character is also the reason why, in the following chapters where we describe
the modules individually, we start at the "bottom" with the simulation being presented
in Chapter 5, then build the simulation-based optimization method on top in Chapter 6
and finish off with investigating the engineering aspects of both parts in Chapter 7.

Vs

Model Engineering

N

Optimization

Figure 4.5: The three main modules of the overall concept: Simulation, Optimization
and Model Engineering. The parts build on one another where the latter modules might

be optional.
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CHAPTER

Hybrid Simulation of Production
Systems

In this chapter, we dive into the method for hybrid simulation of production systems
that has been developed in the course of the research projects. We first focus on the
formalism-driven model development paradigm (cf. Figure 4.4) using semi-formal model
descriptions. We investigate the model-driven development paradigm in Chapter 7. The
described method has been applied in five case studies altogether, some of which are
being presented in the second part of this chapter.

5.1 Introduction

We have already elaborated on why employing hybrid discrete/continuous simulation is
important in the context of interdisciplinary energy assessment in industrial production.
It allows both the material flow to be modeled as Discrete-Event Simulation (DES) and
the energy flow by means of differential equations, while also taking into account dynamic
interactions between these domains. Continuous representation of energy flow, as opposed
to discrete energy profiles, enables to accurately incorporate transient dynamics, for
example the heat-up process of an oven or the thermal heat capacity of the building.

The most common approach for hybrid simulation, not only in an industrial context, is
co-simulation, in which multiple existing simulation tools (typically one discrete and one
continuous) are coupled together to exchange data at runtime. While this approach is the
fastest one to implement and is able to make use of established simulators, maintaining
and reusing such models is usually very difficult and often impossible because of the low-
level model coupling. Also, event-accurate synchronization and efficient communication is
not trivial for hybrid co-simulation [266] and requires sophisticated coupling mechanisms
that have to be supported by the different simulation tools involved.
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We pursue a different approach for hybrid simulation that is based on a system-theoretic
description, called Hybrid PDEVS (PDEVS). Compared to co-simulation, this approach
promises several interesting advantages, such as tighter integration of hybrid aspects
and better performance, but most importantly it offers improved reusability of model
components, which is crucial when developing complex large-scale simulation models.
This has also been investigated in [130].

The remainder of this chapter is structured as follows: In the next section, we want to
give an introduction into the hyPDEVS specification for dynamic system simulation and
discuss some of its properties as well as simulation execution and approaches for handling
the ODEs. After that, Section 5.3 elaborates on the Cube concept in the context of
simulation. We present the developed Cube model library and discuss in Section 5.5 an
example in detail. Section 5.6 discusses the simulator implementations, while Section 5.7
and Section 5.8 present case studies where the developed Cube models have been applied.
We then conclude with a short discourse.

5.2 The hyPDEVS Formalism

As already mentioned, we employ a formal model description, called hyPDEVS, for
hybrid simulation. The following provides a brief introduction into the formalism in order
to give the necessary background.

The classic Discrete-Event System Specification (DEVS) is a formal model description
language for Modeling and Simulation (M&S) of Discrete-Event (DE) systems. DEVS
is based on systems theory and was first introduced by Zeigler [320]. It provides a
formal syntax accompanied by an abstract simulator algorithm to specify operational
semantics on how to execute these models. Based on DEVS, a family of extensions
has been proposed, including Parallel DEVS (PDEVS) with improvements for handling
concurrent events [64], Stochastic DEVS (STDEVS) introducing stochastic features, and
Discrete-Event and Differential Equation System Specification (DEV&DESS) combining
the description of DE and Continuous-Time (CT) systems [220, 129].

Also aiming at hybrid discrete/continuous systems, another extension, which we will
denote with hyPDEVS in the following, was first introduced by Deatcu [77] and is similar
to the DEV&DESS formalism by Prahofer [221, 220], with the difference being that
it allows improved handling of parallel and concurrent events (since it is based on the
PDEVS extension [64]). After evaluating both methods with regard to their capabilities
to model hybrid systems in an industrial context [222], it turned out that DEV&DESS
was unfit for our applications, due to its shortcomings related to Classic DEVS, and
we instead had to opt for a solution based on Parallel DEVS (PDEVS), i.e. hyPDEVS.
The drawback, however, is that hyPDEVS is less known in academia and is lacking
off-the-shelf tool support [229].
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5.2.1 hyPDEVS Atomic

All these DEVS-based formalisms allow to build models from components in a hierarchical
manner by distinguishing between atomic and coupled components. More formally, a
hyPDEVS atomic is specified by the tuple [77, 130]

AhyPDEVS = <Xda Xc’ de Yca Sa fa Cse, >\C7 6state> 5exta 6int7 5conf7 )\d, tCL> ) (51)
where

X% is the set of discrete event input values,

Y% is the set of discrete event output values,

X ={(zf,25,...,20)|z] € X{,25 € X5,...,x}, € X[} is the structured set
of continuous value inputs with input variables ¥,

Ye={(y],v5 - -yl € Y ys € Yo, ... ,yf € Y} is the structured set
of continuous value outputs with output variables y;,

S = 8% x §€ is the set of discrete and continuous states,

f:@Q x X¢— S€is the rate of change function,

A @Q x X¢ — Y€ is the continuous output function,

Cse : S¢ — S€ is the state event condition function,

Ostate : @ X X¢ — S is the state event transition function,

Oext : @ X X 4 5 § is the external state transition function,

Oint : S — S is the internal state transition function,

Sconf : Q X X4 — S is the confluent transition function,

A8 — Y% is the discrete output function,
ta:S — R U{oo} is the time advance function,
Q ={(s,e)|s € S,e €[0,ta(s)]} is the set of total states.

The variable e constitutes the elapsed time since entering the state s. The specification
differentiates between discrete (X9, Y¢) and continuous (X¢, Y¢) input/output values
(X¢ and Y have to be real vector spaces) as well as states (5S¢, S%). These sets define
all the possible values the respective variables can adopt. While discrete states in S¢
describe dynamics that only changes value at discrete points in time (called events), S¢
may change continuously over time.

Figure 5.1 illustrates this modeling concept of combining discrete and continuous inputs,
outputs and states. Input ports of X? accept events and input ports of X ¢ accept piecewise
continuous segments. The discrete and continuous parts can influence each other’s states,
and each part produces corresponding outputs Y% and Y'¢, respectively [319]. While the
event input only influences discrete states in S¢, the input X¢ can influence both model
parts by means of state events. The continuous part can cause events to occur whenever
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a condition on the continuous elements becomes true, specified by means of the function
Cse- Such a condition can typically be viewed as a continuous variable crossing a certain
threshold or two continuous variables meeting (in which case their difference crosses zero).
In such a situation, an event is triggered and the state is changed discontinuously, which
is carried out by computing the state event transition function dsate [130]. These events
are called state events, in distinction to internal events (i.e. time-driven) and external
events (from inputs X%).
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Figure 5.1: hyPDEVS combined model with discrete and continuous inputs, outputs and
states

For the continuous dynamics, the rate of change function f in Equation (5.1) defines the
model equations in terms of ODEs, and A computes the continuous outputs. One notable
characteristic of \¢ is that it may directly depend on the continuous inputs X¢. In the
context of state automata, this is called being of Mealy type. In contrast, Moore type
automata define a simpler output function A°: () — Y¢ that does not directly depend
on the inputs, but only on the state values. Their main difference lies in execution of
coupled systems, which we will discuss below.

The remaining functions describe the discrete dynamics: deyt is executed for handling
incoming (external) events, diy; executes internal events, which are triggered when the
time duration ta(s) of the state s is exceeded. In other words, the non-negative real
number ta(s) specifies how long the atomic remains in the given state s in absence of
incoming events. The function A4 computes the (discrete) output values.

The function d.opns is the so-called confluent' transition function and is the same as
defined by Parallel DEVS (DEVS). It is executed whenever a hyPDEVS atomic receives
an external event at the same time as an internal transition is scheduled (i.e. e = ta(s))
in order to resolve the collision and decide the next state at the Atomic level. The
most common implementation (and in fact the one suggested by Zeigler as the default
definition [320]) is

5C0nf(3a€7$) = 5ext(5int(s)707$)a (52)

specifying that concurrent events are resolved by first carrying out the internal event
followed by the external event. However, in general hyPDEVS also allows other definitions

!The term confluent (as in "flowing together") reflects the intention that every execution path should
always produce the same behavior in the end.
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(that might even do something completely different) without reference to dext and dext to
express special circumstances.

This aspect is different than with DEV&DESS, which, instead of dcone, defines a tie-
breaking function Select at the Coupled level in order to resolve concurrent events by
specifying an execution order of all the components within and allowing only one compo-
nent to be activated at any time, thereby enforcing a globally serialized execution [320)].
Avoiding this serialization imposed by the coupling presents a modeling advantage for the
user in terms of improved modularity and thus reusability as the behavior of an Atomic
should not depend in its coupling environment. In addition, this improved independence
allows for hyPDEVS and PDEVS Atomics to be executed in parallel (hence the term
Parallel DEVS).

This parallelization, however, makes it necessary to introduce bags” of input events (as
opposed to sets). These bags can collect multiple input event, which may arrive during
different iterations at the same point in time, thus recognizing that inputs may arrive in
any order [130].

5.2.2 hyPDEVS Coupled

In addition to atomic hyPDEVS, the formalism also specifies coupled hyPDEVS models,
which are comprised of an external input/output interface, sub-components (which
must again be hyPDEVS components) and coupling relations. Coupled systems can be
arranged hierarchically, meaning they can be incorporated just like an atomic into a
larger coupled system. This property allows to construct modular hierarchical (tree-like)
models in a component-based manner. Formally, a hyPDEVS coupled system is defined
as

NnyPDEVS = <XN, YN, D, {Mg}aep, {1a}depuiny; {Zd}dEDU{N}> : (5.3)

where

Xy = X% x X§ is the set of external inputs of the network,

Yy = Y& x Y< is the set of external outputs of the network,

D is the index set (i.e. set of component references),
for each d € D
My is again a hyPDEVS model (i.e. sub-component of the coupling),

and for each d € DU{N}

1, is the influencer set of d,

2In contrast to a set of elements, a bag also allows multiple occurrences of an element, e.g. {a,b,c,a,b}
is a valid bag.
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i.e. the index set of components that influence the component d via direct couplings,
where Iy C DU{N}, d ¢ I;. The exclusion d ¢ I; implies that no direct feedback loops
are allowed, i.e. no output of a component may be connected to an input of the same
component. Furthermore, for each d € D U{N}, Z; is the interface map for d specifying
the coupling relationships, and is divided into (memoryless instantaneous) functions for
discrete and continuous couplings Zg : xieIdYXid — XYdd and Z7 : X;er, Y X7 — XY7
with

YXf:{Xid ifi =N

vd ifi#N

Yé ifd=N
XYdd:{ ‘0

X¢ ifd#N

and likewise for Y X{ and XY7. In addition to separating couplings between discrete
and continuous inputs/outputs, these sets basically distinguish the couplings between
couplings within the network (output Y; to input Xj), couplings to external outputs
(Y; to Yy ) and couplings from external inputs (Xy to Xy). Figure 5.2 illustrates these
interface mappings graphically.

A B ||
o D5 v @D v

2@

C
@ el

Figure 5.2: Coupled system specification using interface maps

This is the most general coupling specification, where the interface map Z; specifies how
the input values of component d are derived from the outputs (or external inputs of the
network) of its influencers i € I;. This way, arbitrary couplings may be realized in theory.

Here, components are coupled exclusively through their input and output interfaces.
Components do not have the possibility to influence the states of other components
directly. All interactions have to be done via the interfaces. Discrete events generated
by one component at its output are transmitted as messages along the couplings to the
inputs of another component, where they cause external events and state transitions.

In order for the coupling to be well-defined, it is not allowed to contain algebraic cycles
with zero delay, i.e. each feedback loop has to contain at least one component the output
of which can be computed without knowledge of its input. Recall from above that
hyPDEVS Atomics can be divided into Moore type and Mealy type. So, in order for
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a coupling to be well-defined, in each cycle of output-to-input connections of coupled
components there must be at least one component of Moore type [319]. Otherwise,
the resulting algebraic loops would have to be solved simultaneously by searching for
consistent values (e.g. using fixed-point iteration). While this approach is possible in
principle and commonly adopted for Differential-Algebraic Equation (DAE) models [124],
and if a unique solution exits then a consistent system can result, however, DEVS-based
formalisms (in particular DEV&DESS and DTSS, see [319]) obviate the problem by
requiring that no algebraic loops are present. In other words, the modeler has to take
care that each feedback loop contains at least one Atomic of Moore type [130]. This
ensures that the legitimacy® condition is satisfied, which will be discussed in the next
section.

5.2.3 Legitimacy

There are some restrictions for modeling hyPDEVS components, most notably the
legitimacy condition inherited from Classic DEVS. Legitimacy means that, in order for a
model to be well-defined, only a finite number of events may occur in a finite amount
of time, for every possible set of initial conditions. A more precise definition uses an
extension of the internal transition function to its iterative form

5t

wnt

S xIf— S (5.4)
over an index set ]Iar and defined recursively by

54(s,0) = s, (5.5)

5 (s,n+ 1) = 8 (57, (5,1)). (5.6)

int

The value 5;;Lt(5, n) is the state reached after n iterations, starting at state s € S, without

external events. The function ) (s,n) accumulates the time advances the system takes
in the course of these n transitions:

> i SxIf =Ry (5.7)
defined recursively by

Z(S,O) =0, (58)
n—1

Z(s,n) = Z ta(é;:n(s,i)). (5.9)
i=0

Using these definitions, legitimacy can be formally defined. A DEVS system is legitimate
if for each s € S it holds that [319, p. 158]

lim Z(s,n) — 00. (5.10)

n—oo

3In particular, a potential divergence of a fixed-point iteration for solving the algebraic loop would
result in infinite iterations and thus an illegitimate model.
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In practice, this condition prohibits atomics going into an infinite loop of internal events
without advancing time beyond a certain point. Legitimacy provides a necessary and
sufficient condition for the system specified by DEVS to be well-defined. A DEVS system
would not be legitimate for example if there was a cycle of state transitions that only
contains transitory states, i.e. states for which ta(s) = 0, meaning hat, once entering this
cycle, time would not advance anymore. Such a cycle may occur both at the Atomic level
(by an invalid definition of d;,¢) and at the Coupled level, by coupling several Atomics
forming an endless loop.

For hyPDEVS, the legitimacy property for DEVS can be extended in the same way as it
is done for DEV&DESS in [319, p. 232] to define the property of state event legitimacy.
A hyPDEVS system is state-event-legitimate if and only if

> (qw) < o0 (5.11)

for all admissible inputs w : (¢1,t2] — X, where > (q,w) is the number of state events,
i.e. executions of the internal transition function in the time interval (t1,t3] and ¢ the
initial state ¢ € @ at time t;.

The equivalent of this condition in the continuous domain is the Lipschitz condition,
stating that

1f (g 2) = (@, 2)I] < kllg = ql|2 (5.12)

for all pairs ¢, ¢ € @ and input values x € X, where f is the rate of change function, k is
a constant and || - ||2 is the Euclidean norm. This condition guaranties that a unique,
well-defined state trajectory exists for every state and input [319, p. 164]. All these
conditions must hold for a hyPDEVS system to be considered legitimate.

5.2.4 Closure under Coupling

All DEVS-based formalisms provide an important property, called closure under coupling.
It guarantees that a well-defined coupling of systems in a DEVS formalism defines a
basic (atomic) system in the same formalism [319]. In other words, a coupled system
always behaves the same as an equivalent atomic when looked at from the outside.
The implication is that closure under coupling allows to use networks of systems as
components in a larger coupled system, thereby giving rise to the construction of models
in a hierarchical, modular fashion [163]. For hyPDEVS, closure under coupling requires
that the formalism provides a means to specify components with intermingled discrete
and continuous expressions.

5.2.5 Simulation Execution

Executing the simulation by computing the state and output trajectories from the given
model specification together with initial state values and time segments for all input ports
is the task of a simulation algorithm. Hereby, the execution semantics are formally given
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in terms of an abstract simulator algorithm. The common approach for DEVS simulation
engines is to directly map the hierarchical structure of the model by distinguishing between
Simulator and Coordinator classes. Figure 5.3 depicts this mapping of a hierarchical
model to an hierarchical abstract simulator. One advantage of this approach is that it
can be formally shown that this hierarchical structure of Simulators and Coordinators
correctly simulates the model [319].

Root
Coordinator

Coupled — Coordinator
Coupled Atomic — Coordinator Simulator
Atomic Atomic — Simulator Simulator

Figure 5.3: Hierarchical simulator (right) mapping a hierarchical hyPDEVS model
structure (left) and employing message passing between its elements

A Simulator implements steps to call and execute atomic models, while a Coordinator,
assigned to a coupled network, is responsible for the correct synchronization of its network
elements and propagating output events. A Root Coordinator at the top of the hierarchy
implements the overall simulation loop and is responsible for advancing the simulation
time and initiating the simulation cycles. For communication, Simulator and Coordinator
components realize a generic message protocol using different types of messages, including
propagating inputs to children, invoking executions or receiving outputs. Although the
abstract simulators typically employ message passing, they can be realized in different
ways. In fact, there are other approaches that flatten the simulator hierarchy, thus
avoiding additional message traffic and improving performance [163].

The abstract simulator for Atomic and Coupled hyPDEVS can be defined based on the
Simulator and Coordinator for Parallel DEVS (PDEVS) and extending it with ODE
handling with additional handling of state events similar to the Differential Equation
System Specification (DESS) abstract simulator, see [319, p. 216]. While the simulation
execution of discrete systems on a digital computer is relatively straightforward in that
they natively employ a discretized time base, the simulation of continuous systems on a
digital computer involves computing continuous-time behavior in discrete steps. This
can be accomplished by means of numerical integration techniques according to

q(tiv1) = (q(t:), f(q(ti)), (t:)), (5.13)

o7



5.

HYBRID SIMULATION OF PRODUCTION SYSTEMS

o8

where ® describes the integration function depending on the particular method at hand.
It uses the previous state value and input at ¢; (or possibly multiple previous values) to
estimate the state at the next time instant ¢;1. The state value can then directly be
used to give an estimate for the output value by applying the output function

y(tiv1) = X(q(tiv1))- (5.14)

More details on handling numerical integration in connection with DEVS will be discussed
in the next section. The discrete and continuous parts are synchronized by an extended
root coordinator. During simulation, they alternate in model execution. While the
discrete part executes the state transitions at the event times, the other part computes
the continuous state trajectories in between [319]. The operational semantics have been
informally described above. More formal details are given in [76, 319].

5.2.6 Handling ODEs

The hyPDEVS formalism itself does not specify how exactly to handle numerical integra-
tion of the ODEs during simulation. In connection with DEVS, different approaches are
possible, which we will briefly sketch out in the following.

In general, one can distinguish between explicit and implicit integration schemes [123].
While implicit schemes offer a wider stability, they typically require iterative computation
where values have to be exchanged multiple times within one simulation cycle, which is
why it is crucial in this case that communication must be implemented most efficiently.
We will stick to explicit integration schemes, which have been proven to be sufficient for
our application domain.

QSS Embedding: In contrast to conventional ODE solvers, which discretize the time
domain and compute state values accordingly, solvers based on the QSS method [166]
discretize the state space (with a fixed or variable quantum @) and calculate the next
point in time where state values have changed by a quantum (). As a result, a discretized
QSS model essentially becomes a Discrete-Event Simulation (DES). So, by including a
QSS integrator (as an Atomic) into the model, everything can be embedded into DEVS
(or PDEVS, respectively) and simulated using the standard simulation engines. However,
special care has to be taken for the embedding to properly handle state events. This
embedding approach has been described in [318] for embedding DEV&DESS into DEVS,
and Deatcu et al. describe in [77] the same idea for embedding hyPDEVS into PDEVS.

The biggest advantage of this approach is that it seamlessly integrates with Discrete-Event
Simulations and that native DEVS simulation engines can be employed for simulation
without the need for hybrid extension. The drawback, on the other hand, is that, since
this embedding is done at the coupling level with additional Atomics for QSS integration
and state event handling, the compositional complexity of the overall model increases
substantially and that the modeler has to take care of this embedding manually since the
integrator becomes part of the model instead of separating model and simulator.



5.2. The hyPDEVS Formalism

Wrapper Approach: A different approach is presented in [77]. The authors employ
an ODE wrapper concept, where a closed representation of all continuous equations
is derived from the hyPDEVS description automatically at runtime, which can then
be computed by a single ODE solver algorithm alongside the discrete-event PDEVS
engine. The runtime execution is orchestrated by a modified Root Coordinator that
operates in three phases: initialization, discrete phase, and continuous phase, as described
in [76]. Based on the minimum time stamp of the next internal event (in any component),
the continuous cycle computes the differential equations until the next event becomes
imminent. At that time, the Root Coordinator enters the discrete phase and executes
all relevant Atomic components according to standard PDEVS behavior. If all internal
and external transitions have been executed for that particular time step, the simulation
time can be advanced, again by entering the continuous simulation first. The resulting
coupling scheme between the continuous solver and the discrete-event engine is similar
to the canonical synchronization model described by [109], where the continuous part is
executed first until the next event. After that, the discrete events are processed and the
cycle continues.

The advantage of this method is that the continuous part of the overall model can be
computed by a single centralized solver, thereby simplifying the coupling scheme and
reducing communication overhead. The central solver always knows beforehand when

the next discrete event® occurs anywhere in the model and can stop accordingly [130].

In contrast to the stand-alone approach (see below), there is no need for discarding
steps because they have been interrupted by unforeseen external events. Moreover, the
ODE wrapper can employ advanced and established numerical methods for solving the
ODEs that ar common in engineering applications (e.g. implicit integration schemes,
step size control). It also avoids unnecessary model complexity by handling the numerical
integration at the simulator level instead at the model level. And since it preserves the
structural information and derives the wrapper only at runtime, reusability of hybrid
Atomics is still attained. On the downside, the enforced centralization prevents the
simulation to exploit parallel execution, which could improve runtime performance.

Stand-alone Approach: In order to still retain parallelization, a more advanced
approach is to handle the ODEs decentralized for each individual Atomic and still
at the simulator level. This requires a coupling scheme similar to distributed hybrid

co-simulation with event-accurate synchronization and rollback possibilities [266, 17].

See Section 3.2.2 for additional details. Since the ODE computation is localized to the
individual Atomic, it has to be able to react to unforeseen external events, by discarding
the current step and repeating the computation.

The solver is being incorporated into the Atomic Simulator and handles communication
with the discrete part of the Atomic independent of the surrounding DEVS message

4This includes external as well as internal events, since, globally, every external event is triggered
by an internal event of another Atomic. Also, state events are not a problem in this case as they are
detected by the ODE solver itself anyway.
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passing infrastructure. It is therefore necessary to employ solver algorithms that are in
principle independent from DEVS, i.e. standalone. Of course, all classic time-based ODE
solvers can be used for this. Also, some advances have been made towards a stand-alone
QSS solver implementation recently. The ODE solver can be implemented at the object
level, as part of the simulator, in order to keep it separate from the model and keep the
compositional complexity low.

The advantage of this method is that combines the benefits of classic ODE solvers as
well as QSS methods with the ability of modular and decentralized computation while
at the same time keeping the computational complexity low. However, this is also the
most complex method to implement into a simulator and orchestrating the decentralized
computation is not a trivial task and comes with communication overhead. Also, the
Coordinator still needs to be extended to include continuous signals instead of using a
pure discrete Coordinator as in the embedding approach.

This approach was also the one used for the stand-alone hyPDEVS simulator implemen-
tation, which is described in Section 5.6.

5.2.7 Remarks

The coupling specification in Equation (5.3) is similar to the one for the DEV&DESS
formalism described in [319], with two notable exceptions: Equation (5.3) does not
require the Select function for arbitrating concurrent events on the coupling level, and
the interface mapping Z; strictly separates discrete and continuous couplings. While
the coupled DEV&DESS specification allows — with restrictions — to couple discrete
and continuous interfaces together and therefore to build multi-formalism networks
with components of different formalisms, we here restrict coupling relationships to the
discrete and continuous domains, respectively. This is due to the restrictions that come
with multi-formalism couplings which are grounded in the inherently different semantics
between discrete and continuous signals and the non-trivial semantic alignment, most
prominently the restriction in DEV&DESS couplings that continuous output signals are
only allowed to be piecewise constant. For more details, we refer to [319, p. 239].

5.3 Cube Modeling

With the hyPDEVS formalism, we now have the tool at hand to develop hybrid dis-
crete/continuous simulation components for the domain of industrial production systems.
In Section 4.3, we have introduced Cubes as a unified modeling concept for component-
based development of interdisciplinary application models. We want to briefly re-iterate
on the simulation aspect of Cubes and how they are implemented using hyPDEVS.

Cubes provide a modularization to build simulation models in a hierarchical manner —
Cubes encapsulate a well-defined behavior and can be used to build larger Cubes. This is
in alignment with many common simulation tools that offer component-based modeling,
such as Modelica [104, 283]. Even more so, these tools almost exclusively employ an
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object-oriented software implementation of these components as reusable model classes
that can be instantiated in different contexts. In the same way, Cubes are reusable
building blocks to create new simulation models by combining predefined components.
These components are grouped into a library of Cube classes [183].

Our premise was that these Cube models can be of hybrid nature at the component level,
meaning not just that there can be discrete Cube and continuous Cube, but that even
a single Cube might incorporate combined discrete and continuous behavior. This is
one of the reasons why we chose hyPDEVS for implementation. However, Cubes can be
seen as an abstraction of hyPDEVS in that a Cube may be comprised of not just one,
but several hyPDEVS Atomics. The formalism makes no restrictions in this regard and
offers the flexibility to implement hybrid components in whichever way is suited best for
the individual model. In particular, the modeler is not forced to split the component
along the boundary of discrete/continuous modeling with complicated and unintuitive
interfaces. We will elaborate on this aspect in more detail in Section 5.5.3.

As mentioned in Chapter 4, for developing Cube models, instead of directly using the
hyPDEVS description, it proved to be beneficial to first develop the models using a more
abstract and high-level description and then later translate this description into a formal
hyPDEVS specification. Since model development is usually a highly iterative process,
it is faster not to immediately enforce formal accuracy, but instead to initially rely on
a semi-formal description (e.g. by using graphical state diagrams) that is also more
intuitive for domain experts and software engineers and easier to communicate to others.

Using this process of model development, we have developed and implemented a library
of Cube components, of which we will provide an overview in the following. Then, we will
take a closer look at a representative example of a Cube model, namely a conveyor oven.

5.3.1 Interfaces

What is most important to consider when developing model components that are supposed
to be interoperable is that they have uniform interfaces with common semantics. In
particular, we distinguish three different types of interfaces, as illustrated in Figure 5.4:

e Material: For exchanging entity objects. Different entities can be distinguished by
its attributes (see below).

o Energy: For exchanging energy, in particular power values (unit: Watt).

o Information: For exchanging all other kinds of interaction, in particular control
signals, energy demand and temperature values.

While material and information interfaces constitute discrete ports, energy interfaces
are handled as continuous. Distinguishing material, energy and information flow is a
recurring scheme in modeling of industrial production systems and can be found in several
other relevant publications as well, see for example [34] and [280].
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Cube

Material = =pp» - -p» Material
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Energy =3 —>» Energy
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Information —¥| [ Cont. States | [~ Information

Figure 5.4: Generic Cube consisting of input and output interfaces for material, energy
and information exchange. The internal behavior is comprised of discrete and continuous
internal states and can be influenced by setting different parameters.

Besides their interfaces, Cube models also comprise an internal behavior characterized
by internal states (discrete and continuous) and parameters.

5.3.2 Entity Modeling

Entities constitute the movable objects in the simulation that are exchanged between
stations. They represent a workpiece that is being processed or a loaf of bread being
baked. They can represent single workpieces as well as entire groups (e.g. a batch),
depending on the desired resolution of the simulation. They could theoretically also
represent other types of movable production resources, such as a pallet for carrying
workpieces.

Entities are implemented as object classes and comprise different attributes that char-
acterize its properties, like mass, product type, etc. Table 5.1 defines the main entity
attributes used in the Cube library.

Table 5.1: Defined entity attributes

Name Attribute Unit
Identifier 1D

Type type

Mass m kg
Temperature T °C
Heat capacity cp J/(kg-K)
Job number job

Best before date BBD

List of sub-entities ent

Some of the attributes (e.g. product type) are necessary for logistic reasons, while others
are required by the thermal computations. The entity can carry a list of sub-entities that
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allows to define groups of entities that can be batched together and split up again. In
addition, different weight factors have been defined as entity attributes that are relevant
e.g. to calculate the Carbon Footprint of Products (CFP). For more details on this, we
refer to [256].

The values of the attributes may change during the simulation, for example the temper-
ature when the entity enters an oven or the mass of the workpiece after a machining
operation. The values are set by the stations.

5.4 Cube Library

Figure 5.5 gives an overview of the most important Cube classes. The classes are divided
into four main categories, depending on which industrial domain they represent:

o Production equipment (blue): for processing entities.
o Logistics components (purple): for transporting, handling and storing entities.

o Energy system (red): for supplying the production with final energy, including
energy conversion, distribution and storage.

o Building components (green): for thermal building modeling, including thermal
zones and heat transfer.

5.5 Example: Conveyor Oven

In the following, we briefly present the model of an Oven Cubes, in particular a conveyor
oven. This model can be considered to be representative for all production and logistics
Cubes, which is why we want to study it in more detail. It shows the full potential
of integrated hybrid modeling with hyPDEVS and includes all important aspects of a
Cubes model, in particular discrete and continuous behavior on the component level
(with differential equations, a non-trivial state machine, discrete entities, time-driven
internal and external events) as well as their interactions in terms of state events. It also
includes the basic mechanism for moving entities within the station as well as between
stations, which also shows up in other Cubes.

5.5.1 Cube Model

The Oven Cubes, shown in Figure 5.6, represents a generic station for the thermal
treatment of goods, both for heating and cooling [130]. This includes, for example, an
oven or freezer for baked goods, or a furnace for hardening steel workpieces. This station
is designed as a conveyor belt’ with given capacity N and holding time tg. It accepts

SFor N = 1, the model is also able to represent batch behavior. However, batch groups would need
to be merged beforehand using a Combiner Cubes.
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Figure 5.5: Library of Cubes models, including Production Cubes (blue), Logistics Cubes
(purple), Energy Cubes (red) and Building Cubes (green)

entities at the input Fj;,, holds them for the duration ¢ while moving them successively
along the conveying distance and then outputs them again at the port E,,:. The Oven
takes a Pplan parameter, which determines necessary’. setup times for pre-heating or
pre-cooling the station. It also allows to change process parameters depending on the

product type.

Figure 5.7 depicts the discrete internal behavior of the Oven model, governing the
material low and information exchange, represented semi-formally as a state diagram.

5n contrast to most other stations, the Pplan parameter is mandatory for the Oven Cubes.
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Figure 5.6: Oven Cubes with interfaces and internal parameters

The initial state is standby, from where the Pplan may switch the state to of £ or start
setup (state heating). When the requested setpoint temperature T is reached, the
Oven switches to waiting, after which it is ready to accept entities, while maintaining
the temperature. Incoming entities at the input FE;, are confirmed at Fj,com via an
acknowledgment signal and then stored in a list ent (state incoming), after which the
state switches to holding. Here, further entities may enter (via state incoming). After
the time interval ¢t /N, the entities are shifted periodically by one place (state update)
and the farthest entity is output at the end (state output), while also updating the
temperature attribute of the outgoing entity. Optionally, a second entity may be split
off (with mass fraction o - E.m) that represents waste’ and which exits at port E,. In
case the outgoing entities are not accepted by the subsequent downstream stations, the
Oven keeps waiting for the Foutcom and Eycom events and continuously tries to resend
the entities (interval tg). After the entities have been acknowledged, the entity list
is updated and the Oven continues in the state holding or waiting, depending on
whether entities are remaining or not. From the state waiting, the Oven can be turned
off, again via a Pplan signal.

All states marked with «transitory» are transitory states, meaning ta(s) = 0, which,
upon entering, are immediately left again (outgoing transition is true). These states
are special in that they are not mandatory and may be avoided. In the state diagram,
these states could be replaced by corresponding trigger actions, i.e. actions associated
with the corresponding transition rather than a separate state. However, the variant
with transitory states was chosen because of its clarity and improved readability. In
the hyPDEVS implementation, the transitory states do not need to be implemented

"This can make sense for example in a waffle oven where parts of the dough may fall off and exit
through a collecting bin.
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Figure 5.7: State diagram describing the discrete behavior of the Oven Cubes
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explicitly, and instead may constitute actions performed within the transition functions
(Oext, Oints Oconf OF Ostate) ON the way to entering the subsequent state. This will become
clearer in Algorithm 5.1.

The continuous behavior of the Oven is modeled using energy balance equations. In
particular, the interior temperature 1" changes depending on incoming power Qp,, outgoing
heat transfer (T'— T,) - UA and overall thermal mass:

ar — Qn—(T-T,)-UA

ar _ : 5.15
dt mip - Cp + ZEGent Em- E.Cp ( )

with initial condition T°(0) = Tp. The input T; denotes the ambient temperature, ¢,
the specific heat capacity, my, the thermal storage capacity (mass), and UA the heat
transition coefficient® through the Oven walls. The term Y- ey E-m - E.c, denotes the
sum of the heat capacities of all entities F¥ € ent inside the Oven.

8The parameter UA is typically given as UA = U - A with the specific heat transition coefficient U
and the surface area A.
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The heat transfer manifests as waste heat, which is emitted to the environment (output
Quwh), together with the converted electric power P.;. Hereby, a fraction n of the overall
waste heat may be recoverable and is output separately (output Qy.) according to

Qui= (T —T,)-UA+ Py)-(1-n), (5.16)
Qree = (T —T,) - UA+ Py) -n. (5.17)

During operation, a controller is responsible for computing the request for thermal energy
(output Qpp), which is to be supplied (by the energy system infrastructure) at the input
Qp. Thereby, the controller implements a PI control strategy, which is additionally
saturated with the nominal power Py according to

Qprp(t) = min <PH, Kp - (T(t) — Tset) + K7 - /Ot(T(T) — Tset) d7'> (5.18)

with controller parameters Kp and K;. In addition, the Oven also requests electric
energy according to

P.p = Ps, (5.19)

except for when it is turned off (state off).

5.5.2 Remarks

Alternative Conveyor: An alternative way of modeling the conveyor part of the Oven
would have been to model a continuous conveyor instead of discrete storage bins, on which
each entities are transported independently of each other by scheduling a corresponding
outgoing event at tp later after an arriving entity. Some tools for material flow simulation
do use this variant because the simulation uses fewer events and therefore offers better
performance. However, in this case, in order to offer realistic behavior, the dimensions of
the entities would need to be taken into account (in addition to the capacity) to detect
any collisions on the conveyor belt. If this were not done, entities would be able to
be transported "on top of each other" on the belt, which would be unrealistic in many
cases and distort the material flow. This is why we opted for the simpler approach with
discrete bins.

Simplifications: The model follows a few simplifications. For one thing, while the
entities have a heat capacity and can therefore store heat, the model neglects the transient
heat exchange effects between Oven and entities. When a new entity enters the Oven,
it immediately assumes its internal temperature. However, the model still respects the
overall energy balance.

Inverted Operation: The user-defined parameter sign allows to invert the thermal
behavior of the Oven Cubes to operate it as a Cooler or Freezer, in which case (i.e

67



5.

HYBRID SIMULATION OF PRODUCTION SYSTEMS

68

sign=-1) the incoming heat energy @ (as well as the demand output Q,p) must also
have a negative sign. This is a global convention that spans across all Cubes models and
allows for consistent energy balances without the need to distinguish different ports for
heating and cooling.

Power Supply: The fact that the power supply is only considered as abstract energy
flow (as opposed to e.g. gas flow with internal combustion) allows to cover electrically
powered ovens, those fed by district heat as well as gas ovens (by modeling the energy
flow that is carried by the gas) and others.

Event Types: When looking again at the state diagram in Figure 5.7, all three types
of event transitions, which are allowed by hyPDEVS are present:

o Time-driven (internal) events: Processing finished (At > tg/N),
o External events: Incoming E;,, Fouicom, €tc.,

o State events: Reaching internal temperature (sign - (T — Tset) > 0).

5.5.3 hyPDEVS Model

The semi-formal model description of the Oven Cubes in terms of state diagram and
continuous equations has to be translated into a hyPDEVS-compliant model by pro-
viding definitions for the functions specified by hyPDEVS in Equation (5.1) and Equa-
tion (5.3) [130]. Unfortunately, this is not a trivial process and several hyPDEVS-related
aspects have to be taken into account.

From an implementation perspective, it might be a good idea to split into several
hyPDEVS Atomics. This could make it easier for the simulation and software engineer to
manage complex Cubes models, because, on the one hand, this aids in further separation of
concerns by having certain atomics be responsible for certain encapsulated functionalities
(e.g. temperature controller, reading the Pplan) where combining them into a single
Atomic would make the model less comprehensible and more error-prone. On the other
hand, it enables reuse of implementation artifacts across Cubes models. It seems intuitive
to implement the Atomics in an object-oriented manner as Classes and then instantiate
them for reoccurring use in different Cubes. However, multiple Atomics add compositional
complexity due to the higher number of components and connections, which, in many
cases, can be hidden from the application engineer by masking them within Cubes.

For the Oven Cubes, we decided to split the implementation into three Atomics, illustrated
in Figure 5.8. Besides the OvenAtomic incorporating the main behavior, managing
the Pplan table is outsourced into a PplanSource and the temperature controller is
implemented in a Controller Atomic. All three are encapsulated within a hyPDEVS
Coupled so as to keep the structural and interface definition of the overall Cubes intact.
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Figure 5.8: Implementation of the Oven Cubes as hyPDEVS Coupled, consisting of three
Atomics.

The graphical representation in Figure 5.8 follows a SysML (internal block diagram)
notation. It seems appropriate as it aims at, and is employed by, software engineers
during the design and engineering of software systems for communicating internal details
regarding behavior and implementation [103].

Realizing the controller as a separate Atomic has the advantage that various other con-
troller strategies my be implemented in the same way without affecting the Oven Atomic.
But instead of defining it as a separate Cubes, it makes more sense to encapsulate the
controller inside of an existing Cubes. This way, the application engineers do not have to
deal with the controller and its circuitry and therefore this aspect can be hidden from
them. The reusability of the controller on the implementation level is still given.

The Algorithm 5.1 provides the hyPDEVS implementation of the Oven Atomic component
as pseudocode. Some details have been omitted for reasons of brevity, the full pseudocode
as well as the implementations for the PplanSource and Controller Atomics are given
in Appendix A. For a complete specification, the code lists definitions for the functions
ta, Sconts f, Cser Ostater A% Jexts Oint and A? (see Equation (5.1)).

Instead of a strictly mathematical notation for the hyPDEVS functions, we opt for a
procedural representation because it is easier to read for complex models and easier to
transfer into actual source code.

As it is common for DEVS-based models, the implementation introduces a state variable
o, which stores the time advance value (see the definition of ta in Line 1). In other words,
it is the time remaining in the current state. The definition for d.ons (Line 2) follows
the convention of Equation (5.2). The function f implements the differential equation
in Equation (5.15), while the algebraic equations (see Equation (5.16)) are calculated
directly in the output function A¢ in a straightforward manner. The functions cs. and
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Algorithm 5.1: hyPDEVS implementation of the OvenAtomic component

1
2

w

© 0 N o OBs

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

ta(s) < s.o;

6conf(57 €, SU) — 5ext(6int(5)7 0, I);

f(s,e,x) (J:Qh —(sT —z1y)- UA) / (cp - mup, + >, s.ent(i).m - s.ent(i).cp);
Cse(s) <« sign - (ST - Tset);

function dgtate(s, €, ):

switch from state heating to waiting;

return s;

function \°(s,e, x):

y.Qwh — ((s.T —2T1,) - UA+=x.Py)- (1 —n);

Y Qrec < ((s.T —a.T,) - UA+ x.Py) - n;

y. T < s.7T, // output current temperature for controller
return y;

function deyx (s, €, z):

handle incoming Pplan signal and switch to the corresponding state;

5.0 < 5.0 — ¢

if x.FEoutcom and (z.Eycom or a =0) then

s.ent < shift(s.ent); // transitory state update
switch to state waiting or holding;

end

if 2.F;;, and s.ent(1) = () and s.state € {waiting,holding} then
s.ent(1) < z.Ejp; // transitory state incoming
switch to state holding and schedule sending Fjpcom;

end

return s;

function din(s):
if s.state = holding then
‘ either switch to state output or shift and continue;
else
‘ schedule resending entity or go passive;
end
return s;
function \4(s):
set Y. FEincom if scheduled;
if s.state = output then
‘ send E,,; and F,, as long as no acknowledgment is received;
end

[}

return y;
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dstate are responsible for the single state event transition in the model between the states
heating and waiting that triggers when the desired temperature has been reached,
described by means of a zero-crossing function, i.e. sign - (T — Tge) > 0. In Line 13,
dext 18 responsible for handling incoming events (Pplan, E;,, Eoutcom and Eycom) and
A% generates all output events.

It is interesting to note the interplay of A% and ¢, which are mostly executed in tandem.
For example, after receiving an entity (Line 20), A€ is triggered for sending Fj,com (Line
33), followed by the execution of din; to switch the state and schedule the next event.
The user has to keep this behavior in mind when implementing a model.

One exception to this A%-d;,; combination may occur during concurrent events when deont
is executed immediately after A\?. Since this violation of the A\%-8;,; combination might
lead to some unintended behavior if not considered carefully enough, it is best to stick
to the default convention of d¢ont = ext © Oint @S this ensures that also in the concurrent
case, Jiyt is executed immediately after A%, thus respecting the A\9-8,, combination [130].

As mentioned in Section 5.5.1, the transitory states incoming and update are not

modeled explicitly, but instead the corresponding actions are incorporated as part of the
transition functions. They show up in Lines 17, 21 and 27.

Simulation experiments and results for the implemented Oven model are presented as
part of the case studies, see Section 5.7. The Oven should serve as a representative
example of a Cubes. For descriptions on the other Cubes models that are part of the
Cubes library (see Figure 5.5), we refer to [29, 259, 258, 197]. Most aspects of these
Cubes are modeled in a similar manner than the Oven, while others are much more
straightforward, like the (purely continuous) energy Cubes.

5.5.4 Remarks

In the following, we want to briefly address some issues related to the hyPDEVS imple-
mentation [130], which apply not just to the Oven, but involve general considerations for
all Cubes.

Alternative Implementations: It would also be possible to further split up the
OvenAtomic into two Atomics, one implementing a Conveyor Belt handling the entities
(discrete behavior) and a Thermal Cell for the thermal-physical (i.e. continuous) behavior,
giving four Atomics for the Oven in total. In fact, this variant has been used for the
stand-alone C++4 simulator implementation, see Section 5.6. While this might come
with some advantages regarding reusability, in particular reuse of the Conveyor Belt
Atomic as a separate Cubes, the downside is the need for tight communication between
the Conveyor and the Thermal Cell and more complex input/output ports, resulting in a
rather awkward interface (e.g. exchanging entity mass and other attributes). It would
also create more communication overhead and decrease simulation performance. In this
case, the combined Belt and Cell Atomic seems to be the more harmonic choice. Reuse
of the Belt functionality can instead be realized at the software level (as object classes).
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Another disadvantage of separating the model into different Atomics is that individual
parameters may potentially appear in multiple Atomics, thus creating redundancies. In
the case of the Oven model, this concerns in particular the parameter Ty, which is
needed in the OvenAtomic (for the state event transition) as well as in the Controller
Atomic. One way to avoid this could be to provide an additional input/output interface
for Tse;. A different variant, which couples this parameter redundancy on a higher level,
is described in Chapter 7.

Another implementation detail to note is that, while it would be possible to model the
Oven Cubes as a single hyPDEVS Atomic and split that up at the object level (i.e.
implement it in different classes), this approach would loose its formal rigor and thus the
reliability and execution traceability that hyPDEVS provides. In fact, it would bypass
the formalism and reduce the model implementation to a straightforward object-oriented
paradigm.

Entity Push Semantics: The way entities can be exchanged between hyPDEVS
Atomics requires some precautions. Consider for example the situation depicted in
Figure 5.9 with two stations A and B trying to hand over an entity, call it E. The
hyPDEVS specification only takes into account rudimentary event handling, i.e. Station
A sends the entity E in form of an event and Station B has to process this event. However,
if, for example, Station B is not able to accept E (e.g. because the storage capacity
is reached), then it has to reject an incoming entity event. In order for F not to be
dropped and lost, it is necessary that Station B notifies station A about whether or not
E has been accepted” via an acknowledgment signal so that station A can keep E and
resend it at a later time. An alternative to this push semantics would be to employ pull
semantics by having station B always request an entity from station A before it is being
sent. In any case, there has to be some form of additional communication between the
two stations using an information channel. In the tradition of common material flow
simulation tools and due to its simplicity, we opted for the push semantics as the primary
principle for entity flow (although there are a few exceptions, e.g. fetching entities from
a storage). In addition to the recipient having to acknowledge each incoming entity, the
sending station has to keep resending a rejected entity periodically in order to avoid a
deadlock. This is a drawback of this mechanism because of significantly more events
potentially being generated. A more sophisticated approach might combine push and
pull principles (e.g. start with push, then switch to pull after initial rejection), however,
this would increase the model complexity.

Implicit Event Prioritization: As mentioned earlier, hyPDEVS employs a confluent
transition function dcons instead of a Select function that would provide an explicit
prioritization for executing Atomics, thus opening the door for parallel processing.
Unfortunately, this also brings about some modeling challenges as no assumptions can

9While it would also be possible to notify the rejection of an entity, in terms of model robustness it is
preferable to notify acceptance.
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Figure 5.9: Simple example of two stations exchanging an entity, either using an acknowl-

edgment signal (ACK) or a request signal (REQ).

be made anymore about input events that occur at a particular time step also arriving
concurrently, i.e. during the same iteration of dext [130]. This problem has also been
described in [222] and has to be considered when implementing dey. In addition, incoming
events (that have arrived concurrently) are still being processed sequentially in the body
of Jext, thus imposing an implicit prioritization of inputs, depending on which is being
processed first. In the worst case, this might lead to some unintended behavior and the
modeler has to be very careful when specifying Jext. As a particular example, dext Of
the Oven Cubes processes an Egytcom event before an Fy, event (see Lines 16 and 20 in
Algorithm 5.1) because Eyytcom needs to be checked first in order to potentially free up
capacity before accepting another entity (in the same iteration).

Input Buffer: The described communication for exchanging entities also causes an
additional iteration with message exchange during the same time step. Since typical
DEVS simulation engines reset all external messages in between such iterations (since it
is assumed that the events have already been processed), even if they happen at the same
time step. For practical applications, however, it is useful to buffer incoming messages in
between iterations as long as the time step does not change. This ensures that messages
do not get lost during concurrent signals. The most prominent example of such a scenario
happens during entity exchange. Consider again the example in Figure 5.9 and assume
that another entity Fo arrives at the input of Station A at the same time it tries to send
its entity £ to Station B. Initially, Station A is not able to process Fo immediately as
long it is still blocked by E and it has to wait for acknowledgment from Station B. As
long as the acknowledgment from B arrives in the same time step, station A might sill
be able to accept E3. But in order to achieve this, Es needs to be held (i.e. buffered)
at the input until the entire exchange of E is finished, otherwise the event reset would
delete Es from the input [130].

While such a buffering mechanism can be included as part of the model implementation,
which is exactly what we have done within the Cubes library, it would be more effective
to implement it as part of the communication mechanism at the object level and to
abstract this communication away from the model level.
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5.6 Implementation

The implementation of the simulation engine and Cubes model library was carried out
in two stages: In the first stage, a first proof of concept implementation was developed
to demonstrate the feasibility of the Cubes approach as well as DEVS-based hybrid
simulation. The second stage then consisted of a stand-alone simulator re-implementation
to be deployed into the field.

5.6.1 First Prototype

The first prototype was intended to be a proof of concept and to gain first-hand experience
of applying DEVS-based hybrid simulation into practice in an industrial context. The
MatlabDEVS Toolbox [76, 77] was used for this, which provides a simulation engine'" for
the hyPDEVS formalism. It is based on MATLAB [278] and employs the ODE wrapper
approach for handling the continuous model as described in Section 5.2.6.

The Cubes models are created in an object-oriented manner by implementing classes
of hyPDEVS Atomics, for which the common functions (dext, dint, A, etc.) have to be
provided. These classes can then be instantiated and parametrized to create Coupled
application models.

The proof of concept implementation includes essential Cubes models and a first case
study (see Section 5.7). This implementation is described in more detail in [130]. The
case study simulation was then also used to test and evaluate different simulation-based
optimization strategies on top. More details on this are given in [261].

While the MatlabDEVS toolbox provided a practicable environment to carry out simu-
lation experiments, it was not suitable to be used in productive operation in the field.
Apart from minor implementation issues regarding Mealy type Atomics (see [130, 222])
and the fact that the simulation engine is not optimized for runtime, mainly the necessary
(and ongoing) licensing costs for MATLAB prevented a practical deployment.

5.6.2 Stand-alone Simulator

After the first experiences from the proof of concept, a stand-alone simulator was
developed in C++. This work was carried within the research projects BaMa and
Adaptive Smoothed Production (ASPeCT) together with a project partner who took
over the implementation.

For the stand-alone simulator, the first step was to implement a hyPDEVS simulation
engine from scratch. The engine employs the novel standalone solver approach for decen-
tralized ODE handling described in Section 5.2.6). Two different numerical integration
techniques were implemented for this purpose, which can be selected individually for each

10Tp fact, the MatlabDEVS Toolbox also provides an extension for variable structure systems based
on the Dynamic Structure DEVS (DEVS) specification [22]. But since this extension is not relevant for
our purposes, we leave this aspect aside and focus on the hybrid simulation capabilities.
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Cubes: The first is a classic Runge-Kutta RK45 method [226] with step size control and
state event detection. The other is based on an advanced QSS method with logarithmic
quantization [165]. In order to increase the simulation performance, an additional step
was added during runtime translation to flatten the simulator hierarchy as described
in [163] (cf. Figure 5.3) and to decrease the message traffic overhead.

In the second step, the library of Cubes models was also re-implemented in C++ using an
object-oriented paradigm. Special focus was put on a reusable implementation, consistent
interfaces and verbose logging capabilities for testing and debugging. These Cubes models
could be verified against the MatlabDEVS implementation, for which a number of testing
scenarios were created. This library was later extended with additional Cubes classes
which were used in the larger case studies. A special user interface allows Pplan, Aplan
and other simulation parameters to be changed to simulate different production scenarios.

The third step was to implement different case study applications using the Cubes classes,
starting with the simple production line from the MatlabDEVS implementation with the
intention to also verify the case study results against the independent implementation.

This stand-alone simulation tool then served as the basis to develop additional more
advanced case study simulations, including an advanced production line (see also Sec-
tion 5.8) [136], an entire bakery [262] and a production line for wafers [29], and to deploy
the simulations as part of a simulation-based decision support tool for energy-aware
production planning.

In the following, we want do present different case studies that demonstrate the application
of the Cubes models. The case studies feature dynamic simulation of industrial production
involving thermal processes and their interaction with Technical Building Services (TBS).
They showcase the domain of industrial flow shop production, however, the simulation
method should be applicable to other areas as well.

5.7 Case Study 1: Simple Production Line

5.7.1 Model Description

The case study is a simplified model of a real production plant of an industrial bakery
that produces baked goods [229]. The conceptual model of this case study is depicted
in Figure 5.10. It features a typical production line with machines, storage and conveyor
belts, an energy supply system with heater and cooler, and a building model with thermal
zones.

This simple case study was devised as a first proof of concept to showcase all important
aspects of our production systems domain while omitting unnecessary details that would
only add to the problem complexity. In particular, the case study includes

e cross-domain modeling with dynamic interdependencies,

o intertwined continuous and discrete dynamics, and
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Figure 5.10: Conceptual model of Case Study 1: Simple Production Line. It includes
production machines (blue), logistics components (purple), energy supply components
(red) and thermal building zones (green).

e complex product flow with splitting, merging and batching.

The production and logistics components form a production line for two product variants:
baked and frozen. Baked products pass an oven for baking while frozen products are
frozen directly (in a freezer) without being baked. Both are designed as conveyor belts,
meaning that new entities continuously enter the stations and leave on the other side.
Since these products share all other stations, only one type of product can be produced
at any time. For both products, respective ingredients are being pulled from the storage,
after which they are mixed into a dough, divided into portions (splitting) and continue
on different conveyor belts. After baking/freezing, the finished products are packaged in
different quantities.

The building is modeled as a simple thermal compartment model with four thermal zones,
each representing a distinct part of the facility: production hall, plant rooms and cold
storage. These zones all have independent conditioning (for example, the cold storage is
kept at 4 °C) and exchange thermal energy with one another according to the defined
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wall topology. They also exchange thermal energy with the environment, for which a
variable ambient temperature may be specified.

The energy system provides necessary technical building services for supplying final energy

for the production machines as well as for heating and cooling the thermal building zones.

The energy system in turn obtains its energy input from external providers for gas and
electricity. It is comprised of a heater (powered by natural gas) that supplies heat to the
oven and building, a chiller (powered by electricity) that supplies cold to the freezer and
building, as well as respective energy grids responsible for distributing the energy. The
heating and cooling grids also include thermal energy storage that models the storage
capacity of the grid. All other production stations receive electric energy from the grid.

The production orders are executed according to a production schedule (Pplan), which
is the main input vector to specify the production scenario. In addition to the order
starting times, the Pplan also specifies the start of the setup processes for the oven and
freezer. During these setup processes, the oven (or freezer) is preheated (or cooled) to the
defined operating temperature before the products arrive at the station. This also implies
that, in contrast to traditional discrete-event material flow simulations, the setup time is
not a fixed parameter, but may change dynamically during the optimization process.

The case study further includes a work plan (Aplan) that specified the production steps
and process parameters that depend on the product type, such as temperature set points,
baking time or batching size. It serves as a look-up table for the individual stations and
the process parameters may be different for different product types.

Although the production is kept simple and the number of products is limited, this does
not undermine the goal of demonstrating the feasibility of the simulation method.

In the following, we present and compare exemplary simulation results in different
scenarios in order to demonstrate the application of the case study model.

5.7.2 Scenario 1

The scenarios are mainly defined by the Pplans, which specify when which product is
to be produced in which quantity. Table 5.2 shows the Pplans for two scenarios, which
take place over one day (00:00 to 24:00h). Both scenarios produce the same entities, but
at different times. They are intended to provide a comparison of different production
times under the same conditions (i.e. number of entities to be produced) [130].

All stations follow the same basic production schedule in order to enable frictionless
entity flow through the production line. The Pplans for Oven and Freezer factor in
an additional setup time for pre-heating and pre-cooling, respectively. The Storage at
the beginning of the production line starts earlier in order to fetch and prepare the
ingredients for production.

In addition to the Pplans, the simulation reads a work sheet (Aplan) that specifies process
parameters, such as baking temperature, processing time or packaging quantity, as well
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as external input data for ambient temperature conditions. These remain unchanged
between scenarios.

Table 5.2: Production schedules for Scenarios 1a and 1b

Station Time State Product type Quantity
Scenario la

Storage 02:30 prepare 1 8
10:00 prepare 2 16
Production 03:00 start 1
10:30 start 2
24:00 off -
Oven 00:00 heating 1
10:00 off -
Freezer 00:00 cooling 2
24:00 off -
Scenario 1b
Storage 00:30 prepare 1 8
06:00 prepare 2 16
Production 01:00 start 1
06:30 start 2
16:00 off -
Oven 00:00 heating 1
07:00 off -
Freezer 06:00 cooling 2
15:30  off -

Figure 5.11 and Figure 5.12 show the resulting entity flow in terms of numbers of entities
in the stations over time for Scenario la and 1b. No collisions or jams are noticeable and
the gap between the jobs is large enough to not cause any problems. In Scenario 1b, the
entities are produced earlier, as specified by the Pplan.

Figure 5.13 compares the Oven and Freezer allocations (i.e. number of entities and
temperature over time) in more detail, alongside the temperature profiles in these
stations. Due to the production schedule being finished earlier in Scenario 1b, the Oven
can be turned off earlier, thus preserving energy. Especially the Freezer has excessive
idle time in Scenario la (see bottom left), which signals potential room for energetic
optimization.

In Figure 5.14, the respective power supply and total energy consumptions over time
are shown. The electric energy demand is noticeably lower in Scenario 1b, which can
be attributed to the production line being switched off earlier in Scenario 1b after the
products are finished. Heating and cooling energy are only marginally different due to
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Figure 5.11: Numbers of entities over time in the different stations for Scenario la

the different operating times. The main energy demand stems from conditioning the
thermal zones, which is the same for both scenarios [130]. Especially Zone 3 requires a
constant supply of cooling power.

The temperature progression in the four thermal zones compared to the ambient temper-
ature is depicted in Figure 5.15. While the ambient temperature changes significantly
throughout the day, the zone temperatures only follow in attenuated form. The start
of production at about 03:00h produces a noticeable dent in Zone 1, after which the
temperature increases more strongly due to the waste heat from the production machines.
The zone temperatures are allowed to vary within a certain bandwith; the temperature
control only sets in when the temperature leaves this band. Zone 3 representing the cold
storage is kept at constant 4 °C. These temperatures only change marginally between
Scenario la and 1b.

79



5. HYBRID SIMULATION OF PRODUCTION SYSTEMS

o0 1+ =
=
13
z 05 |
=

0 L—elelalalelelel. | lelelalalalalalgiglalalalalglgl,

10 T T T T T T T

Splitting
ot
T

o

—_
o
T

|

Oven/Freezer
o @

T

|

Batching

O N = O
T
|

Sink

ORI

S S
T
[

| | | | | |
0 2 4 6 8 10 12 14 16 18 20 22 24
time [h]

o

Figure 5.12: Numbers of entities over time in the different stations for Scenario 1b

5.7.3 Scenario 2

For the second scenario, we choose a Pplan that is more true to reality, in particular a
realistic production volume is carried out over the course of one week. Figure 5.16 shows
the corresponding entity flow. Overall, 15 jobs with various quantities are being executed,
resulting in 381 final entities. The jobs are scheduled uniformly with enough safety gaps
in between to allow changing over the whole production line to the subsequent product
type. The detailed Oven and Freezer allocations are shown in Figure 5.17.

The power demand for heating, plotted in Figure 5.18 mainly follows the ambient
temperature, see Figure 5.19, whereas the fluctuating electric power results from the
production machines. The periodic peaks at about 15kW stem from the energy TBS,
where the Cooler produces cooling energy for the storage of the Cooling Grid (cf.
Figure 5.10).
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5.7.4 Validation

These scenarios have also been tested with the MatlabDEVS prototype implementation
and are presented in [130]. They show comparable results, which also serves as a
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Figure 5.17: Oven (top) and Freezer (bottom) allocations for Scenario 2

verification for the stand-alone C++ implementation. Individual aspects of the overall
model have been validated using independent implementations, which were developed as
part of the research project BaMa [261]. The continuous sub-model including thermal
zone Cubes and the energy TBS were implemented and tested using Dymola and show
satisfying consistency. The Oven Cubes could also be validated against an independent

implementation in Dymola, which uses native data structures for representing entities.

See [224] for more details. For validating the flow of entities, entry and exit times were
compared to independent calculations and also show satisfying agreement.

5.8 Case Study 2: Advanced Production Line

5.8.1 Model Description

The second case study extends the first example by modeling a realistic production line
of the same industrial bakery [261, 136]. Figure 5.20 shows the conceptual model. The
production includes an additional pre-proofer and three proofing cabinets with different
thermal conditioning, a cooler for chilling the products after they leave the Oven, and a
more advanced packaging station including cold storage and commissioning storage. The
component classes are mostly the same as in the first case study, however with different
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parameterizations. The proofers are of the class Production Unit. The building model
with its thermal zones as well as the energy supply system remain unchanged.

The product flow is more complex compared to Figure 5.10. A total of 12 different
products can be manufactured, divided into three categories that follow different paths:
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machines have been omitted for reasons of clarity.
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1. Fresh: Oven — Cooler — Splitting — ...
2. Frozen: Freezer — Splitting — ...

3. Partly baked: Oven — Cooler — Freezer — Splitting — ...

The branching for the different production routes is achieved using junctions, which
forward the entities differently depending on the product type (as an attribute of an
entity). In addition, the third proofing zone may be omitted, thereby further complicating
the material flow as the throughput times can vary greatly as a result and individual
jobs can potentially "catch up" with the preceding ones.

After the pre-proofing and proofing stations, the products pass the respective Oven,
Cooler and/or Freezer stations, after which the products are being separated from their
Peelboards (station Splitting) before being packaged into different quantities and stored
in the Cold Storage (for the frozen products) or directly in the Commissioning Storage
(for the fresh products). The packaging process also takes place in a different thermal
zone than the rest of the production, in order to ensure constant cooling.

All the products are being commissioned onto so-called Peelboards, which are uniform
in size and contain a certain number of baking products on them (depending on the
product type). A Peelboard with products is thereby represented by a single simulation
entity, instead of modeling each product individually, since this level of detail is sufficient
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for the material flow simulation and a higher level of detail would only have a negative
effect on the simulation performance. In this context, investigations were carried out by
means of comparative simulations (in Plant Simulation), which show a performance gain
through this simplification of factor 60.

A further model simplification and resulting packaging limitation is that the packaging
ratios must always be integer so that no excess entities are left over. The model does
not take into account the rejection of unfinished or remaining entities. The raw material
storage at the beginning of the production line takes into account the five quantitatively
most important ingredients (flour, water, etc.), which are supplied by external providers
(i.e. Entity Sources).

5.8.2 Validation

The aim of this case study is to provide real-life tangible results that are applicable
to the real production line, which is housed at one of the project partner’s production
sites. To this end, an extensive validation of the model and its parameters was carried
out. Measurement data were collected on the real plant during production over the
course of 10 days, especially on the power consumption of the individual stations during
production, temperature data and cooling curves. These were then aligned with the
actual operating data (e.g. number of units produced, real start and end times) to obtain
a consistent overall picture of production. A portion of the measurement data was then
used to calibrate the model parameters, while another part was used as test data for
validation. More details can be found in [29, 261, 263]. The validated model therefore
provides realistic comparisons of different production scenarios (Production plans, process
parameters, etc.) and allows to assess the associated energy consumption.

Case study scenarios have been carried out with production plans spanning one, 7 and
up to 30 days. In the longer scenarios, a simulation run comprises up to 500,000 entities,
while simulation runtime of a typical 7-day scenario is about 105 sec. The simulation
runs could be scaled up without problems and demonstrate practical applicability on a
real-world scale. Further details are given in [261].

5.9 Discourse

In the following, we want to discuss some of the issues and findings we have encountered
during modeling and hybrid simulation with hyPDEVS.

Coupled Behavior: According to Equation (5.3), Coupled hyPDEVS cannot have
states of their own (like S for Atomics); all model states must be encapsulated inside an
Atomic component. This may sound trivial, but it has an impact on the way hierarchical
modeling can be achieved. For example, in a real production facility, the production
machines are housed within a room, which can be described as a thermal zone. If one
wants to retain this topology in the simulation model, as we have done in the case
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studies using the Thermal Zone Cubes, the thermal zone has to be realized as a Coupled
hyPDEVS. However, since the thermal zone also has a (continuous) dynamic behavior of
its own (in particular the heat exchange through the walls and with its internal loads),
one also has to include an additional Atomic hyPDEVS that implements this behavior.

Closure under Coupling: The closure under coupling property of hyPDEVS is the
reason it is possible to develop modular component-based models in the first place, which
are also hybrid (at the Atomic level). This is an important feature of DEVS based
modeling and provides a foundation for research into related aspects, such as consistency
or formal verification [319].

Maintaining the Model: One important advantage of the hyPDEVS approach and
its tighter integration of discrete and continuous model parts, especially compard to
co-simulation becomes apparent when trying to modify the model. For example, if one
wanted to exchange the (continuous) PI controller in the Oven Cube with a (discrete)
two-point controller, this would require significant effort and relocating interfaces in the
case of co-simulation because the controller suddenly has to move from the continuous
sub-model to the discrete one. In the hyPDEVS model on the other hand, exchanging
the controller is no problem and does not change any interfaces.
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CHAPTER

Multi-objective Production
Planning Optimization

In the previous chapters, we have described a method for simulating production systems
and their energy demand as well as the simulation implementation and demonstration by
means of case studies. In this chapter, we focus on developing a method for optimizing
production scheduling that employs these simulations for evaluating different production
scenarios regarding their energy demand as part of a multi-objective target system. To-
gether, this forms a simulation-based optimization approach for energy-aware production
scheduling to aid modern industrial PPC and APS tools.

6.1 Introduction

The goal of PPC optimization is to find an optimal combination of production resources,
such as equipment, utilities or material, to achieve a given production target in the
best possible way. Operative Production Planning and Control (PPC) methods consider
production resources and cost factors to find optimal production schedules [161]. The
challenge is to find the best configurations among all feasible solutions that lead to the
optimal performance without explicitly evaluating each possibility [53]. The outcomes
are production plan configurations specifying at what time which jobs in which quantities
are best released for production [129].

We focus here on production planning (with sequencing and scheduling) in flow shop
production layouts with the aim to increase energy efficiency and reduce energy costs.
There are of course a lot of other ways to improve energy efficiency of production systems,
both in design and operation. Aside from the production itself, especially the operation
of the Technical Building Services (TBS) offers a lot of additional potential for energy
savings [167], not at least because of the building HVAC accounting for a large portion
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of a company’s total energy demand [261]. For example, it would be possible to optimize
the filling of thermal energy storages at times when energy costs are low (e.g. at night,
or when renewable energy sources are available), or to improve the operating behavior of
chillers suppling cooling energy [157].

However, the operation optimization of TBS is a separate topic and should be excluded
from our consideration in order to keep the problem manageable. While TBS and their
energy turnover are included in the simulation and therefore contribute to the overall
energy demand, no specific TBS-related decision variables are considered.

That being said, we do include time-dependent energy pricing into the target system.
Especially large companies with high electricity consumption, e.g. in the steal production
industry, usually handle their energy purchases on the electricity exchange spot market [26]
(using day-ahead as well as intra-day trading) where electricity prices may fluctuate
strongly throughout the day, depending on supply and demand, especially in the presence
of volatile renewable energy sources [160]. This can have a significant impact on the
planning result, as we will demonstrate in the case study.

There have been other related works conducted in the context of the same research
project that employ the same hybrid simulation that has been developed here. A similar
optimization strategy was developed based on a Genetic Algorithm, where the author
of [261] describes the general concept.

The remainder of this chapter is structured as follows: Section 6.2 elaborates in more detail
on the simulation-based optimization strategy. Section 6.3 formulates the multi-objective
optimization problem, system under study and decision variables while Section 6.4
describes the proposed optimization algorithm. In Section 6.5, we demonstrate the
feasibility of this method on a flow shop scheduling problem of an industrial bakery,
where we compare different scenarios and highlight the potential benefit of considering
energy as an optimization target. The chapter concludes with a discourse in Section 6.6.

6.2 Simulation-based Optimization Strategy

6.2.1 Meta-heuristics

The dynamic simulation serves as a prescriptive tool to predict and evaluate the perfor-
mance of a given scenario. Dynamic simulation allows to consider more complex systems
than with conventional analytical models, especially for highly time-dependent problems,
while offering more accurate predictions and overall improving planning quality.

Instead of a closed mathematical formulation of the target function and all necessary
constraints (like they are used with other approaches such as MIP), the constraints are
realized partly implicitly by means of the simulation. Only by computing the simulation
can it be evaluated whether or not the solution is truly feasible. Nonetheless, additional
constraints may still be formulated within the target system, e.g. as soft constraints, to
better guide the search and thus improve optimization performance.
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However, the fact that the overall objective function — or its derivatives — is usually
impossible to define in a closed analytical form prevents straightforward deployment
of many standard optimization algorithms. Instead, many practical simulation-based
optimization solutions employ meta-heuristic methods that rely solely on the evaluation
of the objective function itself and do not require the exact closed form objective function
to traverse the search space [149]. These algorithms modify a candidate solution in an
iterative manner to find a near-optimal solution until termination criteria are met.

In fact, one would arrive at the same conclusion that meta-heuristics are a viable option
when ignoring the simulation and just looking at the problem complexity itself: In general,
flow shop scheduling problems, especially for larger real-world instances, are well-known
in operations research to be NP-hard problems [309, 154], implying that they cannot be
solved in polynomial time. Therefore, exact optimization methods are not feasible in
general and approximative heuristic approaches are preferred for practical applications.

From an optimization standpoint, the complexity of the underlying optimization problem
with multiple competing objectives and complex constraint conditions also drives the
need to use simulation methods for evaluating the target system. At the same time, these
methodologies are being enabled by recent advances in computational techniques that
allow to perform increasingly complex computations in feasible time [272].

Meta-heuristic methods are common in application-oriented operations research as they
are able to deliver acceptable solutions with feasible time and resources even for larger
problem sizes, which is advantageous for the scalability of our method. Even if the
solution found may not be the global optimum, it is often good enough for practical
applications.

According to [295], meta-heuristics and customized multi-objective heuristic approaches
are well-suited for applications in real-life industrial production planning problems, in
contrast to exact approaches that usually require simplified models. Meta-heuristics
allow to explore the search space more efficiently and effectively, especially if they are
tailored to the individual problem [119]. Among these, Variable Neighborhood Search
(VNS) algorithms have shown excellent capability for solving scheduling problems [238].
This is in accordance with other publications, e.g. [312, 238], which have successfully
applied VNS for job scheduling problems in the production domain. In [106], the authors
compare different optimization methods for simulation-based optimization of production
plans, in which VNS also leads to the best results.

6.2.2 Simulation-Optimization Cycle

The iterative evaluation of possible solution candidates performed by the meta-heuristic
creates an cycle of alternating simulation and optimization computations as the core
of the simulation-based optimization methodology. The overall iteration cycle as an
overview is illustrated in Figure 6.1. The starting point is a given demand plan (Dplan)
specifying how many of which entities (i.e. products) need to be delivered when. This
Dplan serves as a basis to generate an initial solution.
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The optimization algorithm employs its own encoding of the optimization problem, usually
as a vector z of decision variables, which have to be translated' into a representation
that is understandable for the simulation, i.e. a Pplan. This may be complemented by
other Pplans and other control signals, which do not represent independent decision
variables and thus can be derived from the existing variables in x, but are necessary
input for the simulation. After running the simulation, the simulation results (calculated
energy demand, job completion times, etc.) are fed back to the optimization to be
evaluated for its fitness using a specified cost function f(x) (objective function). Based
on this evaluation, the optimization algorithm iteratively adapts the solution and repeats
the cycle in order to improve the solution, until certain termination criteria (e.g. fixed
number of iterations, computation time threshold) are met.

Optimization Algorithm T
Meta-heuristics

D [Pplan Generator J
Simulation D Pplan

Results
Simulation Model @ ®
discrete/continuous No Yes
Figure 6.1: Simulation-optimization cycle. Starting from a demand plan (Dplan) of
entities to be produced, the optimization algorithm generates a production schedule

(Pplan) from the decision variables = and adapts it iteratively based on an evaluation of
simulation results.

Dplan
(Input)

Meta-heuristic methods in the context of simulations-based optimization are also referred
to as simheuristics [151, 63, 116]. Simheuristics have applications for combinatorial
optimization problems in different fields, including scheduling, manufacturing or vehicle
routing.

6.3 Problem Description

Based on the overview of the simulation-based strategy presented in the last section, we
now dive into the optimization method itself. First, we formalize the production system
and the optimization problem in more detail.

'In the context of Genetic Algorithms (GAs), these encoded and decoded variables are typically
called genotype and phenotype, respectively [65].
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The optimization problem deals with sequencing and time scheduling a given list (Dplan)
of njohs jobs to be produced by a production system while minimizing energy demand
together with other production goals as part of a multi-objective problem. This includes
optimizing setup times to reduce energy demand and increase production throughput.
The optimization goals may differ from one application to the other in order to be adjusted
to different production systems and optimization targets. The production system itself,
in this case, is given as a simulation model, like described in Chapter 5.

6.3.1 Multi-objective Problem Formulation

In general, multi-objective optimization as part of the area of multi-criteria decision-
making is the process of selecting the best possible course of action from all the available
alternatives while attaining to more than one objective or goal” and satisfying a set of
constraints dictated by the environment, process and resources [143]. Multi-objective
optimization problems can be formalized® as

1 pu— 1 RS '1
min f(z) = min (f1(2), f2(2), ..., fu(@)) (6.1)
where z is the (n-dimensional) vector of decision variables and f describes the vector-
valued objective function, also called target system,

[ X =R f(2) = (fil@), o)., fil2)), (6.2)

which is comprised of k objectives or sub-goals f;. The set X is the set of feasible
solutions, which is defined by m constraint functions

gi(@) <0, Vj=1,...,m, (6.3)

any of which may be non-linear [143]. In addition to these hard constraints, which are
strictly required by the decision variables to be satisfied in order to constitute a feasible
solution, so-called soft constraints can be added in the objective function that penalize
conditions which are undesirable.

Using soft constraints can have advantages in practice as sometimes constraints are not
always so strict. Some of them might have some leeway, e.g. delivery penalties might be
acceptable as long as the benefit gained on the other side still pays off for the company.
This must be considered on an individual basis and the soft constraints with penalties
provide a lot of flexibility to adjust the constraint system to the individual needs.

The sub-goals typically constitute conflicting targets, implying balancing necessary trade-
offs between them. These sub-goals may represent energy costs, or storage costs, delivery
tardiness, production utilization or lead time. For assessing energy costs, the temporal

2Technically, a slight distinction could be made between the terms objective and goal. While objectives
give the desired "direction" in which to look, goals give a desired target level to achieve [143]. However,
we will not insist on this distinction here and instead use the terms interchangeably.

3In this case as a minimization problem.
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variability of energy prices might need to be considered in order to get an accurate
picture. This is also investigated in Section 6.5.3. In addition to the basic energy price
assessment, other energy-related aspects can be included as well, for example penalties
for load peaks [261]. This would favor production schedules that smooth out load peaks
and thus contribute to a more even energy utilization.

Most often, the minimization in multi-objective optimization is understood in the sense
of Pareto optimality (also called Pareto efficiency) [90]. A solution z € X is called
Pareto-optimal (or efficient) if there does not exist another feasible solution 2’ € X such
that f;(2') < fi(z) Vi =1, ...,k and strict inequality for at least one f;. In other words,
none of the objective functions can be improved without degrading some of the other
objective values. The corresponding vector f(z) is then called non-dominated and the
set of all Pareto optimal solutions is often referred to as Pareto frontier.

Without additional information, all Pareto optimal solutions are considered equally good.
As a decision-support tool in practice, a single solution needs to be found, which can
be achieved by adding subjective preference information of the decision maker. One
common approach for this is discussed in Section 6.4.2.

The fact that the underlying simulation model involves continuous as well as discrete state
variables might suggest to also employ hybrid or mixed-integer optimization methods.
However, not only would this substantially increase the problem complexity, the thus
obtained increase in solution accuracy is unnecessary for most production scheduling
problems. We instead discretize the search space by only using discrete shifting intervals
to simplify the problem. A typical granularity of 15-minute intervals is more than
sufficient for our application. In fact, making the coarseness adjustable gives flexibility
to the user to balance search effort against solution quality.

6.3.2 System under Study

In Chapter 5, we have already seen some examples of production systems that are our
subject of study. Just to reiterate and give a more comprehensive overview, Figure 6.2
depicts a representative production system in flow shop layout. It consists of a several
production stations s € Stations (including logistics components), entity sources r €
Sources and entity sinks k € Sinks, as well as energy supply systems with thermal energy
storage e € FnStorage and several thermal zones z € ThermZones.

The entity sinks provide as simulation result numbers of entities ny ¢, of type [, which
arrived at time t in the sink k. But not only the sinks, but each of the production
stations, and especially the storage components, may hold entities, which are still present
at the end of the observation period, i.e. when the simulation terminates. While these
stored entities can potentially also be included in the evaluation (e.g. as partially finished
products), we consider entities to be finished only after they have arrived in one of the
entity sinks. The production jobs themselves are not associated with a specific customer
order, meaning that it is not relevant which customer gets which specific product, only
the type of the product being produced is relevant.
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Figure 6.2: Exemplary production system layout with production stations, entity sources
and sinks, energy supply systems and thermal zones

Moreover, a set Prov of energy providers supplies energy from the outside through the
system boundary. During the simulation, each energy provider s computes the power
supply Ps; over time ¢, which is then used by the optimization for evaluating the energy
costs in the target function. This is because the energy that crosses the system boundary
is also the one that is being billed to the energy consumer.

6.3.3 Decision Variables

The decision variables z can be written as follows:

€r = (fEstarta $setup) ) (64)

Lstart = (l‘lu €2, 7-73njobs)7 (65)
Lsetup = (xsetup,n,s)nerlam s€SetupStations

These optimization variables define the production schedule (Pplan), which describes
which production job should is to be produced when and in which quantity. Since we
focus on flow shop scheduling, only the starting times (21,22, ..., y,,,) for each jobs
are independent decision variables, not the times on each individual station. The Pplans
of other stations are then oriented towards the starting times. In addition to the starting
time for each job, x also includes setup time durations® Tsetup,n,s Of relevant production

“Instead of the setup time duration (as a relative value), the (absolute) starting times at these
stations could also be used as decision variables. However, the durations are a bit easier to handle in the
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stations s € SetupStations C Stations with |SetupStations| = ngetup. Together, these
decision variables allow to optimize job sequencing and scheduling as well as setup
processes, all of which have an influence on the energy demand.

In the same way, the starting times at each individual station could also be included as
decision variable in x. This would be the more generic variant that would allow to also
model job shop scheduling applications. For flow shops, however, these individual starting
times cannot be chosen independently if a constant material flow is to be maintained, and
this would in turn require strong constraints to model these dependencies. The increased
solution space (of the more generic approach) would thus be strongly reduced again and
the efficiency of the search would depend on the optimization procedure and how well it
can handle the constraints.

Moreover, shut-off times of the stations could also be controlled from the optimization.
The simulation itself allows to specify shutdown events in the Pplan. This is especially
useful for thermal processes, like an oven, in order to save energy. However, experiments
have shown that including shutdown times as decision variable in x has no significant
advantage and would only unnecessarily inflate the search space and thus the computing
time. Energetically, it usually makes more sense to either shut off immediately after the
end of a job, or not at all in order to wait for the next job. On top of that, the shutdown
time can usually only be varied within a very limited time interval, namely between the
end of the last job and the beginning of the next job. If two jobs follow directly after one
another, the shutdown effect disappears completely.

Based on these considerations, we have taken a heuristic approach for choosing the
shutdown times. If a job is not followed by another job for a certain (parameterizable)
time tiqle, a shutdown event is added to the Pplan immediately following this job.

6.4 GVNS Optimization Method

We employ a single-solution meta-heuristic method based on a General Variable Neigh-
borhood Search (GVNS) procedure. The VNS [238] is an effective method guiding a
local search by switching between increasingly larger neighborhoods to efficiently explore
the solution space. The VNS consists of

1. a shaking phase that generates randomized perturbations of the solution for diver-
sifying the search to escape local optima, and

2. an intensification phase that searches for improvements in the local neighborhood,
typically using a local search procedure.

For improving the performance of the search, the Generalized VNS (GVNS) replaces
the local search by a Variable Neighborhood Descent (VND) procedure [251, 126]. The

implementation, since they remain unchanged during shifting and switching of jobs.
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Variable Neighborhood Descent (VND) is similar to the VNS, but does not include
shaking and thus limits the search to strict improvements (i.e. descent). It does not use
the same neighborhood structures as the VNS, which offers more flexibility in tailoring
the search procedure to the problem instance.

Algorithm 6.1 presents an overview of the optimization method as pseudocode. After
generating a feasible initial solution x, the VNS component (described in more detail
in Section 6.4.3) guides a search for improvements over a fixed number of iterations
Niter Dy generating in each iteration a random neighboring solution z’ (by means of the
neighborhood structure Ny (x)) that serves as starting point for the VND that tries to
find a local minimum z”. If the solution is accepted, the VNS restarts with neighborhood
N7 and the new starting solution z”. Otherwise, the neighborhood is enlarged. The
acceptance criterion is based on Simulated Annealing (SA) [251] for further diversifying
the search by allowing to accept potentially worse solutions during the early search phase.
Infeasible solutions are also allowed during the search and are evaluated based on a
penalizing cost function, which is described in Section 6.4.2. More details are described
in the following sections.

Algorithm 6.1: GVNS/SA algorithm

1 N < set of VNS neighborhood structures for k = 1, ..., knax;
2 x «+ Initial Solution();

3 k+ 1;

4 1+ 0;

5 T + Tp; // SA temperature
6 while 7 < njier do

7 x Shaking(/\[k (2)); // generate random perturbation
8 " <+ VND(2', k); // local improvement search
9 if acceptSA(:c”, z,T) then // acceptance based on SA
10 x <+ 2

11 k<« 1;
12 else

13 ‘ k + (k mod kmax) + 1; // try next neighborhood
14 end
15 11+ 1;
16 update T

17 end

6.4.1 Initial Solution

An initial solution (function InitialSolution() in Algorithm 6.1) is generated by employing
a custom construction heuristic, which takes the jobs from the provided input list (Dplan),
sorts them in increasing order of due date and then schedules the jobs in this order as
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soon as possible (forward scheduling) while considering safety gaps between jobs as well
as fixed setup times. This method ensures that no collisions occur, however, further
constraint violations, such as delivery delay, or energy considerations, are not checked
during this phase.

Note that setting up a Dplan might include an initial heuristic (done manually by the
user) on how to define job quantities (i.e. batch sizes) meaningfully. Since these are used
to generate the initial solution, they also influence the efficiency of the search.

6.4.2 Generalized Cost Function

The algorithm allows infeasible solution during the search process. Constraints are
penalized by means of the generalized cost function

f(.T) = w1 - fdev(l') + wsy - fen(x) + ws - fst(f) + wy - fdel(l') + ws - fsep(ﬂf) (67)

where fqev denotes a penalization for deviating number of entities produced, fen the
energy costs, fst the storage costs, fgel is a penalization for any potential delivery delay,
and fsep penalizes job separation violations. These part goals are evaluated based on the
simulation results. The coefficients w; > 0 are weighting factors, which may be adapted
by the decision maker to balance their preferences for individual part goals and trade-offs
in a transparent manner. This weighted sum method widely used in multi-objective
optimization problems in practice [143] as it is easy to implement and intuitive for the
user. However, the results are often highly dependent on the weights [102].

The individual part goals are calculated as follows:

Entity Deviation: The entity deviation f4e, simply compares the actual number of
entities produced n.c; to the target entities niarger for each product type I given in the
input list (Dplan) and penalizes the deviation with a factor pqey:

fdev(x) = Z ’nact,l(w) - ntarget,l(x” * Pdev (68)
l

where n,q results from the simulation by summarizing all sinks,

Nact () = D> > nppa(w), (6.9)

keSinks t;

and Niarget is given from the Dplan by summarizing all order lots:

Ntarget,] = ZDplanthl- (610)
£y

The same result can be obtained by looking at the stock level from Equation (6.13) (see
below), which has to amount to zero in the end, i.e. Sy (z) =0. Choosing a large
value for pqev strongly avoids any deviation in the number of entities as this would not
constitute a desired solution.
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Energy Costs: The energy costs fen are calculated based on the simulation results, by
taking the simulated power supply P; from each of the external providers s € Prov, rate
them with time-dependent energy prices cs and accumulate them over time to obtain the
overall energy costs:

Jen(@) = > > Poy (@) - (tig1 — t) - cs(ts). (6.11)

s€Prov t;

This method of using variable energy prices allows to take into account different effects
that have an influence on the energy price and therefore may potentially influence the
production planning result, like for example lower energy prices during nighttime, or an
additional photovoltaic system that provides solar energy during the day.

Storage Costs: The storage costs fs can be calculated in different ways, either on a
per-job basis where the job completion times are used, or on a per-type basis, where only
the number of products produced of each type is relevant. The first variant suitable for
job shop layouts where each job is assigned to a specific customer, the second variant is
easier for flow shop production without specific customer allocation and variable lot sizes
(e.g. by merging jobs). The latter results in

fot (2 szax{sﬂ ),0} - (tix1 —t;) - est (L) (6.12)

with the (potentially time-dependent) storage price per time unit and quantity ¢ and
St the current stock level at time ¢; for type [, which can be calculated as

St Z Z N1 (T Z Dplany (6.13)

keSinks t<t; t<t;

This equation calculated the stock level based on the simulation results, particularly the
number of entities of type [ arriving at the final sinks k& € Sinks at time ¢. Alternatively,
the progression of the stock level can be obtained directly from the simulation when
using storage components in the simulation.

Delivery Delay: The stock level S, ; is also useful for finding potential delivery delays,
namely by looking for times when the stock level is negative:

Jaer(® ZZ min{Sy, ;(z),0} - (ti+1 — ti) - Pdel (6.14)

with pqel as the delay penalty. Alternatively, calculating the delivery delay costs for job
shop production can be done similarly to calculating the storage costs by looking at the
job completion times and comparing them to the Dplan due dates.
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Separation Constraint: The last element fsp(x) the cost function Equation (6.7)
specifies a penalty for violating the constraint that, in each station, between one job an
the next, the station must be cleared of entities:

fsep(z) = Z Njobs,s (L) — ZuseStations(Dplantﬁl) * Psep- (6.15)

s€Stations j

Hereby, njops,s is the number of jobs that have been processed at station s and results
from the simulation, while pgsep, again denotes a penalty factor. The function useStations
returns whether or not the respective job from the Dplan uses Station s. This soft
constraint was introduced partly due to restrictions in the simulation itself, but does also
have merit in the real world. Without this constraint, individual jobs would be pushed
together to such an extent that they overlap in individual stations, thereby preventing
correct setup taking place for the following job.

6.4.3 Neighborhood Structures

The general operation of the VNS has been described in Algorithm 6.1. It is responsible
for diversifying the search in a structured way during the shaking phase by successively
changing the neighborhood structures N. These neighborhood structures are usually
defined implicitly by means of operators that modify the solution. For our case, we have
defined four different operators:

1. OpSwitch: This operator changes the order of jobs by taking a random number
r of successive jobs (starting from a random position) and moving them to a
different position. Hereby, r is chosen in the interval r € [1, min{rmax, n}], where n
is the overall number of jobs and 7y, changes depending on the neighborhood k,
see Table 6.1.

2. OpShift: The shifting operator takes a random position and moves all subsequent
jobs by a specified time tgy;r;, where tgnire depends on k.

3. OpChangeSetuptime: Here, the setup time is changed by a specified amount setup-

4. OpMerge: The merging operator takes two random jobs, which are removed by a
distance of d, and which have the same product type and combines them into one
job. Merging jobs has the advantage that it reduces the number of setup processes
and avoids gaps between jobs, thereby increasing production and energy efficiency.

The parametrization of the neighborhood structures, as presented in Table 6.1, has
been calibrated through various scenarios. They can be adjusted, however, and tuned to
specific problem instances. This in fact allows a lot of flexibility for the user to tailor the
search to the specific problem and influence the performance of the search.

Despite the large number of parameters used in the GVNS heuristic, it is relatively easy
to find a set of parameters that works well for different use cases. The parameters have
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Table 6.1: Neighborhood structures used in the GVNS

k Operator Shaking VND

1 1 Tmax = 2 Tmax = 1

2 1 Tmax = 4 Tmax = 1

3 2 tshift = 8h Lsnift € {47 27 _L 05} h
4 2 tshift = 12h tshift € {4, 2, —1, 0.5} h
5 3 toetup = 0.5h  teerup € {0.5,0.25}1 h

6 4 d=2 d=1

been tuned in a systematic fashion following the approach described in [237, 246] using
multiple different scenarios. Starting from a base parameter setting found during the
development of the GVNS method using trial end error, the parameters were varied
consecutively, always keeping the best setting and proceeding with the next one.

6.4.4 Variable Neighborhood Descent

As mentioned, the VND is used in place of a local search procedure inside the VNS to
improve the generated solution in the intensification phase [126]. The basic operation is
sketched out in Algorithm 6.2.

Algorithm 6.2: VND algorithm

1 N, < set of VND neighborhood structures for [ = 1, ..., lmax;
I+ 1;
while [ < ,,,, do
find 2" € Ny (z) with f(z") < f(a') Va' € Ny (x);
if f(2") < f(z) then
x <+ 2;
[+ 1;
else
‘ [+ 1+1; // try next neighborhood
10 end

© 00 g o Utk W N

11 end

The neighborhood structures are based on the same operators as described in Section 6.4.3,
albeit with different parameters, see Table 6.1, and depend on the current VNS neigh-
borhood Nj. For the switching operator, the VND neighborhood containing all pairs of
successive jobs is explored exhaustively. The same is done with respect to merging. For
OpShift, the VND checks shifting groups of jobs in a binary search pattern by a set of
different times tgnre. Similarly for the setup times, which are being reduced iteratively
by a set of different values for tsetup-
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6.4.5 Acceptance Criterion

Instead of accepting only improving solutions, a modified acceptance criterion (acceptSA())
is used that is based on a Simulated Annealing (SA) method [251]. It enables to further
diversify the search and better escape local optima by accepting potentially worse so-
lutions, albeit with decreasing probability as the search progresses [108]. To be more
precise, while an improving solution is always accepted, a deteriorating solution z” is
accepted with the probability

psa = e~ SE)=f@)/T (6.16)
where f is the generalizes cost function (see Section 6.4.2) and T is the Simulated
Annealing (SA) temperature that decreases linearly after every VNS iteration in such
a way that T < 1072 during the last 10% of iterations. This effectively tightens the
acceptance criterion as the search progresses until, finally, only improving solutions are
accepted at the end. The temperature 7' is initialized with Tj according to

Aga
Tp=———2 6.17
07 Tlog(0.5)’ (6.17)

meaning that, initially, a solution being Aga (deterioration percentage) worse than f(x)
is accepted with a probability of 50%. Experiments revealed a value of Aga = 20 to be
suitable for various case studies.

6.5 Case Study Experiments

This section demonstrates the application of the GVNS/SA optimization method on
a flow shop scheduling case study as a proof of concept, for which the Case Study 1
(Simple Production Line) from Section 5.7 was chosen. This simple case study keeps the
complexity manageable in order to be able to manually verify the optimization results
and check for correct behavior of the algorithm. The optimization was implemented as a
prototype in MATLAB and coupled with the standalone hyPDEVS simulation.

6.5.1 Implementation

Just to recap the simulation implementation: The production stations, especially Oven
and Freezer, are modeled as hybrid discrete/continuous models, where the discrete model
is responsible for entity flow and control logic, and the continuous model handles energy
input and conversion. In particular, the energy conversion follows simple energy balance
equations, including thermal heat capacity of the station, and generates diffuse waste heat
that is dissipated into the respective thermal zone in the room model. Energy demand
for Oven and Freezer is controlled by a PI controller located inside the component. The
energy model also interacts with the material flow by means of state events that indicate
e.g. when the Oven has reached its target temperature and is ready to accept entities.
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The building and energy system components on the other hand are mainly continuous
models (as they do not directly interact with entities), except for simple control logics. The
building model contains four thermal zones with homogeneous temperature distribution
and calculates heat transfer across the walls between the zones as well as with the
environment. For this, a temperature profile for the ambient temperature can be specified
as simulation input, which allows to compare different weather conditions, e.g. summer
vs. winter. A more sophisticated thermal building model has also been developed for the
hyPDEVS simulator and is presented in [259]. This model is, however, not part of this
case study.

Outside energy providers supply the energy across the system boundary to the energy
system, which is billed to the customer using time-dependent energy pricing. Specifying
energy price profiles allows to incorporate various energy cost effects that influence
production planning. These energy price profiles are changed according to the respective
scenario, see the following sections.

6.5.2 Scenario 1: One Week Planning Horizon

Table 6.2 presents two typical scenarios of demand lists (Dplan) needing to be scheduled
over the course of one week (i.e. 168 h simulation time). The table lists different orders
(coming from customers) with quantities and delivery due dates (measured from the start
of the week). Duplicate entries constitute different orders to be delivered to different
customers. For this scenario, the ambient temperature is kept constant with 20 °C.
In addition, energy prices (see cs(t;) in Equation (6.11)) follow the profile depicted
in Figure 6.3, where, for testing purposes, the price for electricity c¢; () is reduced between
10 a.m. and 4 p.m. on selected days, while the gas price ca(t) is kept constant. The idea
is that this accounts for cheaper energy from a photovoltaic system during sunshine. The
base energy prices are based on real energy prices from Austria in 2018 and are taken
from [95]: Electricity: 0.116 €/kWh. Gas: 0.04 €/kWh.

’— Electricity Gas ‘

0.15 T T
E 0.1 - |
~
= .
=) 5-10

| | | | | |
0 24 48 72 96 120 144 168
time [h]

Figure 6.3: Energy price profile for Scenario 1. The price for electric energy is reduced
between 10 a.m. and 4 p.m. on selected days to account for cheaper energy from a
photovoltaic system during sunshine periods.

Scenario la is based on a real demand plan and features two different products (baked
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Table 6.2: Demand plan for Scenario 1

Product Type Quantity Due Time
Scenario 1la  Scenario 1b
baked 6 48 h 168 h
baked 6 48h 168 h
frozen 20 48 h 168 h
frozen 20 48h 168 h
baked 24 72h 168 h
frozen 50 72h 168 h
baked 36 120h 168 h
frozen 50 120 h 168 h
baked 8 144 h 168 h
baked 8 144 h 168 h
baked 8 144 h 168 h
frozen 25 144 h 168 h
frozen 25 144h 168 h
baked 20 168 h 168 h
frozen 75 168 h 168 h

and frozen) in different batch sizes and with different due dates. Figure 6.4 shows the
progression of the cost function over the iterations. The simulation time was 1 week, and
the total number of VNS iterations was chosen as njte; = 100. Further experiments showed
that increasing the number of iterations does not improve the end result significantly
anymore. Also, comparing repeated optimization runs (because of randomizations in the
operators) delivered similar results. For the part goals, weighting factors were chosen as
w=(w;)i=1..5 = (1,2,0.5,1,1).

400
300 ¢ |
200 ]
—e C0A]
dev
100 |- energy | |
storage
w late L

0 | | | \ | | | I I
0 10 20 30 40 50 60 70 80 90 100

Figure 6.4: Progression of the cost function and part goals for Scenario la
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The graph shows that the cost function also rises sporadically in between iterations, which
is due to the SA acceptance criterion. However, the acceptance probability decreases
with advancing iterations and the cost function decreases monotonically towards the
end. When looking at the part goals, it shows that no significant constraints have been
violated that would have caused penalties (entity deviation, delivery delay) and that the
majority of the costs is divided between storage costs and energy costs. Overall, the cost
function could be reduced by about 34%, with energy costs reduced by 30% and storage
costs by almost 50%.

Figure 6.5 depicts in more detail the Oven and Freezer allocations (i.e. number of entities
and temperature over time) in the initial solution, which was generated using the simple
construction heuristic from Section 6.4.1, against the final optimization results. The
different humps in the entity count correspond to different jobs.

The results show that the jobs are being grouped together around the due dates and that
some are produced earlier than necessary, which saves on storage costs as well as energy
costs, on the one hand by avoiding unnecessary thermal setup processes (i.e. reheating
the Oven and cooling the Freezer), on the other hand also by optimizing the operating
times. The gaps, where the stations are idle, increase, which allows to switch off the
Oven and Freezer (shown in the figure) instead of continuing them to run, which would
consume unnecessary energy.

This effect becomes even more apparent in Scenario 1b, where, compared to Scenario
la, all delivery due dates are moved to the end of the week (cf. Table 6.2). This gives
more leeway for job scheduling, but makes it more important to balance energy costs
against storage costs. It also serves as a plausibility check for the optimization algorithm.
The cost function for Scenario 1b is shown in Figure 6.6 with the final Oven and Freezer
allocations presented in Figure 6.7. For the Oven allocation, it is noticeable that the
jobs have been merged into two clusters and that, instead of pushing the two clusters
together, a gap remains in order to take advantage of the reduced energy costs during
the day (cf. Figure 6.3).

Intuitively, without considering energy costs, the best solution would be to produce
everything as late as possible in order to minimize storage costs. This is also the solution
depicted in Figure 6.8, where, for verification purposes, the same scenario has been tested
with a modified cost function that excludes energy as a part goal. In particular, the
coefficient wy of fe, in Equation (6.7) was set to wy = 0. The respective cost function
progression is shown in Figure 6.9. It is noticeable that a near-optimal solution is found
after only a few iterations.

Table 6.3 compares the results of Scenario 1b with and without energy, by taking the
respective final solutions and evaluating them using the same cost function from Equa-
tion (6.7), including energy (i.e wy = 2). This makes sense because, either way, the
energy costs still have to be paid in the end, regardless of whether or not it is considered
in the PPC. This comparison shows that incorporating energy costs together with other
production goals during optimization can result in an overall better solution. While
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Figure 6.5: Optimization results for Scenario la, initial scheduling (top) and final results
(middle), both for Oven (left) and Freezer (right) allocation, as well as combined view

(bottom). Dashed vertical lines indicate job due times.

the storage costs have slightly increased, this is outweighed by the gain in energy costs.
Not considering energy costs and only optimizing storage costs would ignore significant
potential for cost savings.

While the runtime performance of the simulation-based optimization has not been studied
in detail, the case study gives a first impression: The scenarios with nie, = 100 iterations
needed about 2600 - 3600 evaluations (i.e. simulation runs), with one simulation run taking
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Figure 6.6: Progression of the cost function and part goals for Scenario 1b
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Figure 6.7: Oven and Freezer allocation for Scenario 1b

Table 6.3: Comparison between Scenario 1b with and without energy, showing final cost
value using Equation (6.7) with we = 2

with Energy without Energy | Improvement
Energy costs wy + fen () 173.53 188.92 8.15%
Storage costs ws - fst () 16.72 13.18 -26.86%
Total goal f(x) 190.25 202.1 5.9%

about 800ms (1 week simulation time with 15 jobs). However, less than 30 iterations
are often sufficient to find a near-optimal solution as Figure 6.4 and Figure 6.6 show.
Overall, there is still room for decreasing the runtime by improving the implementation
efficiency. However, these first results indicate feasible runtime also for larger scenarios.
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Figure 6.8: Oven and Freezer allocation for Scenario 1b without energy costs
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Figure 6.9: Cost function and part goals for Scenario 1b without energy costs

6.5.3 Scenario 2: Realistic Energy Price

In the second investigation, we look at a shortened scenario with a planning horizon of two
days, which allows to better investigate the influence of energy costs and manually verify
the planning results. Table 6.2 lists the Demand Plan (Dplan) for this scenario with
quantities and delivery due dates. For the ambient temperature, we consider a real-world
temperature curve presented in Figure 6.10 and we compare different energy price profiles
¢cs(t), as shown in Figure 6.11. One electricity price profile ¢ rea1(t) was taken from real
historical electricity spot market data of the Austrian Energy Exchange (EXAA)®, the
other one cq const(t) represents its mean value (0.0437 €/kWh) kept constant over the
entire period. The gas price co(t) is the same as in Scenario 1.

Scenario 2a presents a simple scheduling scenario with four jobs and two different delivery

5Source: https://www.exaa.at/en/marketdata/historical-data
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Table 6.4: Demand plan for Scenario 2

Product Type Quantity Due Time
Scenario 2a  Scenario 2b
baked 32 48 h 48h
baked 8 24h —
frozen 20 48 h —
baked 4 48 h —
T T T T T T T
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time [h]

Figure 6.10: Ambient temperature curve used for the simulation, based on real data
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Figure 6.11: Energy price profiles, constant and real

due dates. Figure 6.12 depicts the Oven and Freezer allocations (i.e. number of entities
and temperature over time) of the initial solution and the final optimization result when
using the constant energy price profile. The optimization ran for nji, = 50 iterations and
the partgoal weights were chosen as w = (w;)i=1..5 = (1,2,2,1,1), while the deterioration
percentage of the SA acceptance criterion was lowered to Aga = 0.3.

The result is by and large as expected, with all jobs being produced as late as possible
(due to the storage costs) and the one job (Job 2 in Table 6.4) adhering to the earlier
delivery due date. While the overall goal was improved by 28%, not much energy was be
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Figure 6.12: Optimization results for Scenario 2a, initial scheduling (top) and final results
(middle), both for Oven (left) and Freezer (right) allocation, as well as combined view
(bottom). The dashed vertical lines indicate job due times.

saved in this case, only about 6%, as there is not much leeway for shifting or merging
jobs. This is also visible in the cost function plot in Figure 6.13. While the energy costs
make up the majority of the target value, most of the improvements are achieved through

the storage costs, which have been lowered by 77%.
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Figure 6.13: Cost function and part goals for Scenario 2a

Also, the variable ambient temperature itself does not have much influence on the
optimization result either. As further analyses have shown, this is partly due to the
temperature control in the building. On the one hand, this suppresses any direct influence
of the ambient temperature on the thermal behavior of the production stations, on the
other hand, a (more or less) constant total amount of energy has to be supplied to heat
the building over the observation period, which is only reduced by the waste heat of the
stations. However, it is irrelevant when exactly this waste heat is supplied.

Next, we want to take a deeper look at the influence the energy has on the planning
result. For this, we omit the storage costs in the target system by setting the respective
weight to w3z = 0. This has the effect that the oven lots can be produced earlier, together
with Job 2 that is due earlier, thereby saving a second setup process. Switching the
sequence of the oven lots does not make much of a difference energetically. The result,
which we will call x. for further reference, is shown in Figure 6.14. Figure 6.15 presents
the associated cost function.

If we compare this result with the planning result x, obtained with the real energy price
profile ¢j rea1(t), shown in Figure 6.16, a different picture emerges. Here, the jobs are
scheduled earlier, especially in the periods with low energy prices, while the periods of
high energy prices are avoided. Especially the oven lots exploit these valleys, even though
the oven continues to run during these gaps.

If we take x. (Figure 6.14), which only considers a constant energy price, and evaluate it
with the realistic variable price profile cj 1ca1(t) (as it would be done in reality), we see
that the goal would be about 5% worse compared to x,, which considers the real energy
price in the optimization, see Table 6.5.

The progression of the cost function, see Figure 6.17, shows that, compared to Figure 6.15,
it takes more iterations to reach a near-optimal value, and the overall values are slightly
higher. This will become even more apparent later in Figure 6.19.
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Figure 6.14: Oven and Freezer allocation z. for Scenario 2a without storage costs and

constant energy price
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Figure 6.15: Cost function, i.e. energy costs, for Scenario 2a without storage costs

Table 6.5: Comparison of Scenario 2a between x, and x., showing the cost value evaluated

using the real energy price profile ¢; yeal(t)

variable Price constant Price | Difference
Ty Lc
Goal f(x) 27.45 28.82 5%

The effect of job scheduling depending on the energy price can be examined more closely
by looking at a single job as defined in Scenario 2b in Table 6.4. By sweeping a single
job across the planning horizon, as illustrated in Figure 6.18, we can determine how
the target function changes depending on the starting time 1. The result is presented
in Figure 6.19. Both with constant energy price and real price profile, the target function
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Figure 6.16: Oven and Freezer allocation z, for Scenario 2a without storage costs and
real energy price
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Figure 6.17: Cost function, i.e. energy costs, for Scenario 2a without storage costs and
real energy price

has clearly pronounced hills and valleys that correlate approximately with the ambient
temperature. However, the optimum values do not align, namely x1; = 27h compared to
x1 = 22h with constant energy price.

What is also noticeable is that the target value is on average about 9% higher when
using the real energy profile, compared to the constant value, even though the mean
price over the course of the day is the same, see Figure 6.11. These higher energy costs
have to do with the fact that the energy demand is unevenly distributed throughout the
day, not only due to production, but also, for example, due to intermittent filling of the
heat and cold storage (that are part of the building TBS), which often occurs in times of
above-average energy prices. FEven if one could have suspected that this would balance
out over the day, this does not seem to be the case here.
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Figure 6.18: Sweeping the job starting time across the planning horizon, from 2h (left)
to 37h (right)
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Figure 6.19: Target value plotted over the start time sweep, both for constant energy
price and real energy price profile. The red dots indicate the respective minima.

6.6 Discourse

Results: The case study results show that including energy considerations into the
planning optimization can potentially reduce overall costs and therefore provide better
planning results. The case study has been simplified to highlight the essential characteris-
tics, and the energy saving effects were recognizable but limited, which partly due to the
model parameterization causing the building energy to make up a large part. However, it
is easy to imagine a more complex production system with more diverse material flows,
product types and higher energy turnover. This makes the optimization problem even
more interesting because of the job completion times being more difficult to predict due
to bottlenecks as well as even more potential for energy savings. From the current point
of view, the presented simulation-based approach should also be applicable for these
cases.
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Many factors potentially influence the overall energy demand, which have to be included
into the simulation. The building facilities contribute a significant portion to that, but
also setup times of thermal processes can be optimized in order to save energy as well
as improve production tardiness and reduce storage costs. These factors, however, have
to be considered simultaneously in the target function, as part of a multi-objective
optimization, instead of individually. Because of time-dependent energy prices, the actual
energy costs for producing a certain product may vary depending on when it has been
produced an can therefore not simply be calculated on an energy-per-piece basis.

Experiments on the case study have also shown that the Simulated Annealing (SA)
acceptance criterion is important especially for the merging operator, since, although
merging two jobs might be beneficial in the end, there might sill be a short-term increase
in the cost function (e.g. if the products from the second job are being produced sooner
and therefore increase storage costs). In the future, VNS parameter and neighborhood
calibration might still be improved and even be automated as part of a hyper-heuristic
approach [49] to directly adjust to the problem instance without the need for user
intervention.

Simplifications: The optimization does not take into account economic aspects such
as personnel costs, although these might potentially have an influence on the Pplan
result. For example, electricity might be cheaper during the night, but personnel costs
might be higher. However, such aspects can easily be included in the objective function as
additional sub-goals or constraints (for example, as a shift schedule) without significantly
changing the optimization method itself. Also, the simulation does not necessarily have
to be extended for this purpose, since such economic aspects can also be evaluated outside
the simulation. Also, availability restrictions like failure times or stochastic influences
are not considered.

Energy Storage: It is important to ensure that any energy storages in the simulation
do not distort the simulation result. For example, a part of the energy costs in one
scenario may have been used to fill the storage tanks in the heating grid more than in
another scenario. In order to take this into account, either the energy storage levels
can be read out of the simulation and included in the target function evaluation, or
alternatively warm-up and cool-down periods can be included in the simulation run
to balance out the storage levels. We employed that latter approach, similar to other
thermal simulation tools [285].

Constraints: The optimization approach does not require to formulate many explicit
constraints as most of them are given implicitly in the simulation model. This makes the
optimization easier to use, but the search less efficient. However, the GVNS operators
implementing an improvement heuristic that ensures that only permitted moves are
executed and thus the solution remaining mostly within the feasible range; the rest can
be covered using soft constraints in the target function.
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Flexibility: The target function can also be easily extended with additional optimiza-
tion targets or constraints, such as lead time, capacity utilization or peak load penalties.
In the same way, individual part goals can be deactivated by the user in case they are
not relevant for the particular use case. The adjustable weights also allow the user to
fine-tune the planning results to the individual needs. Furthermore, the GVNS method
also lends itself to be extended by defining additional operators (or deactivate existing
ones) without having to change the method. For example, a splitting operator could be
useful to better optimize the batch sizes. All this makes the method very flexible and
therefore suitable for a large number of applications.

One advantage of the GVNS meta-heuristic is that it allows to fine-tune the operators
and neighborhood structures to the individual problem instance, thereby allowing more
efficient search and decreasing computation time. Neighborhoods (i.e. switching, shifting,
etc.) are explored repeatedly and iteratively instead of sequentially, and the trade-off
between exploration and exploitation can be controlled by the user. In contrast to
population-based approaches, like Genetic Algorithms, VNS as a single-solution-based
methods needs fewer function evaluations (i.e. simulation runs), which is a topic of
importance for simulation-based methods.

Comparison: For the discussed case study, an optimization based on a GA was also
implemented as part of a research project, see [264]. A comparison shows a similar
performance: While the optimization potential found is nearly the same, the GA typically
requires significantly more evaluations, up to twice as many for a comparable scenario [261],
due to its population-based nature. The GA is also more difficult to implement and must
be heavily hybridized (e.g. targeted search as part of customized crossover and mutation
operators), which is arguably more complex and less transparent with the GA than
with the simple GVNS. On the other hand, the GA offers itself to easier parallelize the
computations in order to decrease runtime, although there are also some parallelization
strategies for VNS [73, 74]. For a more detailed discussion on the GA, we refer to [261,
264, 263, 252].

The hyPDEVS-based simulation itself, despite its hybrid nature, delivers sufficient
performance to be feasible for simulation-based optimization tasks with with a large
number of iterations. This has also been tested with larger real-world case studies, see
e.g. [262].



CHAPTER

Framework for Model Engineering

After discussing the simulation and optimization methods that can be used in operative
energy-aware production planning as part of a running PPC/APS system, we now want
to look into an approach to support the engineering process of such systems for large-scale
applications.

7.1 Introduction

In Chapter 4, we have already elaborated on the idea to manage the complexity of
large-scale simulation models by applying abstraction and separation of concerns in the
form of conceptual high-level modeling and modularization by means of Cubes. In the
following, we formalize this workflow of transferring the conceptual description into a
concrete implementation in the form of a modeling framework for developing hyPDEVS-
based simulation models and optimizations using a Model-Driven Engineering (MDE)
methodology.

It comes as an attempt to bridge the semantic gap between conceptual modeling and
(hyPDEVS-based) simulation implementation by defining a domain-specific modeling
layer in between. It provides a closer, more natural connection between the business-
oriented concepts in which problems are usually expressed (i.e. the problem space)
and the technology-oriented concepts in which solutions are described (i.e. the solution
space) [45, 40]. The Cubes become first-class citizens in the development process rather
than their implementation counterparts (i.e. Atomic and Coupled).

The model abstraction builds on the Cube concept and formalizes Cubes as a concept,
including their interfaces, and the way they are instantiated, connected and configured.
This ensures interoperability not just on the syntactic level, but on the semantic level
as well [219], due to the domain-specific interpretation of Cubes. It also separates the
high-level specification from the concrete implementation, which opens up a variety of
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possibilities to derive not just hyPDEVS models, but also parameters necessary for the
optimization procedure. It even allows to derive simulation models that might employ
different modeling formalisms altogether, such as purely discrete models for simplified
non-hybrid simulations [132], or even co-simulation implementations including coupling
middleware.

While hyPDEVS is generic by nature, the new modeling layer adds domain-specific
features on top of hyPDEVS, like interface types, in order to provide higher-level support
for domain-specific models. It provides more intuitive modeling, with the hyPDEVS-based
simulation execution still retaining the advantage of being formally sound.

The model engineering formalization builds on the findings from the research project
BaMa and was only developed after. It is also not intended to replace the initial semi-
formal workflow so much as provide additional development support for large projects.
In that, it can be seen as an optional add-on on top of hyPDEVS modeling.

In the following section, we give a brief overview of the Model-Driven Engineering (MDE)
methodology for developing software systems and discuss their applications in simulation
engineering. We will clarify the different levels of abstractions and describe possible
model transformations. After that, we describe the modeling framework for Cube-based
application engineering and its implementation.

7.2 Model-driven Engineering Methodology

Model-Driven Engineering (MDE) is a methodology used in software engineering that
provides a set of methods and guidelines to develop software systems using model
formalizations and successive model transformations (i.e. manipulation operations on
models) [56]. It therefore tries to provide a comprehensive vision for system development.
The idea is that in MDE, models are the primary artifacts of the development process (as
opposed to e.g. source code) and they represent the system and software at different levels
of abstraction or detail [55]. The core concepts in MDE are modeling, meta-modeling and
model transformations. All models (and that includes meta-models and transformations)
are expressed in some notation, which MDE calls a modeling language. The MDE
approach requires that the models and modeling languages are well-defined, since only a
precise formalization allows unambiguous transformation and execution.

One popular statement often found in MDE is that "Everything is a model"" [40]. In
particular, a definition of a modeling language itself can be seen as a model — this
is referred to as meta-modeling (i.e. "modeling a model"). And this can be applied
recursively: Modeling a meta-model means to define a meta-meta-model. More on
meta-modeling is discussed in Section 7.2.3. Model transformations can also bee seen as

LAs [40] points out, and quite an interesting analogy to keep in mind, is that MDE tries to make
the point that the statement "Everything is a model" has a strong driving role in aiding the adoption
of model-driven techniques in the same way that the principle "Everything is an object" was helpful in
driving Object-Oriented Programming (OOP) techniques.
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particular models (of operations upon models). Even the processes, development tools
and resulting programs constitute models.

7.2.1 Overview

As models being the primary citizens in MDE, modeling is done at different levels of
abstraction, a full-fledged MDE approach even leads to modeling the models themselves.

Figure 7.1 shows an overview of the main concepts considered in MDE. It involves two
orthogonal dimensions: conceptualization and implementation. Implementation involves
mapping the models to some running system and consists of three cores aspects: Model,
realization (i.e. code in the case of software) and automation of the mapping in between.
The conceptualization dimension is oriented to defining conceptual models for describing
reality at three main levels: application (where models of the applications are defined,
transformations are performed and actual executable code is generated), application
domain (where the modeling language, transformation rules and implementation platforms
for a specific domain are defined), and the meta-level (where conceptualization of models
and transformations are defined) [40)].
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Figure 7.1: MDE methodology overview with two orthogonal dimensions: conceptual-
ization (rows) and implementation (columns). Models are described using a modeling
language and transformations generate executable artifacts from these models.

Models are specified according to a modeling language, which in turn is defined according
to a meta-modeling language. One meta-modeling language allows to specify multi-
ple different modeling languages, each of which in turn giving rise to a multitude of
possible different models. Transformation executions are defined according to a set of
transformation rules, which in turn is defined using a specific transformation language.
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The core workflow in MDE for delivering executable artifacts (i.e. source code) spans
from application model specification (left) to executable realizations (right) through
subsequent model transformations with decreasing level of abstraction. This facilitates
reuse of models and execution of systems on different platforms. The artifacts in our
particular use case mainly involve executable simulation models, implying that they can
also be called models.

Modeling languages are defined for a particular application domain and therefore define a
model of said domain. The domain model is the conceptual model of the problem domain
describing the various concepts, their attributes, relationships and their constraints
and interactions. The purpose of formalizing domain models is to define a common
understanding of the field of interest by defining its vocabulary and key concepts.

7.2.2 Modeling Languages

A modeling language provides a tool to specify models of a system. It is a means of
expressing a concrete representation of a conceptual model in a formal and precise way
by using some form of notation, such as diagrams, symbols, signs, letters, numerals, etc.
In other words, a model is defined using (cf. Figure 7.1) a modeling language. This
relation can be more precisely expressed as conforms to, i.e. "the model m conforms to
the modeling language [". Model verification can check that this relation is correct [56].

A modeling language is defined by its abstract syntax, concrete syntax and semantics [9].
The abstract syntax defines the concepts and vocabulary provided by the modeling
language as well as their relationships and well-formedness rules, i.e. how they can be
connected to create models. An abstract syntax may be expressed using different concrete
syntaxes, which provide a way to show the modeling elements in a concrete form to be
worked and interacted with. So, an abstract syntax may for example have a textual
concrete syntax (i.e. a textual programming language using keywords) as well as an
equivalent graphical concrete syntax (i.e. diagrams depicting the abstract syntax in a
concrete style and layout). The semantics of a modeling language explains the meaning
behind the abstract syntax and is needed to allow a meaningful interpretation of the
model.

For a particular application domain, Domain-Specific Languages (DSLs) can be designed
to ease the task of describing things in that domain [40]. In case the language is aimed
specifically at modeling, it may also be referred to as Domain-Specific Modeling Language
(DSML). Prominent examples of Domain-Specific Languages (DSLs) that have been
used in computer science for a long time are the HTML markup language for creating
websites, VHDL for hardware description, SQL for databases and even Matrix Laboratory
(MATLAB) can be considered a DSL for scientific computing. The counterpart to DSLs
are General-Purpose Languages (GPLs), which are intended to be applied to any sector or
domain. Unified Modeling Language (UML) or Java are considered to be General-Purpose
Languages (GPLs). Although, the notion of general-purpose or domain-specific often
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depends on the particular viewpoint (in particular what the considered "domain" is) and
2

in some cases are up for discussion”.
Models are developed in MDE using computer-aided tool support. Model editors im-
plement a particular modeling language and allow to specify, view or change models
interactively using a concrete syntax. Editors use a language parser to decompose a
model according to the abstract syntax of its modeling language [199]. In most cases,
model editors also provide extra features such as verification or syntax highlighting.

7.2.3 Meta-Modeling

As mentioned, models themselves can be seen as instances of some more abstract models.
Hence, in the same way that a model is an abstraction of the real world, we can define
a meta-model’ as yet another abstraction that highlights the properties of the model
itself [40].

Meta-models basically define a modeling language since they provide a way of describing
a whole class of model that can be represented by that language. In particular, they
define the abstract syntax of that language in terms of concepts, attributes, relationships
as well as constraints present in a particular application domain. The language the
meta-model describes is therefore a Domain-Specific Language (DSL).

Again, this idea can be applied recursively, giving rise to models describing meta-models,
called meta-meta-models. While, theoretically, infinitely many levels of meta-modeling
could be defined this way, software engineering in practice only uses three levels of
abstraction with a common meta-meta-model that is defined on itself'. Figure 7.2 depicts
these three modeling layers (M1, M2, M3), complemented by the layer MO denoting the
real-world objects that are being modeled (e.g. a real production plant).

The figure also gives an overview of the relationships between model, meta-model and
modeling language. A model is said to be an instance of its respective meta-model,
which in turn represents a modeling language, which the model itself conforms to. The
relationship conforms to guarantees the validity of the model and is usually expressed
implicitly via the instance of relation.

2For example, Petri Nets are considered by some to be a GPL [40], while one could also argue that
they are specific for the domain of discrete-event dynamic systems. The same can be applied to DEVS.
Even UML could be attributed to be specific for the domain of software engineering.

3The term meta-model means as much as "model of a model" and in our context refers to the meta-level
modeling language. In the simulation domain, the meta-modeling term has previously been used in a
different context, basically describing surrogate modeling (i.e. constructing simplified models that mimic
the behavior of an underlying complex simulation), see e.g. [91, 62]. Since a surrogate model is in some
sense a "model of a model" as well, the use of the term meta-model is perfectly justified, however it means
something different.

4Tt might not appear intuitive how a model can be defined by itself. One can think of the example of
a dictionary defining the words used in the English language. It does that by using the same words of
that language.
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Figure 7.2: Four layers of modeling in MDE. Real-world objects are seen as instances of a
model, which is an instance of a meta-mode, which is an instance of a meta-meta-model.
Each model conforms to a modeling language, which is represented by a corresponding
meta-level model.

This in analogous to the way a computer program conforms to the grammar of the
programming language in which it is written. Such a grammar (e.g. for the language
Java) is commonly defined using the Extended Backus-Naur Form (EBNF) notation,
where EBNF itself constitutes the meta-meta-model.

7.2.4 Model Transformations

Model transformations (also called model morphisms [4]) allow to perform mappings
between different models. Models can be transformed into another form according to a set
of transformation rules. The goals of model transformations is to automatically generate
different representations of a system in different views and abstraction levels. This way,
instead of creating new models manually from scratch during different development stages,
information that was modeled in one form can be preserved and reused in another form
through an automated process.

An automated transformation requires that the models are specified in a well-defined
modeling language and that the rules are formalized using a model transformation
language. Transformation rules are defined at the meta-model level, and then applied at
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the model level, namely on models that conform to these meta-models, see Figure 7.1
for reference. MDE solutions provide appropriate languages for defining transformation
rules that are embedded in a meta-modeling environment where the transformation
languages themselves also conform to a common meta-meta-model [56]. This is because
transformation themselves can also be seen as models, and managed as such, including
their meta-modeling [40].

Depending on the type of the output, model transformations can be categorized as Model
to Model Transformation (M2M) and Model to Text Transformation (M2T) [292]. While
a Model to Model Transformation (M2M) transformation converts a source model into a
target model (which may conform to the same or a different meta-model), a Model to
Text Transformation (M2T) transformation generates text from a source model, and is
generally used for generating source code or supportive documentations. In the case of
source code, M2T is also code model to code transformation, or code generation [56]. A
more comprehensive overview of model transformation languages and methods can be
found in [69, 142].

7.2.5 Model-Driven Architecture

Some of the principles in MDE are only described informally, there is no complete tooling
support available for MDE yet. There are different specifications that describe the con-
ceptual application of MDE principles, such as Model-Integrated Computing (MIC) [273],
or the Model-Driven Architecture (MDA) [206]. The Model-Driven Architecture (MDA)
is the particular vision of MDE in software design and development proposed by the
Object Management Group (OMG) and relies on the use of other OMG standards [40].
Basically, it can be viewed as a specific MDE approach where the modeling and transfor-
mation languages are standardized by OMG. It is the most commonly used and accepted
specification in the MDE practice.

MDA provides a set of guidelines for specifying and structuring models. It prescribes
the use of meta-models and provides a common meta-meta-model, called the Meta-
Object Facility (MOF). Using the Object Constraint Language (OCL) allows to specify
constraints over meta-models. In particular, MDA introduces three types of models®,
classified according to decreasing level of abstraction: The Computation-Independent
Model (CIM) focuses on a conceptual description of the environment and requirements.
The Platform-Independent Model (PIM) describes the structure and operation of a
system without specific implementation details. The Platform-Specific Model (PSM)
combines the specifications in the Platform-Independent Model (PIM) with details on
how the system is implemented on a particular platform [55]. The MDA also defines
model transformations as the process of converting one of these models to another one.
The intention is to have an initial model, then obtain intermediate models through
successive model transformations before generating the final source code. This process
greatly supports model continuity in MDE.

5In the view of the four-layer meta-modeling architecture, these models are located at the M1 level.
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7.2.6 Model-Driven vs. Model-Based Terminology

It is worth elaborating in this context on the difference between model-based and model-
driven engineering processes as well as related terminology. Both terms are used exten-
sively in systems engineering and are sometimes used incorrectly.

Basically, model-based systems engineering [307] can be viewed as a process in which
software models — in particular simulation models — play an important role. They are
used e.g. for testing different design variants and operational scenarios or for designing
controllers. The typical process here is that designers specify the domain models of the
system, which are then handed out directly to programmers as blueprints to manually
implement them. The term model-driven on the other hand implies a paradigm that
uses models as the primary artifacts (i.e. they "drive" the process), where the software
implementation can be (semi-)automatically generated from these models [40]. This
in turn implies the use of model transformations and also meta-models (on which the
transformations are defined). In that sense, all model-driven processes can be seen also
as model-based, but not the other way around.

In the area of Model-Driven Engineering (MDE), other acronyms, such as MDA or MDD,
are often found, some of which might appear to be synonymous at first glance. Their
subtle differences might not be immediately obvious and so it happens that different uses
can be found in the literature and that these terms are sometimes used interchangeably.
We stick to the definitions given in [40]. Figure 7.3 gives a visual overview of the
relationships between the most frequently used acronyms.

MBE

Figure 7.3: Relationships between the different acronyms in the MDE context

Model-Driven Development (MDD) refers to applying MDE as a paradigm for (software)
development. It uses models as the primary artifact in the development process and
derives implementations (semi-)automatically from them. In that sense, MDE can be
seen as a wider term as engineering typically goes beyond pure development activities
and might encompass other tasks as well (e.g. reverse engineering) [195]. Model-Driven
Architecture (MDA) on the other hand is a particular vision of Model-Driven Development
(MDD) proposed by the Object Management Group (OMG) (as described in Section 7.2.5)
and thus relies on particular Object Management Group (OMG) standards [206]. In
addition, there are more specialized application domains that have produced their own



7.3. Modeling Framework for Cube-Based Application Engineering

corresponding terminology, such as Model-Driven Software Engineering (MDSE), Model-
Driven Product Engineering (MDPE) (both sub-sets of MDE) or Model-Based Systems
Engineering (MBSE) (as a sub-set of MBE) [40].

In the following section, we describe a model engineering framework that we have devised
for developing Cube-based application models of hyPDEVS simulations.

7.3 Modeling Framework for Cube-Based Application
Engineering

In an effort to improve the ease of use for application engineers (which typically are
domain experts, but not hyPDEVS experts), we formalize a simplified abstraction from
hyPDEVS as a platform-independent and domain-specific modeling layer [133, 132, 21].
This modeling abstraction allows engineers without in-depth knowledge of Modeling
and Simulation (M&S) to engineer models for specific applications by instantiation,
parametrization and configuration of pre-developed Cube components. From the abstract
specification, executable implementations can be derived to be deployed as part of
PPC/APS planning modules in practice.

The conceptual framework follows the MDE paradigm and formalizes the steps outlined
in Chapter 4. Instead of informal model descriptions, we introduce an abstract modeling
layer that allows to formalizes component-based application models using Cubes in a
high-level manner by abstracting away unnecessary implementation details.

In its general idea, the envisioned model-driven application development workflow en-
compasses three different levels of abstraction, shown in Figure 7.4. The levels are
based on the ones described by the Model-Driven Architecture (MDA). Starting from a
first (informal) Conceptual Model (CM) (developed by the application engineer together
with the problem owner), application engineers formalize a platform and simulation
system-independent model description (PIM) in a domain-specific modeling environment
using a Domain-Specific Language (DSL) by instantiating and configuring Cube compo-
nents. The PIM is intended to be independent of specific implementation details in order
to facilitate reusability of the higher-level specification for different implementations.
The developed PIM can then be transformed into different platform and simulation
system-specific model implementations (PSM) to generate executable source code using
automated model transformations (as described in Section 7.3.3) that enrich the high-level
specification with extra knowledge about implementation-specific details to obtain the
full model.

This introduces a platform-independent modeling layer that raises the level of abstraction
for the user to develop application models. Aside from more intuitive and efficient
modeling by using domain-specific features and components, one of the main benefits
of the PIM is that it separates model specification from the concrete implementation
(again, following separation of concerns), thereby giving rise to the ability to derive
multiple different executable simulations from the same abstract specification [58]. This
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Figure 7.4: Model development process with decreasing levels of abstraction: Conceptual
Model (CM), Platform-Independent Model (PIM) and different Platform-Specific Model
(PSM) implementations

includes not just hyPDEVS simulations, but potentially others as well that might employ
different modeling formalisms, such as purely discrete models for simplified non-hybrid
simulations [132], or even co-simulation implementations including coupling middleware.
The applications are not bound anymore to hyPDEVS, but instead may benefit from
(or be combined with) other simulation methods. The PIM serves as a way to manage
component instantiations, parameterizations and coupling configurations.

We focus here on developing component-based system models by instantiating, coupling
and parametrization of predefined Cube model components. The internals of the Cube
models are implemented in a Cube library.

The PIM modeling layer and corresponding DSL are defined by means of a meta-model,
called hyPIM. This meta-model contains Cube templates that reference the respective
implementations in the Cube library. For the M2M transformation specifications, an
additional meta-model for the Platform-Specific Model (PSM) is introduced that repre-
sents the grammar of the simulation formalism, i.e. hyPDEVS. M2T code generation is
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used to obtain an executable artifact representing the planning module. The hyPDEVS
simulation thereby uses the Cube implementations from the Cube library. Technically, the
resulting source code confirms to a meta-model as well, namely the one specified by the
grammar of the respective programming language (cf. the explanations in Section 7.2.3).
Figure 7.5 gives an overview of the complete modeling framework.
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Figure 7.5: hyPIM modeling framework with PIM, PSM as well as respective meta-models,
M2M transformation and M2T code generation

The PIM model specification includes not only the information relevant for deriving
the simulation, but the optimization as well (in terms of a second PSM) in order to
obtain a complete APS planning module ready to be deployed in industry. Some parts
within the optimization module involving not the meta-heuristic per se, but rather the
interfaces to the simulation depend on the particular application model, in particular for
the target function and Pplan generation. Some of these application-dependent aspects
are redundant to the simulation — the PIM modeling helps to avoid inconsistencies and
therefore aid in more efficient development.

7.3.1 hyPIM Metamodel

As mentioned, the platform-independent modeling layer is formalized by providing a
formal meta-model, to which all application models have to conform. The meta-model
also forms the abstract syntax of a domain-specific modeling language [40].

PIMs are specified as an instance of the Cube meta-model, called hyPIM. Figure 7.6 shows
the basic elements of the meta-model. It formalizes how platform-independent models
can be specified from pre-defined Cubes. Some details of the meta-model have been
omitted for reasons of clarity. Each model (class System) is composed of Cube instances,
which are separated into four domains: BuildingCube, EnergyCube, LogisticsCube, and
ProductionCube. Each of these domains defines certain Cube components (templates, to
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be exact), such as the Oven (depicted), BuildingHull, and others like Splitter, Combiner
or Chiller. Cubes can be arranged hierarchically, i.e. a Cube can contain other Cubes. A
Cube instance also comprises ports (EntityPorts, EnergyPorts, and InformationPorts) as

well as Connections. Also, each Cube may incorporate a list of parameters, including
Pplan and Aplan [133].

Distinguishing different types of ports according to their respective domain has the
advantage that, during model development, the model editor can check the validity of
the connections (i.e. that both ports of a connection have the same type) at design time,
thus supporting the application engineer to reduce errors in the model. The meta-model
incorporates Cube templates that reference concrete Cube implementations that are given
in the Cube library presented in Chapter 5. This is further discussed in Section 7.3.4.
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Figure 7.6: Overview of the basic hyPIM meta-model

7.3.2 hyPDEVS Metamodel

For transforming the PIM into a hyPDEVS-specific PSM implementation using M2M
transformation, we also need to formalize a meta-model for the hyPDEVS formalism.
Several DEVS meta-models have been proposed in the literature [57, 203, 240, 315]. Since
most of them focus on Classic DEVS, we had to adapt these meta-models for hyPDEVS,
shown in Figure 7.7.

The meta-model formalizes not just hyPDEVS couplings, but the internal Atomic
functions (Sexs, dint, A%) in order to capture the complete formalism as a standalone
meta-model that can be employed for other purposes in other frameworks as well.
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Figure 7.7: Overview of the hyPDEVS meta-model

7.3.3 Model Transformations

A Model to Model Transformation (M2M) transformation between the PIM and PSM is
specified using the respective meta-models. For that, all meta-models need to conform
to a common meta-meta-model. In this stage, the PSM can be further refined by a
M&S expert to add additional knowledge for the simulation execution. Subsequent M2T
transformations generate executable source code from the PSM. Thereby, information
about parameters and couplings is supplemented with source code describing the internal
dynamics, which is implemented in custom PSM component libraries. More details on
the transformations and their implementation are given in Section 7.4.

7.3.4 Cube Library

For including simulation model component libraries as part of a component-based
paradigm, model templates can be employed, which, during model transformation,
are converted into concrete component implementations [55]. By using model templates,
formal PIM and PSM models can be developed. However, these model templates need
to have an associated concept in the PIM layer that the user can instantiate within the
DSL editor. In other words, this concepts needs to be part of the PIM meta-model. This
might be fine for a domain-specific library that in itself is complete (for example, [55]
presents such a meta-model for the BPMN formalism). If, however, the library needs to
be extensible (and in fact extending component libraries is often a significant part in the
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modeling workflow), this would require frequently changing and updating the respective
meta-model, which should be avoided in order not to break existing application models.

While one can think of other approaches of integrating component libraries into the PIM
modeling layer, the problem does not seem to be trivial. In the four-layer meta-modeling
architecture (M0-M3, see Figure 7.2), component libraries are located at the M1 layer
since they are essentially models and have to conform to the same meta-model in order
to be able to be composed into application models that are valid with respect to this
meta-model. So, in order to enable instantiation of components, this would require
a different instantiation relation within the M1 layer, in addition to the one between
M1 and M2. However, such functionality is currently not provided within classic MDE
solutions like MDA.

It appears that the problem is more fundamentally rooted in the four-layer meta-modeling
architecture and a comprehensive and consistent solution requires deeper research into
multi-level meta-modeling. Atkinson and Kiithne [176, 15, 10, 175] discuss a multi-level
meta-modeling approach that is not bound to the traditional M0-M3 layers. They
discuss use cases that require multi-level meta-modeling, where modeling in the M0-M3
architecture would result in "accidental complexity" [11]. This is due to the fact that the
definition of the problem domain in this case is restricted to one meta-level (M2), using
typical meta-modeling mechanisms like type definition, inheritance and cardinalities [200,
14, 12]. If such features are needed on the M1 level, they would have to be modeled
explicitly on the M2 level [180]. An example of such a use case would be the type-object
pattern, where the user needs to be able to define types (i.e. classes) as well as create
instances (i.e. objects) from these types. Several approaches and workarounds have been
developed over the years to deal with these restrictions [13, 200].

In an effort to allow a more natural way of expressing multiple levels of logical classification,
the authors introduce a concept of ontological instantiation within the M1 layer, in
addition to the classic instanceOf relation between M1 and M2, which in this context is
referred to as linguistic instantiation [9]. This added ontological dimension allows to define
simulation model component libraries, whose instances can all be further instantiated,
making them ontological meta-types [200]. This allows for multi-level (deep) instantiation,
essentially blurring the boundaries between class and object concepts. In [7], the authors
introduce the term Clabjects to express elements with both type and instance aspects.

A similar technique can also be found in modeling languages such as Modelica, where each
model is automatically raised to be a class that can be instantiated and parameterized
again in a larger context [196]. It becomes evident that such a multi-level approach would
make sense for introducing component libraries in an MDE workflow. However, there is
currently very little tool support for multi-level methods in MDE as the community is
more focused on domain modeling rather than language engineering [8, 200]. Further
research efforts are required to facilitate wide-spread adoption.
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7.4 Implementation

The presented meta-models allow to specify a Model to Model Transformation (M2M)
transformation from the PIM to the PSM as well as generate executable source code from
the PSM using Model to Text Transformation (M2T) transformation, thereby formalizing
the model development workflow described in Chapter 4 and depicted in Figure 7.4.

The framework was implemented as a proof of concept to demonstrate its feasibility for
developing hybrid Cube-based application models. As a concrete case study example, we
chose the Simple Production Line described in Section 5.7 in the MatlabDEVS prototype
implementation.

The meta-models have been implemented using the Eclipse EMF framework [268] and
Xtext [25]. Each meta-model itself is an instance of the Ecore meta-meta-model provided
by the EMF. Figure 7.8 gives a more detailed overview of the implementation, which has
also been published in [132, 133].

Additional constraints on the meta-model are defined using the OCL language [296].
Such constraints allow for example to check whether or not all connections are valid and
parameter values are within allowed ranges.

Ecore
Meta-Metamodel

A f >
ATL
Y |
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hyPIM Cube ' hyPDEVS

Meta-model M2MASpec Meta-model

T 5 T
: Source Code
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Figure 7.8: Implementation of the modeling framework in Eclipse EMF. The meta-
models conform to the common Ecore meta-meta-model provided by the EMF. The M2M
transformation is implemented using ATL and the M2T transformations are based on
Xtend.
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7.4.1 Model to Model Transformation

For producing a hyPDEVS target model from a hyPIM source model using M2M
transformation, Atlas Transformation Language (ATL) provides a declarative way of
specifying transformation rules between the respective meta-models [40]. On the M1
model level, a transformation engine executes these rules to produce the output models.

The Atlas Transformation Language (ATL) transformation may produce a single or
multiple DEVSComponents (Atomic or Coupled) from a single Cube. Also, ports and
connections can be instantiated and modified accordingly. In particular, for each entity
connection (Ey—FE;y,) given in the PIM, an additional feedback connection (FEincom—
Eoutcom) is being added as an acknowledgment channel, see Figure 7.9.

<<Cube>> <<Cube>> <<Atomic>> <<Atomic>>
Oven Cube :> Oven Cube
EOUT [S=f—] EIN —JEouTcom  EOUT [Sjmmf5] EIN ElNcom[l—j—

Figure 7.9: An entity connection in the PIM (left) is transformed into two connections
(with respective ports) to include the feedback connection (Eincom—FEoutcom) [133]

The feedback connection can be derived automatically from the information given in the
PIM. It is therefore not necessary to model it explicitly in the PIM, thereby making model
development easier and more efficient for the application engineer. The necessity of the
feedback connection in the hyPDEVS implementation has been discussed in Section 5.5.4.

7.4.2 Code Generation

M2T transformations generate MATLAB source code from the hyPDEVS PSM to be
executed using the MatlabDEVS toolbox (see Section 5.6 in Chapter 5). The M2T
transformations are realized by means of the Xtend language [40] within the EMF using
code templates, which are populated with dynamic data from the PSM to instantiate,
parametrize and compose the Cube models directly form the Cube component library
which is implemented in MatlabDEVS. The resulting source code forms an executable

application model, which can then be deployed and simulated using the simulation engine
provided by the MatlabDEVS toolbox.

7.5 Discourse

Engineering Process: The most notable advantages of employing an MDE approach
are rapid model development and increased productivity due to an increase in efficiency.
Although it may take a large amount of time to provide the initial infrastructure and
develop the necessary meta-models, however, once these are developed, then subsequent
development time and costs decrease significantly. MDE is different from traditional
development approaches in that it has a steeper learning curve and requires to change
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established programming habits. However, employing meta-modeling shows its advantages
once it is understood well. Although traditional model engineering is beneficial for small-
scale projects, the model-driven approach improves management of large-scale models [55].
This is also due to the model transformations reducing (if not solving) the model continuity
problem (see Section 4.2.2).

Using Component Libraries: One of the main issues we have encountered concerns
the use of simulation model component libraries. While it is certainly possible in
principal to incorporate the use of component libraries into an MDE framework using
model templates and workarounds, as described for example in [200, 55], the particular
Eclipse Modeling Framework (EMF) environment used in our implementation is still
lacking native support that would accommodate such an approach naturally, ideally by
allowing for ontological instantiation. Considering that Eclipse EMF is viewed by many
as the de-facto standard in model-driven software engineering, it becomes evident that
there is still research to be done in this regard.

Reference Model: When looking back to Figure 3.3 from Chapter 3, it becomes
apparent that the reference model there has a similar idea behind it as the hyPIM
meta-model. In that sense, the reference model represents some kind of meta-model,
although being less formal.
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CHAPTER

Conclusion

8.1 Discussion

In this work, we have investigated methods for model engineering and simulation-based
optimization in energy-aware production planning. The optimization results in the case
study show that incorporating energy considerations into the planning optimization can
potentially reduce overall costs and therefore provide better planning results. Although
the case studies have been simplified to highlight the essential characteristics, it is easy to
imaging applying the described methods to more complex production systems [129]. The
hyPDEVS-based simulation, despite its hybrid nature, delivers sufficient performance to
be feasible for simulation-based optimization tasks with a large number of iterations.

We have discussed a concept for model-driven development of hybrid simulation models
for interdisciplinary simulation of production systems. A platform-independent model
specification, separated from implementation details, allows practitioners to engineer
simulation-based planning solutions for new application cases. It aims to provide a
way for non-expert application engineers to easily develop component-based application
models.

The focus of this work was on developing the methods necessary to facilitate energy-aware
production planning rather than presenting case studies themselves. This is why we do
not provide real-world parameterization or discuss quantitative results. However, the fact
that the case studies are still derived from real production plants ensures the applicability
of the methods and relevance for real-life applications.

We have already discussed some of the issues regarding hybrid simulation, meta-heuristic
optimization and model engineering in the respective chapters. In this chapter, we aim to
provide an overall evaluation and to answer the research hypotheses that were proposed
in the introduction.
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Hypothesis 1: A simulation approach based on DEVS is feasible for developing hybrid
simulation models of real-world production systems that are modular, reusable and facilitate
separation of concerns.

Modeling based on hyPDEVS allows to capture discrete and continuous aspects of
production components in an integrated and modular manner. This is an important
feature for comprehensive and interdisciplinary analysis of energy efficiency in production
systems and the main advantage of this approach. The fully integrated dynamic simulation
enables to investigate dynamic interdependencies between material and energy flows.
The formal approach is very generic and makes little restrictions on what can be modeled
in principle. As one of the main advantages, hyPDEVS greatly facilitates modularity
of hybrid components and hierarchical model composition in a formally sound manner,
due to its proven closure under coupling. Thus, the Cube concept can be implemented
well using hyPDEVS. We were able to develop simulation models of different case studies
by reusing pre-developed Cube models. Some of the components have been reused
multiple times, even in different configurations (e.g. the Oven Cube used as a Freezer).
This demonstrates the practical applicability of this method. A standalone simulator
prototype was developed that uses a hyPDEVS simulation engine and is now part of
a PPC/APS software solution of one of our project partners, ready to be applied to
real-world applications.

However, as there is not domain-specific tool support available yet, M&S experts have
to develop component libraries from the ground up. This initially requires substantial
development effort before the simulation tool is ready to be deployed in practice. But, as
the library grows, this should become easier and subsequent development effort should
decrease. Due to the generic nature of the formalism, the modelers have to address basic
simulation aspects, such as entity acknowledgment. A sound and comprehensive approach
is needed to incorporate these aspects into entire libraries of model components in a
consistent manner and to ensure interoperability [229]. For domain-specific hyPDEVS-
based modeling in practice, it is a good idea to develop domain-specific specializations, e.g.
on the implementation level using modern software engineering techniques. Another way
to provide domain-specific features it to introduce a modeling layer on top of hyPDEVS,
as we have described in Chapter 7. Such features allow to specify domain-specific models
more efficiently and abstract away specific peculiarities. A preliminary investigation on
this topic was also conducted in [130].

Yet, it might still seem excessive to develop simulation libraries from scratch instead
of building on established simulation tools and couple them together for a hybrid co-
simulation. So, why not use co-simulation? It depends on the intended application.
While co-simulation certainly has its advantages for certain use cases, in particular less
implementation effort for single-use simulations, in which case co-simulation is clearly to
be preferred, hyPDEVS-based simulation on the other hand is better suited in cases where
requirements such as reusability, trustworthiness or performance are more important.
From a practical standpoint, in cases where the simulation is intended to be part of a
PPC solution to be deployed in the field, it is in most cases not practical to employ
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commercial simulation tools that would require software licenses. This requirement alone
rules out many off-the-shelf tools (e.g. MATLAB/Simulink/SimEvents).

Hypothesis 2: The integration of material and energy flow simulation enables meta-
heuristic optimization techniques to provide energy-aware production planning.

The hybrid discrete/continuous simulation enables to assess material and energy flow
dynamically overtime as well as across different engineering domains in an integrated way,
including dynamic interactions. This way, different production scenarios can be evaluated
and compared during optimization, both in terms of energy demand and the influence of
energy on other production variables (e.g. setup time and throughput). Especially for
energy-intensive thermal processes, transient effects (e.g. heating up an oven) can be
incorporated with sufficient level of detail to provide accurate measures of their energy
consumption over time.

Furthermore, the simulation approach is not just limited to the domains considered
so far, but may be applied to other areas as well as needed. For example, it would
be easy to incorporate different types of entities into the simulation that depict e.g.
mobile production equipment, whose limited might be factored into the optimization as
a planning constraint. It has been demonstrated that additional constraints may very
easily be included into the target functions as a soft constraint without affecting the
general meta-heuristic.

The integration of energy efficiency aspects into modern PPC solutions allows to decrease
not just energy costs, but also energy demand directly. The planning algorithm might for
example shift oven jobs such that the produced waste heat benefits heating and cooling
demand in the building. This increases the overall energy efficiency in production, and
is also good for the environment. Application of the developed optimization method
on a case study of an industrial bakery demonstrates the practicability for real-world
applications. In a more comprehensive case study of that same bakery, which is presented
in [261], it was demonstrated that, by means of hybrid simulation and meta-heuristic
optimization, the required energy input can be reduced up to 30% in real production
scenarios.

A necessary prerequisite — and here lie the limitations of energy-aware production planning
— is that there is enough leeway available in production scheduling to save energy costs
without influencing other production targets (e.g. delivery tardiness) too negatively. But
in the end, it must be left to the operator to decide how to weigh the different part goals
against one another to achieve balanced manufacturing operation.

Hypothesis 3: A modern MDE workflow provides a suitable methodology for engi-
neering hybrid simulation models in practical applications. It offers an intuitive model
abstraction and formally sound way of model specification that enables modular composi-
tion, reuse and allows to derive and configure hybrid DEVS-based simulations.
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This statement can only be partly confirmed. The most notable advantages of MDE in
practical application are rapid model development and increased productivity [55]. The
domain-specific model abstraction allows to formalize component-based models in an
intuitive manner and provides domain-specific modeling support on top of hyPDEVS.
For example, domain-specific typed interfaces (for energy, entity, etc.) can be introduced
that allow to check possible violations of composition rules at design time in the custom
DSL editor. Unnecessary implementation details can be hidden from the user to avoid
accidental complexity. For example, the COM channel used for acknowledging entities that
is necessary in hyPDEVS, can be generated automatically from the existing information.

However, the main issue in the MDE workflow involves using simulation model component
libraries. As discussed in Chapter 7, established environments, such as Eclipse EMF, do
not allow for ontological instantiation, which would provide a natural way of instantiating
library components within the M1 layer. While MDE is intended to reuse code and
functions across different development phases and thus provide model continuity, they
impose a four-layer meta-modeling architecture that requires to model the problem
domain within a single meta-layer. Other approaches would require workarounds or
modifying the meta-model. There is still some research required with respect to multi-level
instantiation.

Although it might seem excessive to develop a formal model-driven approach for model
development, it has some benefits, especially for large application projects. Most im-
portantly, since the meta-model and corresponding DSL are tailored to the domain at
hand, it allows to develop model for this domain (in our case: production systems)
more efficiently by avoiding unnecessary overhead and without the need for application
engineers to be M&S experts. The DSL should typically be kept lightweight and easy to
understand for domain experts. This requires to balance the flexibility of the language
against the efficiency of use. More flexibility inevitably entails more complexity, but
allows the practitioner to model a broader range of applications.

To summarize, the methods presented in this work employ Modeling and Simulation
(M&S), in particular simulation-based optimization and model-driven development, to
enable the integration of energy efficiency aspects into modern PPC systems and increase
energy efficiency in production.

8.2 Future Work

Regarding possible improvements, various issues may be the topic of future investigation.
First and foremost, the model engineering approach presented in Chapter 7 may be
extended significantly. We show only a basic proof of concept for component-based
model couplings to demonstrate the general applicability. As a possible extension we had
considered for example to also model the internal behavior within the hyPIM modeling
layer, by means of state machines and differential equations. However, we concluded
that, while this would offer significantly more flexibility for modeling different application
cases, it would shift the modeling effort from the model engineer to the system engineer



8.2. Future Work

(see Figure 4.3) and would require the system engineer to also be a modeling expert.
This was not desirable for our intended use case. This workflow might be feasible for
certain scenarios, however, it must be carefully considered on a case-by-case basis. As
described above, there are also some more fundamental issues that need to be faced
in order to deliver a practical component-based model engineering solution that avoids
accidental complexity.

Furthermore, the optimization module (specifically its application-dependent parts) might
be integrated more strongly into the hyPIM meta-model in order to avoid redundancies
between simulation and optimization implementation and thus accelerate the development
process. To go even further, the technology-independent model description in hyPIM also
allows to derive multiple different simulation implementations from the same specification,
as briefly mentioned in Section 7.3 and depicted in Figure 7.4. This includes for example
simplified DE models that only focus on assessing the material flow and omit the energetic
aspects with the advantage of better runtime efficiency compared to the hybrid model.
A potential application might be simulation-based production planning with multiple
planning stages — a long-term planning stage with long planning horizon (and simpler
model for higher simulation speed) and a short-term stage with detailed simulation.
While it can be feasible to employ simulation in both of these planning stages, developing
and maintaining two different simulation models (of essentially the same system) is too
time-consuming in practice. This is where high-level model specification with hyPIM can
help, as it only requires a single unified model specification. The different implementations
are then derived automatically [132].

For practical model engineering in large-scale applications, a need for sophisticated model
engineering quickly arises that includes management of component variants and versions.
This can also be accomplished by means of MDE [40], or, alternatively, by combining
it with other methods. In this context, the System Entity Structure (SES) [243, 213,
320] has become a popular method that supports managing a model base of component
models. SES is a structural knowledge representation scheme that contains decomposition,
taxonomy and coupling of a system based on components.

Regarding the optimization method presented in Chapter 6, the GVNS meta-heuristic has
proven to be suitable for energy-aware production planning. However, the implementation
still leaves room for improvement. The performance (regarding computation speed as
well as solution quality) may be further investigated and improved, for example by testing
additional neighborhood operators. As an advantage, the GVNS is very flexible and
easily expandable in this respect, compared to GA for example. Also, parallelization of
optimization steps [264] has shown to be quite effective in boosting overall speed, which
is important for practical usability.

The hybrid simulation approach based on hyPDEVS described in Chapter 5, while also
proven to be promising, still requires a lot of work to develop it into an industry-grade
hybrid simulation solution. Especially the need for high-level domain-specific modeling
will be inevitable in practice in order to be able to manage large-scale real-life applications.
However, compared to co-simulation, the advantages are evident.
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The dynamic thermal behavior of the workpieces themselves has been excluded from
the simulation models. Although the entities have a thermal storage capacity, their
temperature changes are assumed to be instantaneous. Incorporating the dynamics of the
thermal entity behavior could improve the accuracy of the simulation results. However,
implementing this is not trivial and requires some effort. Some work in this regard has
been conducted based on DSDEVS [78].

Possibly, an integration with the Functional Mock-up Interface (FMI) could also be
considered. FMI has become quite popular for modeling physical systems and there are
now a number of simulation environments that support FMI. The Modelica language
and its foundation in Bond Graph theory [41] are especially suited to model energy flows.
There is research being conducted [93, 94, 208] to facilitate the inclusion of discrete
behavior into Modelica, in the form of (synchronous) state machines, that could perhaps
one day also be included in the FMI specification. This could become of value for
implementing Cubes as FMI components.

One could perhaps even imagine to realize acausal coupling relationships (similar to
Modelica or MATLAB/Simscape) across Cubes. This idea as a research direction for co-
simulation is also mentioned in [113]. Acausal coupling would further improve reusability
of Cubes, as it would allow to instantiate them in different contexts (with different
boundary conditions. However, this is still a long way to go, and there are still many
challenges to be solved. In addition, our use case demonstrations have shown that causal
modeling was not a major disadvantage. The material flow needs to be modeled causally
anyway, and with the energetic components, especially the energy system and TBS
Cubes, an acausal model would not be easy to implement. Many of our energy system
Cubes models are based on empirical characteristic curves (rather than physics-based
equations), which do not allow a simple change of causalization. For example, a Chiller
Cube always operates in the direction of consuming electrical power and converting it into
cooling energy. An operation in the opposite direction would not make sense and would
not even be technically possible. However, these characteristic curve models are more
runtime-efficient than acausal physics-based models, which would require additional state
variables and higher level of detail to deliver a meaningful model [183]. As a consequence,
our developed Cube models are always operated with the same causalization.

The Cube concept itself, which was described in Chapter 4 provides an ideal foundation
to be expanded to also include other aspects besides simulation models. Of particular
interest would be measurement and real-time data of the real production components,
which could be managed in a component-based manner. In this way, the Cube concept
might be extended to become a full-fledged digital twin of the production system [275, 288,
287, 174, 35]. Also, following the vision of Industry 4.0, Cubes could further encapsulate
more intelligent control logic that takes over control tasks, thereby creating a form of
autonomous agents that e.g. negotiate Pplan schedules among themselves instead of
being specified by a higher-level (monolithic) planning module.



APPENDIX

Oven Cube hyPDEVS
Implementation

Algorithm A.1: hyPDEVS implementation of the OvenAtomic component

1 ta(s) < s.o;

N

5conf(57 €, {L’) — 5ext(5int(5)v 0, CL‘);

w

function f(s,e,x):
// derivative of Oven temperature T

dT + (th — (s.T —2.T,) - UA) [ (cp-mun + >, s.ent(i).m - s.ent(i).cp);
5 return dT’;

'y

6 Cse(s) < sign - (8.1 — Tset);
7 function dgiate(S, €, x):
8 if s.state = heating then
s.state <— waiting;
10 5.0 < 0;
11 end
12 return s;

13 function \°(s,e,z):

14 y.Qwh — ((sT—2T,) - UA+x.Py) - (1 —n);

15 Y Qrec — ((s.T —2.T,) - UA+ x.Py) - n;

16 y. T <+ s.T, // output current temperature for controller
17 return y;
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18 function ey (s, e, z):
// incoming Pplan

19 if x.Pplan and s.state € {off,standby,heating,waiting} then

20 if x.Pplan < 1 then
21 ‘ s.state <— of f;
22 else if z.Pplan < 2 then
23 ‘ s.state <— standby;
24 else
25 ‘ s.state < heating;
26 end
27 end
28 8.0 < 8.0 — €;
// incoming Eoutcom; Fwcom
29 if x.Eoutcom then
30 ‘ s.eoutrec < true;
31 end
32 if x.FEycom or a = 0 then
33 ‘ s.ewrec < true;
34 end
35 if s.eoutrec and s.ewrec then
36 s.ent < shift(s.ent);
37 if s.ent = () then
38 s.state <— waiting;
39 5.0 < 00
40 else
41 s.state <— holding;
42 s.0 < tp/N;
43 end
44 s.eoutrec < false;
45 s.ewrec < false;
46 end

// incoming entity on port Ei,

// transitory state update

// switch to the next state

a7 if x.F;, and s.ent(1) = () and s.state € {waiting,holding} then

48 s.ent(l) < z.Ejp;

49 s.state <~ holding;
50 5.0 < 0;

51 s.ack < true;

52 else

53 5.0 < 5.0 — ¢

54 end

55 return s;

// transitory state incoming

// schedule sending Eincom
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56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

7
75
76
77
78
79
80
81
82
83
84
85
86
87
88

Ny

89
90
91
92
93
94
95
96

function din(s):

if s.ack then
s.ack < false;
s.0 < tp/N;

if s.ent(N) not = () then
s.state <— output;
5.0 < 0;
else
s.ent < shift(s.ent);
s.0 < tp/N;
end

else if s.state = output then
‘ 5.0 < tg;

else
| 5.0 ¢ oo

end

return s;

function \%(s):

if s.ack then

‘ Y-Eincom < 1;
end

if s.state = output then
if not s.eoutrec then
y.Eout < s.ent(N);
Y. Eoye. T < T,

end

y.Eq < s.ent(N);
y.Egm < E,.m - a;

end

end

// controller on/off

if s.state = of f then
‘ y.contr < 0;

else if s.state = standby then
‘ y.contr < 1;

else
‘ y.contr < 2;

end

return y;

else if s.state = holding then

Y. Eoyt-m < Egyp.m - (1 — «);

if not s.ewrec and o > 0 then

// finished sending Ejincom

// transitory state update

// schedule resending entity

// go passive

// send Eincom

// send Eoyy

// send E,,
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Algorithm A.2: hyPDEVS implementation of the PI controller for the Oven
Cube

1 ta(s) < s.o;

2

3

(SIS

~

©

10
11
12
13
14
15
16

17
18
19

20
21
22
23

24

25

5conf(5> €, .T) — 5ext(6int(3)> 07 l');

function f(s,e,x):
// integrator part of PI controller
ds < x.T — Tsey;

return ds;
Cse(s) + 0
5state(37 €, :IJ) <~ @;

function \°(s, e, x):

if s.contr =0 then

Y-Pep + 0;

y.Qnp < 0;

else if s.contr =1 then

y-Lep < Ps;

Y-Qnp < 0;

else

Y.Peip < Ps;

// controller formula (s is the error integral (cont.
y.Qnp + min(Py, Kp - (T — Tser) + K1 - 5)
end

return y;

function deyi (s, e, x):
s.contr < x.contr;
8.0 4= 8.0 — €;
return s;

state))

// x.contr is the only discrete input




Algorithm A.3: hyPDEVS implementation of the Pplan Source for the Oven
Cube

1 ta(s) < s.o;

N

5conf(57 €, 33‘) — wa
3 f(s,e,x) < 0;

4 cge(s) + 0

(S}

6state(57 €, :17) — @;
6 \°(s,e,x) « (I

7 dext (S, €,2) « 0;

8 function diy(s):

9 if s.row < size(Pplan) then
10 ‘ s.0 <— Pplan(s.row).time;
11 else
12 ‘ 5.0 ¢ 00;

13 end
14 s.row < s.row + 1;
15 return s;

16 \(s) « Pplan(s.row);
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SEC Specific Energy Consumption. Ratio between energy input to physical output of a
process. 12

semantic adaptation Adaptation of time, control and data between different heteroge-
neous modeling formalisms. 28, 30

SES System Entity Structure. 139

simheuristic Particular simulation-based optimization approach employing meta-heuristic
methods, oriented to efficiently tackle a combinatorial optimization problem in-
stance. Often used in combination with stochastic components [151]. 92

smart grid Intelligent electrical power grid that is integrated with a bidirectional
communication network to allow real-time monitoring and distributed control. 32

SQL Structured Query Language. 120
state event legitimacy Extension of the legitimacy property for hybrid DEVS. 56

SysML Systems Modeling Language. 42, 45, 69

TBS Technical Building Services. 13, 14, 22, 23, 34, 36, 75, 80, 83, 89, 90, 113, 140, 156

transitory state A state s in a hyPDEVS atomic for which ta(s) = 0, meaning that,
upon entry, the state is left immediatel. 56, 65

UML Unified Modeling Language. 42, 120, 121

VHDL Very High Speed Integrated Circuit Hardware Description Language. 120
VND Variable Neighborhood Descent. 5, 96, 97, 101

VNS Variable Neighborhood Search. i, iii, 5, 7, 19, 21, 91, 96, 97, 100-102, 104, 115,
116

Xtend High-level programming language that can be used for code generation within
the Eclipse EMF framework. 131, 132, 150

Xtext Framework for developing programming languages and DSLs. Part of the Eclipse
EMF framework. 131
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