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Kurzfassung
Ziel der Arbeit ist unterschiedliche Einsatzszenarien von neuronalen Feed-Forward Netz-

werken in der hybriden Modellierung zu untersuchen. Im Speziellen konzentriert sich

die Arbeit auf hybride dynamische Systeme. Dabei handelt es sich um kontinuierliche

Vorgänge, welche durch diskrete Ereignisse Änderung im Verhalten aufzeigen. Dement-

sprechend basiert die Modellierung solcher Systeme auf einer Kombination aus diskre-

ten und kontinuierlichen Methoden. Derzeitige Standards der hybriden Modellbildung

werden überblicksmäßig zusammengefasst.

In der Softwareentwicklung kommen vermehrt Machine Learning Algorithmen zur An-

wendung. Ein signifikanter Anteil der dabei verwendeten Methoden sind künstliche neu-

ronale Netze, welche vor allem im Bereich der Bild- und Datenverarbeitung eingesetzt

werden. Der grundlegende Aufbau sowie unterschiedliche gängige Strukturen neurona-

ler Netze werden eingeführt.

Aufbauend auf die Gebiete Machine Learning und hybride dynamische Systeme, wird

ein Framework vorgestellt, welches es ermöglicht, einzelne Elemente hybrider Modelle

durch neuronale Netzwerke zu ersetzen. Drei unterschiedliche Anwendungsszenarien

werden dabei untersucht: Die Approximation des dynamischen Verhaltens, die Vorher-

sage der diskreten Prozesse sowie der Ersatz des gesamten hybriden Systems durch

neuronale Netze.

Das Framework wird eingesetzt, um die drei definierten Szenarien anhand von zwei

Beispielen auf Machbarkeit zu untersuchen. Es wird sich zeigen, dass die Approxima-

tion einzelner lokaler dynamischer Prozesse mittels speziellen neuronalen Netzwerken

möglich ist. Auch eine Approximation des gesamten hybriden Systems durch ein neu-

ronales Netz kann unter speziellen Voraussetzungen zum Ziel führen. Für eine gesamte

Zeitreihe des Systemzustandes werden bereits etablierte Methoden mit Hilfe des Fra-

meworks charakterisiert. Im Bezug auf diskrete Ereignisse in hybriden Systemen kann

gezeigt werden, dass sich neuronale Netze für die Klassifikation des Systemzustandes,

hinsichtlich des Auftretens eines Events, nicht eignen. Abseits von Anwendungen in

der Modellierung hybrider Systeme kann das Framework eingesetzt werden, um Feed-

Forward Netzwerke zu charakterisieren.
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Abstract
The aim of this thesis is to investigate different application scenarios of feed-forward

networks in hybrid modelling. The term hybrid describes the approach to combine dif-

ferent methods. In particular, this work focuses on hybrid dynamical systems. These de-

scribe continuous processes, which experience changes in behaviour by discrete events.

Accordingly, the modelling of such systems is based on a combination of discrete and

continuous methods. Current standards of hybrid modelling are summarised.

Machine learning algorithms in software development are increasingly used. A sig-

nificant amount of methods used in this context are artificial neural networks. Such

networks are mainly used in the field of image and data processing, but in recent years

they have been increasingly applied in modelling and simulation of physical systems.

The basic design as well as common structures of neural networks are introduced.

Based on these two areas a framework is presented, which allows to replace certain el-

ements of hybrid models by neural networks. Three different application scenarios will

be examined: The approximation of the local dynamic behaviour, the prediction of the

discrete processes and the replacement of an entire hybrid system applying neural net-

works. The defined formalism standardises the use of feed-forward networks in hybrid

modelling and enables an analysis of different network structures.

The framework is used to examine the feasibility of the three introduced scenarios on

the basis of two examples. An evaluation of the results suggests that the approximation

of individual local dynamic processes is feasible. Specific assumptions enable a suc-

cessful approximation of the basic behaviour of the hybrid system. For a complete time

series of the system’s state, already established processes can be characterised using

the introduced framework. With regard to the discrete events in hybrid systems, it is

shown that neural networks are not suitable to classify the system states with regard to

the occurrence of an event.

Apart from applications in the modelling of hybrid systems, the framework can be used

to characterize feed-forward networks. The modular design of the structure makes it

possible to replace individual elements to describe different network structures. An

interdisciplinary exchange can thus be supported.
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1
Introduction

Hybrid systems are used in versatile fields of application and embrace a wide range of

different techniques and methods to solve complex problems. These systems are com-

monly known from system control (Seatzu et al., 2006), the automotive industry (Lian

et al., 2017; Lu et al., 2016) as well as logistics and manufacturing technology (Choy

et al., 2008). Models of these hybrid systems are descriptions combining particular

modelling approaches (Antsaklis, 2000). In particular, this work focuses on hybrid dy-

namical systems. These describe continuous processes, which experience changes in

behaviour by discrete events. Accordingly, the modelling of such systems is based on a

combination of discrete and continuous methods.

In the process of modelling and simulation of hybrid systems, the physical structure

of the underlying model is often defined but the exact parameter values might be un-

known. In some cases even the mathematical structure of the model can be unidentified.

These problems are some of the reasons why more and more data-based approaches,

such as machine learning, are taken into account. In fact, data-based approaches are

already used in logistics, legal decision processes (Christin et al., 2015) and politics

(Maschewski and Nosthoff, 2018). Machine learning approaches, such as artificial neu-

ral networks and reinforcement learning become increasingly popular even for mod-

elling physical and mechanical systems (Breen et al., 2019; Narayanan and Jagannathan,

2018). This thesis investigates the interaction possibilities and application scenarios of

neural networks within the modelling framework for hybrid dynamical systems.

1



2 CHAPTER 1. INTRODUCTION

This chapter gives an overview of fundamental elements of modelling and simulation to

define a common terminology and outlines the scope of the study. The structure as well

as the research objective of this thesis are presented and relevant research contributions

are discussed.

1.1 Modelling and Simulation

Modelling and simulation are integral elements of today’s research and development.

Most technical solutions consist of expensive components and rare materials. Hence,

experiments and analysis of prototypes can get very expensive. It is common practice to

investigate and simulate the developed construction with computer experiments first, be-

fore actually building it. This procedure reduces unnecessary expenditures and enables

optimised products.

Between 1920 and 1950 analogous techniques dominated the field of modelling and

simulation. A significant change took place when Ragazzini et al. (1947) demonstrated

that simulations could be done electronically. By 1967 more than 23 different programs

for digital computers were available and the first graphical environment appeared, rep-

resenting models in block structure. In 1980s matrix environments were established

and provided additional modelling tools. Since then, the availability of significant com-

puting resources as well as software and knowledge to use it effectively are constantly

increasing (Birta and Arbez, 2013). Nowadays modelling and simulation are important

and well-established aspects of engineering and science.

1.1.1 Simulation Circle

The basic concept of modelling and simulation describes the process of transforming

an observation or phenomenon into an executable application. In the technical field this

phenomenon is often referred to as a system. In Fritzson (2004) a definition of a system

is given as follows:

Definition 1.1.1 (System). A system is an object or a collection of objects whose prop-
erties we want to study.
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The motivation to study such systems in details arises form the desire and often the re-

quirement to understand, develop or even optimise the observed phenomenon. In order

to analyse or replicate the system’s behaviour, a problem definition has to be formu-

lated. This definition enables the development of a corresponding model description.

The transformation from the problem definition to the model often requires certain sim-

plifications. Either certain aspects of the system’s process are unknown or the system

is too complex to be realised completely. A general definition of a model is given by

Minsky (1965).

Definition 1.1.2 (Model). To an observer B an object A∗ is a model of an object A to
the extent that B can use A∗ to answer questions of interest about A.

This definition presents a general idea of a model and is applicable for phenomena of any

discipline. In Velten (2009) a more specified version of the concept, the mathematical

model, is introduced.

Definition 1.1.3 (Mathematical Model). A mathematical model is a triplet (S,Q,M)

where S is a system, Q is a question related to S, and M is a set of mathematical
statements, M =

{∑
1,
∑

2, . . . ,
∑

n

}
, which can be used to answer Q.

The mathematical model outlines a formal definition of a structure involving mathemat-

ical statements. It enables a description of the system but does not necessarily enable

computer experiments.

Therefore the mathematical model represents the base for the development of an exe-

cutable implementation of the system, the simulation model. Due to the fact that sim-

ulation models are an idealised and often simplified imitation of the real-world system,

verification and validation is required. After the first computer-based experimental in-

vestigations, so-called simulations (Siegfried, 2014), the simulation results are used to

verify weather the executable model reflects the conceptional model description. In

other words the verification process evaluates weather changing input values and pa-

rameters leads to expected simulation outcomes. The model validation assesses weather

the simulation model reflects the real-world system and can be applied to answer posed

questions about the system. In Figure 1.1 the described procedure is illustrated.
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System Problem Definition

Mathematical Model

Abstraction

Simulation Model

Parameter Settings

Verification

Simulation Results

Simulation

Validation

Solution

Figure 1.1: The modelling and simulation process, motivated by Sargent et al. (2016).

In the following different model characteristics are discussed, based on the work of

Velten (2009).

1.1.2 Model Characterisation

Most systems in applied mathematics and engineering represent observable processes,

resulting in some kind of measurable output. If there is no further information and in-

vestigation of the system, the according model can only be based on the given input

and produced output data. An uncertainty about the internal processes of the system

remains. The resulting model is referred to as black box model. Common examples

are empirical, statistical and data-driven models. In contrast, models based on a-priori

knowledge about the system are known as white box and first principle models. Here,

the mathematical description of the system, including physical laws and constraints, is

identified. In most applications, hypotheses about the internal processes are available

to some extent. Hence, models based on partial information are called grey box mod-
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els. Dependent on the extent of the a-priori knowledge different shades of grey can be

defined.

In addition to the classification of white, grey and black box modelling, various charac-

terisations of mathematical models can be distinguished.

• Static & Dynamic: Static modelling is a time independent view of a system pre-

senting its structure including class and object diagrams. A dynamical model is a

behavioural representation of a system. Dynamical modelling consists of activi-

ties, interactions and state changes over time.

• Stochastic & Deterministic: A deterministic model contains no randomised pro-

cesses. Using the same input values and parameters, the deterministic model

results in the same output. In stochastic models, the process is at least partially

randomised. There is always an uncertainty in the exact status of the modelled

variables.

• Continuous & Discrete: In a time continuous model, the entity of interest changes

continuously with time. In contrast, time discrete models describe entities only at

certain points in time with no information in-between these points. Considering

a process that is dependent on time and space, its model can be time continuous

and spatial discrete if the state variables are defined at any point in time but only

accept integer values. In case of a time and space continous model

• Linear & Nonlinear: In linear models the considered variables are combined

applying linear operations, e.g. addition, subtraction and scalar-multiplication.

Nonlinear models involve multiplications and other transcendental functions such

as sine and cosine.

• SISO & MISO: These abbreviations are mostly used in telecommunication appli-

cations defining special input and output structures of a model. SISO stands for

single input single output models whereas MISO refers to multiple input single

output. In this manner, it is possible to abbreviate multiple input multiple output

as MIMO. Additionally to applications in telecommunication, these definitions

can be applied to characterise the structure of any mathematical model.
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1.1.3 Modelling Approaches

White box models consist of mathematical equations and conditions. Focusing on dy-

namical systems, different types of equations can be used to model the dynamical be-

haviour. A difference equation for example describes changes in the quantity as a dis-

crete sequence of states. Hence, difference equations are applied if the resulting model

is time discrete. In case of a model for continuous dynamics, differential equations are

applicable. The dynamical behaviour of such problems is based on ordinary differential

equations (ODE), differential algebraic equations (DAE) or partial differential equations

(PDE). Modelling complex systems composed of a large number of heterogeneous, in-

teracting components, often requires model descriptions consisting of more than one

equation (Siegfried, 2014). Hence, a mathematical model can comprise a system of dif-

ferential equations or a combination of different equation structures including algebraic

equations (AE). In Chapter 2 basic concepts of white box modelling approaches are

discussed in more detail.

Black box models aim to find an approximation of the unknown relation between given

input and output values. Elementary statistical methods can be used to analyse the

data and detect certain properties, whereas regression models provide a mathematical

description of an input-output system and thereby enable computing an output for a

given input value (Velten, 2009). Hence, regression models can be used for interpolation

and prediction purposes.

Based on Sjöberg et al. (1995) and Juditsky et al. (1995), the mathematical description

of a regression model, the regression function, can be defined.

Definition 1.1.4 (Regression Function). Let (X, Y ) be a pair of random variables with
values in X ∈ �d, d ∈ � and Y ∈ �, respectively. A function f : X → Y is said to be
the regression function of Y on X if

Y = f(X) + e,

where e is zero mean and independent of X . For n ≥ 1, f̂n shall denote an estimator of
f based on the random sample On

i = {(X1, Y1), . . . (Xn, Yn)} from the distribution of
(X, Y ).
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Based on Velten (2009), different mathematical structures for the regression function

can be defined.

• Linear Regression: A simple linear regression model is given as linear function

f̂n(X) = aX + b, X, a, b,∈ �.

The parameters a and b are so-called regression parameters and f describes the

relation of the given data points

(X1, Y1), . . . , (Xn, Yn), n ∈ �.

A regression model is linear with respect to the regression parameter. Hence, a

generalised form of the linear regression function is given as

f̂n(X) = a0 + a1g1(X) + · · ·+ asgs(X), s ∈ �,

where gs are arbitrary linear and nonliner functions a like.

• Multiple Linear Regression: In contrast to the linear regression model, the regres-

sion function of the multiple linear regression depends on several independent

variables X1, X2, . . . , Xn, n ∈ �.

• Nonlinear Regression: The nonlinear regression function depends nonlinearly on

the regression coefficients ai. Hence, the estimation of the output y can be given

as

f̂n(X) = g(X, a).

• Parametric & Non-parametric Regression: In non-parametric regressions, the

predictor does not take a predetermined form, but is derived from the informa-

tion given by X and Y . Parametric regression functions have a fixed number of

unknown parameters.

• Random & Deterministic Design: Whereas a random design assumes the vari-

ables Xi to be random, independent and identically distributed, the deterministic

design suggests the input variables Xi to be nonrandom. A simple example for

the latter would be a regular grid.
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A regression model based on observation data Yi, can be written as

Yi = f(Φi) + ei, i ∈ {1, 2, . . . , N},

where i is the sample index. Φi consists not only of system inputs Ui but also on past

system output values Yj

Φi = (Yi−1, . . . , Yi−m, Ui, . . . , Ui−p).

Such models is called nonlinear auto-regression exogenous model (NARX). Consider-

ing only past output values Φi = (Yi−1, . . . , Yi−d), the model is called non-parametric

auto-regression (NAR) of dimension d.

Modelling Approaches

White Box
Models

Black Box
Models

Analytical

Models

First Principle

Models

Algebraic, Ordinary Differential

& Partial Differential Equations

Empirical

Models Data-Driven

Models

Statistical

Models

Descriptive Statistics, Regression

& Neural Networks

Grey Box Models
Combining approaches

from both sides

Figure 1.2: An overview of the different modelling approaches within white and black box categories.

The quality and quantity of the sample data {(Xi, Yi) : i ∈ �} affect the accuracy of

the estimation. For the assessment of that accuracy a cost function can be introduced

to evaluate the discrepancy between data and estimation. There are various nonlinear
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approaches to estimate the regression function f . The different regression models, as

introduced above, require theoretical reasoning or certain hypotheses about the structure

of the regression function. In some cases, no a-priori knowledge is available to conjec-

ture the structure for the regression function. This is where (artificial) neural networks

(ANN) come into play. An illustrative summary of the discussed modelling approaches

is given in Figure 1.2.

1.2 Related Work

There are various well-established modelling approaches, each characterisable with at-

tributes of Section 1.1.2. Cellular automata for example, are applicable for time con-

tinuous and state discrete processes, whereas ordinary differential equations are used to

describe time and state continuous systems. For the modelling of hybrid systems a com-

bination of different modelling approaches is required. The combination of the methods

system dynamics, agent-based and discrete events, is referred to as Multi-method mod-

elling (Borshchev, 2014; Glock et al., 2015). In contrast, hybrid dynamical systems are

a combination of time continuous modelling approaches based on ordinary differential

equations and differential algebraic equations and discrete processes.

A well-known formalism for hybrid discrete time event systems, so-called DEVS (Dis-

crete Event System Specification), is based on the work of Zeigler et al. (2000). Since its

first introduction the formalism has been extended to meet growing demands. It includes

not only combinations of discrete but also continuous model descriptions (Deatcu and

Pawletta, 2012) and is constantly evolving (Preyser et al., 2016, 2019). Nevertheless,

these enhancements are mainly focussing on discrete event systems.

One of the first formal definitions of hybrid dynamical systems is given in Henzinger

(1996). Subsequently, various formulations, focussing either on the mathematical mod-

elling or the corresponding simulation process of hybrid dynamical systems, have been

introduced and discussed in literature (Antsaklis, 2000; Kwiatkowski et al., 2003; Krüger

et al., 2012; Mehlhase, 2015; Körner et al., 2018).
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In regard to the implementation of hybrid dynamical models, Co-Simulation, as dis-

cussed in Hafner and Popper (2017) and Huynh (2016) is not applicable. It investi-

gates tools and requirements to coordinate simulation processes of coupled subsystems.

However, the structural description of the considered hybrid dynamical system (HDS)

consists of decoupled discrete and dynamical processes. Hence, regular simulation tech-

niques are sufficient.

An overview of other existing simulation methods and tools is given by Carloni et al.

(2006). HYSDEL, an abbreviation for hybrid system description language, provides not

only a formal structure to describe and implement hybrid systems, but also offers a cor-

responding simulation environment, see Torrisi and Bemporad (2004). The embedded

compiler translates the given HYSDEL problem into a mixed logical dynamical system

(MLD) by reformulating constraints and logical conditions into equations and inequal-

ities (Bemporad and Morari, 1999; Williams, 2013). Afterwards the different system

descriptions are formulated using piecewise affine systems (PWA) (Paoletti et al., 2010)

also called switched affine systems (SAS) (Seatzu et al., 2006; Zhu and Antsaklis, 2013).

Especially in control theory PWA systems and SAS are often applied to formulate hy-

brid control problems (Potočnik et al., 2004; Bemporad et al., 2009). HYSDEL 3.0 uses

well-established toolboxes such as MPT (Herceg et al., 2013) and YALMIP (Lofberg,

2004) to improve performance and handling of hybrid systems (Kvasnica, 2008).

A black box modelling approach for hybrid dynamical systems is included in the so-

called hybrid identification toolbox (HIT). Based on measured input and output data

the integrated algorithm creates an approximation of the underlying SAS structure and

clusters the data to determine the domain for each submodel (Ferrari-Trecate and al,

2003; Canty et al., 2012). HIT is mainly based on regression algorithms. However,

Hornik et al. (1989) have proven that neural networks with one hidden layer are feasible

to approximate any continuous function.

There are various papers discussing combinations of white box modelling and neural

networks, often referred to as hybrid neural networks (Psichogios and Ungar, 1992;

Laursen et al., 2007; Yang et al., 2008; Sen et al., 2011; Cheng et al., 2012; Lu et al.,

2016). In Lin and Unbehauen (1992) neural networks are used to approximate a PWA
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system. Števek and Kozák (2011) and Števek et al. (2012b) introduce a method based

on neural networks with orthogonal activation functions.In Martius and Lampert (2016)

and Sahoo et al. (2018) a special network structure, the so-called equation learner is

introduced, to examine extrapolation capabilities of neural networks.

1.3 Research Objective and Structure of the Thesis

The aim of this thesis is to investigate how artificial neural network concepts can support

the modelling of hybrid dynamical systems. In this context, a framework is introduced

to include neural networks into the hybrid automaton structure. Based on the hybrid

modelling elements introduced by Henzinger (1996); Zeigler et al. (2000); Kwiatkowski

et al. (2003); Krüger et al. (2012); Mehlhase (2015); Körner et al. (2018) new framework

components will be defined. This framework enables a structured embedding of neu-

ral networks in hybrid models and facilitates a standardised analysis of the formulated

interactions. The feasibility of neural networks in the modelling of hybrid dynamical

models will be investigated. Therefore, different neural network structures found in lit-

eratur (Lagaris et al., 1998; Martius and Lampert, 2016; Chen et al., 2018; Bar-Sinai

et al., 2019) will be applied. Additionally the applicability of the introduced framework

will be tested for existing hybrid dynamical model approaches such as (Števek et al.,

2012b). In addition, a generalised structure characterising feed-forward networks is

established.

In Chapter 2, the methodology of hybrid systems in general, and hybrid dynamical

systems in particular, are discussed. Based on previous work, the formal definition of a

hybrid dynamical system and a characterisation of the different elements of a hybrid dy-

namical automaton are given. Three possible definitions of the involved discrete events

are presented.

In Chapter 3, the different elements of artificial neural networks are described. The

basic structure as well as common learning methods are explained. Based on the given

definition of activation functions, current network structures are introduced and suitable

applications are discussed.
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Chapter 4 introduces the framework applications for including neural networks in the

modelling of hybrid dynamical systems, based on the definitions given in Chapter 2.

Motivated by the structure of the hybrid automaton, the framework defines three dif-

ferent application scenarios by replacing particular elements of the hybrid model with

artificial neural networks.

The first application case formulates the replacement of the entire hybrid system. In

contrast to existing methods, the aim is to investigate the extrapolation capabilities of

the network approximation, predicting not only the next time step but also the behaviour

of the system for scenarios excluded from training. The second application defines the

replacement of the dynamical processes of the hybrid automaton. If the dynamics of

at least one local subsystem are unknown, the framework enables a standardised model

description to include a network approach to approximate the local system behaviour.

It facilitates the integration of various feed-forward network structures. The different

structures are compared and the requirements of the dataset for the training procedure

of the networks are analysed. The last scenario discusses a partial replacement of the

discrete process of the system. Based on a classification of the system output, a network

application is evaluated.

In Chapter 5, two hybrid dynamical systems are chosen to apply the framework. Regard-

ing the mathematical model description, these examples represent two different classes

of hybrid systems. The feasibility of the three defined scenarios for both examples is

examined. The properties of each case as well as the limitations of the structure are

discussed. Different neural network structures are applied to investigate advantages and

disadvantages with respect to the different application scenarios.

For the training and validation process of the neural networks, different datasets are

used. Depending on the size and quality of the used training data the accuracy of

the approximations is evaluated. The approximation potential of neural networks is

well-established, whereas the research regarding extrapolation capabilities of neural

networks is ongoing (Martius and Lampert, 2016). Hence, the case study partially in-

vestigates prediction and extrapolation abilities of the applied networks.
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General implications and specifications, such as stating the example classes for which

the introduced framework is particularly suitable, are given in Chapter 6. The simula-

tion outcomes are compared with common modelling approaches to evaluate feasibility

and accuracy of the neural network approach. Implied advantages and disadvantages

for practical applications are discussed. In Chapter 7, a summary of the study is given

and possible extensions of the framework as well as future research objectives are sug-

gested.





2
Hybrid Dynamical Systems

Modelling and simulation is a concept used in different disciplines for various appli-

cations. Therefore, some of the termonologies are not uniquely defined, e.g. hybrid

models, and are applicable in different situations. On the one hand, hybrid models are

a combination of different modelling methods to benefit from the advantages of each

applied modelling approach. This offers various possibilities to model complex sys-

tems. On the other hand, a combination of different model descriptions can be required

due to a mixture of continuous and discrete processes in the system. The latter are so-

called hybrid dynamical systems (HDS). Such systems are mostly modelled using first

principle models, where the mathematical description can be given explicitly. In hybrid

dynamical systems, the dynamical behaviour is described either by ordinary differential

equations (ODE) or differential algebraic equations (DAE). The discrete process of the

system defines the moment when the system description changes from one dynamical

submodel to the next and is referred to as event.

In the following basic mathematical concepts for modelling and simulation of dynam-

ical systems are summarised. Secondly, established modelling approaches for hybrid

dynamical systems, including the hybrid dynamical automaton, are introduced. Possi-

ble structural changes as well as common event formulations are discussed. Following

that, an overview of existing simulation techniques for hybrid dynamical systems is

given.

15
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2.1 State Space Representation

Originating from disciplines such as engineering, computer science and mathematics,

different modelling approaches for dynamical processes have been developed. The

state space representation is a frequently used mathematical model for physical sys-

tems. First-order differential equations are used to describe the relation of input, output

and state variables. It is a suitable and compact concept to model and analyse systems

with multiple inputs and outputs (Miková et al., 2016).

B
1
s C

D

A

• •u ẋ + y

+

System

Figure 2.1: A block diagram of the linear time-invariant state space representation.

Definition 2.1.1 (Linear State Space Representation). The linear state space represen-
tation of a dynamical system is given in the form{

ẋ(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t) +D(t)u(t),
(2.1)

where x(t) ∈ �n is the state vector and y(t) ∈ �q the output vector. Vector u(t) ∈ �p

denotes the input (control) vector, A(t) ∈ �n×n the state matrix, B(t) ∈ �n×p the input
matrix, C(t) ∈ �q×n the output matrix and D(t) ∈ �q×p symbols the feed-forward
matrix.

The system is called time-variant if the matrices A,B,C,D are time-dependent, other-

wise it is a time-invariant representation. The state space representation describes the

system’s output and the change of the states depending on the state vector and the given

input. The matrix A describes the connection of all internal states, whereby B states
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Figure 2.2: A block diagram of the extended LTI including reference signal r and feedback loop K.

how the input effects the state variables. Matrix C defines the relation of the state vari-

ables in the output and D enables the input to be part of the output equation. In Figure

2.1 the linear time-invariant state space (LTI) is illustrated as block diagram. Consider-

ing time-discrete signals instead of continuous states and inputs, a discrete formulation

of the state space representation can be given as

⎧⎨
⎩xk+1 = Akxk +Bkuk,

yk = Ckxk +Dkuk.
(2.2)

Analogous to the continuous case, the matrices A,B,C and D can be constant, describ-

ing a time-invariant case. In case the matrices depend on the sample index k ∈ � the

corresponding time-variant system representation is given.

Especially in engineering, the control of dynamical systems is an essential aspect of

modelling and simulation. The continuous state space model given in equation (2.1)

can be extended by adding a feedback loop K. This can be done by substituting the

input signal with u(t) = Ky(t), which results in the following representation

⎧⎨
⎩ẋ(t) = Ax(t) + BKy(t),

y(t) = Cx(t) +DKy(t).
(2.3)
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The feedback loop enables the output to influence the system’s behaviour, but it does not

facilitate controlling the system behaviour. An additional element, a reference signal r,

has to be introduced, resulting in u(t) = r − Ky(t). In Figure 2.2 a block diagram of

the extended model including the feedback loop and the reference signal is illustrated.

The corresponding mathematical representation is given as⎧⎨
⎩ẋ(t) = Ax(t) + B(r −Ky(t)),

y(t) = Cx(t) +D(r −Ky(t)).
(2.4)

An obvious restriction of the described models is the linearity of the mathematical de-

scription. A state space model for nonlinear systems is defined as⎧⎨
⎩ẋ(t) = f(t, x(t), u(t)),

y(t) = h(t, x(t), u(t)),
(2.5)

where f denotes the change of the system over time and h defines the output of the

system. In the modelling process of complex systems required constraints can be de-

scribed by additional algebraic equations and variables. To comply with the additional

requirements, these constraints have to be included into the model description using

differential-algebraic equations (DAEs).

Definition 2.1.2 (Implicit Differential Algebraic Equation). Given the state vector x ∈ �n

and its time-derivative ẋ an implicit differential algebraic equation is defined by

F : �n ×�n ×�q ×�→ �
m, F (x, ẋ, z, t) = 0, (2.6)

where z denotes the algebraic variable vector. If F is continuously differentiable and the

derivative of F with respect to ẋ is regular, the implicit function theorem is applicable

and equation (2.6) can be transformed into an explicit differential equation

ẋ = f(x, z, t).

If Fẋ is singular, equation (2.6) is a real differential algebraic equation.

Hybrid dynamical systems usually contain numerous dynamical processes. Instead

of only one dynamical description, each local behaviour requires its own description.
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Hence, an index d ∈ D for labelling the local system descriptions is required. Those

dynamical behaviours can be described using the state space model for nonlinear sys-

tems in (2.5) by including differential algebraic equations.

Definition 2.1.3 (Semi-Explicit Differential Algebraic Equation System). Given the
state vector x, the time-derivative ẋ, the input u and a vector containing external vari-
ables w, the semi-explicit differential algebraic equation system can be defined. At each
location d ∈ D a set of differential and algebraic equations is given as⎧⎪⎪⎨

⎪⎪⎩
ẋd = fd(xd, ud, wd, t),

0 = gd(xd, ud, wd, t),

yd = hd(xd, ud, wd, t),

(2.7)

where fd denotes the change of the state over time, gd describes the algebraic constraints
and hd defines the output of the system.

An analytical solution for systems as described in definition 2.1.3 does often not exist.

An alternative approach is the approximation of the system behaviour using piecewise

affine models (PWA). These models are received by partitioning the state-input domain

into a finite number of convex polyhedral regions and associating each region with an

affine submodel (Paoletti et al., 2010; Potočnik et al., 2004).

Definition 2.1.4 (Piece-Wise Affine System). Piece-wise affine systems are defined as

xk+1 = Aixk +Biuk + fi,

yk = Cixk +Biuk + gi,
for (xk, uk)

T ∈ Xi, i ∈ I (2.8)

at time k ∈ �0, where xk ∈ �ni denotes the state vector, uk ∈ �qi the input vector and
y ∈ �pi the output vector. The variables Ai, Bi, fi, Ci, Di, gi are matrices of suitable
size. The domain space is partitioned into convex polyhedrons Xi described by sets of
linear inequalities and index i ∈ I labels the according affine submodel.

2.2 Modelling of Hybrid Dynamical Systems

In applied mathematics and computer science the creation of modelling standards is an

important aspect. The advantage of a modelling frameworks is that they can be applied
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not only to one unique problem description but to an entire class of problems. Based

in related work the structural and graphical framework for hybrid dynamical systems is

defined. Characterisations of different event formulations and transitions are given.

2.2.1 Discrete Event & Differential Equation System Simulations

The formalism defined by Zeigler (1976), called Discrete Event System Simulation

(DEVS), focuses on the simulation and realisation of discrete event systems. This for-

malism covers mostly applications like event scheduling, activity scanning and process

interaction. An event processor can be used as an implementation tool for such models

(Solcany, 2008). The DEVS description has been extended to include Discrete Time

(DTSS) as well as Differential Equation System Simulations (DESS) (Zeigler et al.,

2000). Discrete time simulations can be described by event lists or difference equa-

tions. In case of DTSS the simulation includes recursive algorithms whereas DESS are

described by differential equations realised with numerical integrators. In order to ap-

ply the formalism to more complex systems an extension has been established, namely

DEV&DESS, combining discrete and continuous model dynamics. This concept is used

to describe hybrid systems and enables a standardised framework to connect and reuse

model parts realising discrete and continuous behaviours. According to the DEVS for-

malism, a septuple containing necessary elements to describe a discrete event system is

given (Vangheluwe, 2000; Deatcu and Pawletta, 2012) by

DEV := (X, Y, S, δext, δint, λ, ta).

The elements are defined as follows.

• X is the set of input event values.

• Y is the set of output event values.

• S is the set of state values.

• δint : X → S is the internal state transition function.

• δext : S → S is the external state transition function.

• λ : S → Y is the output function.

• ta is the time advance function.
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In order to define elements for DEV&DESS, discrete and continuous input as well as

output sets are necessary. In addition, two different output functions, for the discrete as

well as the continuous process are required. A continuous event condition function C

and the state transition function δstate are responsible to detect state events and perform

the transition. Based on Preyser et al. (2016) and Winkler et al. (2017) a characterization

for hybrid systems in the DEV&DESS formalism can be stated as

DEV&DESS := (X, Y, S, f, λc, δstate, δint, δext, λd, Cint, ta)

where

• X = Xc ×Xd is the set of inputs,

• Y = Yc × Yd is the set of outputs,

• S = Sc × Sd is the set of state values,

• f is the rate of change (given by an ODE),

• λc : S → Y is the continuous output function,

• δstate : S → S is the external state transition function,

• λd : S → Y is the discrete output function,

• Cint : Q× 0, 1 : Xc → {true, false} is the state event condition function and

• δint, δext and ta are defined as in DEV.

In addition to the elements defined above, it is possible to create coupled components

containing several atomic subcomponents.

In Mehlhase (2015) a similar approach is used to introducing a framework for simulation

models of variable structure systems. The basic elements of this formalism are listed in

Table 2.1. If more than one variable is required to describe the system, VARNAMESET is

used and VALUE is substituted by STATE, describing the value of all variables, including

constants v fulfilling v̇ = 0. In case of more than one equation characterising the

component’s behaviour, EQS replaces EQ. The additional element CONNECT describes

the relation between different interfaces. The combination of all these elements forms a

reusable component of the model description.
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VARNAME name of the variable

VALUE value of the variable

TIME time

EQ an equation: ODE, DAE, etc.

CONNECT the transition description

SOLVER the considered solver for the component

ID the component identifier

Table 2.1: Basic Elements for simulation models of hybrid systems.

Both formalisms are primarily used to support the development of simulation models,

independent of any specific simulation environment. The next section focuses specifi-

cally on the mathematical modelling approaches.

2.2.2 Hybrid Dynamical Automaton

The complex structure of hybrid systems is commonly illustrated using an automaton

(Körner et al., 2018; Carloni et al., 2006). Automata are often applied to depict abstract

machines as well as theoretical concepts in computer science, such as combinational

logic. It supports structuring mathematical tasks and illustrating finite state machines

(Bemporad and Morari, 1999). It shows current states, update rules as well as transition

conditions. By expanding the description possibilities of the update rules, the automata

concept can be applied to model hybrid dynamical systems, as shown in Figure 2.3.

In terms of layout, an automaton is an ambiguous description. It just characterises the

basic structure of the model in a compact way. The nodes of the automaton describe

different local dynamics whereas the connecting lines, called edges, define transition

conditions. If fulfilled, the transition from one location (node) to the next is initiated.

Focusing on modelling of hybrid dynamical systems, a mathematical definition of the

hybrid automaton is given (Henzinger, 1996; Carloni et al., 2006; Körner, 2015).

Definition 2.2.1 (Hybrid Dynamical Automaton). A hybrid dynamical automaton Ah is
defined as the septuple

Ah = (D;X;B;W ;E; Inv; Act),

where
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• D is the finite set of discrete states.

• X is the continuous state space containing all continuous states
x ∈ X ⊆ �n.

• B is a finite set of symbols.

• W ⊆ �q stands for the continuous communication space and contains each con-
tinuous external variable w ∈ W .

• E is a finite set of events. Every event e ∈ E is defined by e = (d; b;Gd,d′ ; Jd,d′ ; d
′),

labelled b ∈ B and depicted as an edge interconnecting different locations. Gd,d′

symbolises a finite convex subset of X , the so called guard region. Jd,d′ defines
the jump relation for the transition from location d to d′ on a subset of X × X

with d, d′ ∈ D.

• Inv : D → P(X) is called the location invariant, where P(X) is the power set of
X . At location d ∈ D, the corresponding state x must satisfy x ∈ Inv(d).

• Act: D → F : d �→ Fd maps each location d ∈ D to a set of differential
algebraic equations Fd := (fd, gd, hd), defined as

Fd

⎧⎪⎪⎨
⎪⎪⎩
ẋd = fd(xd, ud, wd, t),

0 = gd(xd, ud, wd, t),

yd = hd(xd, ud, wd, t).

(2.9)

Function fd describes the state change with respect to time, gd denotes the al-
gebraic constraints and yd defines the output. The variable x denotes the state
vector, u the input and w containing external variables including system parame-
ters p. The set F contains the triplets of every DAE.

The dimension of a hybrid dynamical automaton is defined as the dimension n of the
continuous state space X ⊆ �n.

Remark. Each node in Figure 2.3 represents the local dynamical behaviour in the form
of a semi-explicit DAE, as given in equation (2.7). The dynamics can also be given as
an implicit equation F (ẋ, x, u, w, t), combining the description of the time-continuous
change and the algebraic constraints. If it is sufficient to describe the system using
ODE without any additional algebraic constraints, then the equation gd in (2.9) can be
omitted. The guard region G is restricted to convex sets, since it enables exact state
localisations.
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d1
Fd1(xd1 , ud1 , wd1 , t)

x(t) ∈ Inv(d1)

d2
Fd2(xd2 , ud2 , wd2 , t)

x(t) ∈ Inv(d2)

d3
Fd3(xd3 , ud3 , wd3 , t)

x(t) ∈ Inv(d3)

b1

b2

b4

Guardd1,d3
Jumpd1,d3

b5

b3

Figure 2.3: Conceptional structure of a hybrid automaton based on the work of Körner (2015).

2.2.3 Event Characterisation in Hybrid Systems

In hybrid dynamical systems an event defines the interruption of the continuous process

and initiates changes in parameters, variables or entire descriptions. Two different types

of events, the autonomous and the controlled event, can be distinguished. The latter

can only be induced from outside the system, for example an input signal triggering the

event. An autonomous event happens without any external influence. The requirements

enabling a transition are a consequence of the system description. In this contribution

purely autonomous events are considered.

Based on the characteristics of the events another distinction can be made. A time event

occurs at a specific predefined point in time te ∈ �+ and is part of the model description.

When the system reaches t = te, the event e = (d; b;Gd,d′ ; Jd,d′ ; d
′) is initiated and the

system change is executed. For the implementation, a logical variable or a simple if-

condition is sufficient to verify the inequality t ≥ te and initiate the time event. In case
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of a state event, the state vector x ∈ �n has to fulfil predefined requirements. Thus, the

event time te depends on the state value itself.

In Henzinger (1996) events are characterised using a jump condition, an event function,

a transition relation and special pre- and post-jump regions. In Kwiatkowski et al. (2003)

an autonomous jump set and a jump transition map are sufficient to define the event. In

the latter the events are triggered if the state variables reach their predefined thresholds.

Comparing these two descriptions with definition 2.2.1, two consistent elements can be

found, a special event region and a transition map. The approaches differ with regard to

the definition of the initiation process of the event. Hence, three different event actuators

can be distinguished:

(a) defining specific thresholds Δx for the state values x as shown in Kwiatkowski

et al. (2003),

(b) formulating an event function e, describing the required relation of the state vari-

ables, where e(x) = 0 initiates the event and

(c) defining the guard region G, which is a convex subset of the domain.

In Figure 2.4 the different event conditions are depicted. The complexity of the hybrid

system and the level of simplification determine which formulation is applicable.

(a)

x

Δx

(b)

x

h(x)

(c)

x

G

Figure 2.4: The different event constraints are illustrated, depicting the threshold Δx in (a), an event

function h(x) in (b) and the guard region G in (c).
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Remark. The guard region can be seen as generalisation of the threshold and the event
function, whereas the threshold represents a special case of the event function. Con-
sidering a two-dimensional hybrid system, the thresholds of a state variable form a
rectangular area, which can then be defined as guard region. If an event function h is
defined, the set of state values fulfilling e(x) = 0 represents the corresponding guard
region.

Each node of the hybrid automata contains an individual model description, e.g. differential-

algebraic equations as defined by (2.7). The state and time events, respectively, enable

the transition from one node to the next. A characterisation of the different possible

changes during the event, transitioning from one subsystem to the next, is formulated

based on Körner (2015).

• Value Changes: On the one hand this category describes changes in the parameter

vector Tp with pl �→ pk as well as possible modifications in the external values Tw

with wl �→ wk. On the other hand, value changes also refer to adaptations in the

state vector Tx which is defined by the jump relation Jl,l′ as

Tx : x �→ Jl,l′(x).

• Structural Changes: There are different possibilities for structural changes. One

option are modifications in the definition of the time-derivative Tẋ, given as fl �→
fk. A structural change of the algebraic equation of the DAE, denoted as Tg with

gl �→ gk, and variations in the output vector Ty, defined as yl �→ yk, are possible.

• Model Changes: Considering all the different changes from above, an overall

switch in the system description is defined as TM : Ml → Mk, redefining ev-

ery component of the DAE, including the time-derivative equation, the algebraic

equation and the output vector as well as the initial states, outputs, parameters and

the external variables.

An arbitrary combination within the different categories can be formalised using func-

tion compositions of the different transitions. A detailed characterization of the different

combinations can be found in Körner (2015).



2.3. SIMULATION OF HYBRID DYNAMICAL SYSTEMS 27

2.3 Simulation of Hybrid Dynamical Systems

Hybrid approaches are common practice to find a suitable problem solution and ben-

efit form combining advantages of different modelling methods. Especially in control

engineering various hybrid dynamical systems can be found. Hence, different tools to

support the simulation process of hybrid models, have been developed.

In the following, a selection of simulation tools is introduced. A broader overview can

be found in Carloni et al. (2006).

2.3.1 Hybrid System Description Language – HYSDEL

HYSDEL is an open MATLAB toolbox which supports modelling as well as simulat-

ing hybrid systems. It was established in 2004 at the University of Zurich (Torrisi and

Bemporad, 2004). One the one hand, HYSDEL is a descriptive modelling language,

similar to DEV&DESS, and contains various modelling elements, as listed in Table 2.2.

On the other hand, HYSDEL enables the simulation of hybrid systems in a feasible

INTERFACE declaration of all system variables

IMPLEMENTATION definition of the relation between the variables

AUX declaration of auxiliary variables

CONTINUOUS state update equation for real variables

AUTOMATA state update equation for boolean variables

LINEAR definition of additional variables using affine expressions

LOGIC logical relations between boolean variables

AD describing the binary variables and the event generator

MUST constraints on input, state and output variables

OUTPUT output variables for the overall MLD system

Table 2.2: Modelling components for HDS using HYSDEL, see Torrisi and Bemporad (2004).

and efficient way. After initialising the listed components according to the system de-

scription using the HYSDEL language, the HYSDEL compiler automatically creates

an accessible MATLAB function. The formulated constraints and logical conditions are

transformed into equations and inequalities forming an MLD, see (A.5). Following that,

a polyhedral partition of the input-state domain is created to find suitable sub-domains
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for each local piece-wise affine system (PWA), as defined in (2.8). The final step of the

algorithm creates a MATLAB function which can be executed directly in MATLAB.

HYSDEL is based on a scalar description and was originally developed in the program-

ming language C. The revised version, HYSDEL 3.0, overcomes weaknesses like the

scalar based description and the inability to reuse submodels (Bemporad et al., 2009;

Kvasnica, 2008). Additionally, the lengthy compiling process has been improved by a

’Yet Another LMI Parser’ (YAMLIP) module, which automatically detects the problem

class and selects a suitable solver based on its analysis (Lofberg, 2004). HYSDEL 3.0

expects a problem description in HYSDEL language, transforms it into an xml-file us-

ing an xml parser to enable the YALMIP module. It results in an MLD system, which is

transformed into a PWA, similar to the original algorithm. Figure 2.5 illustrates this pro-

cedure. In Kvasnica et al. (2011) an alternative approach for approximating the involved

HYSDEL

Description
MLD PWA

MATLAB

Function

YALMIP

translating constraints

& conditions

defining the

polyhydral

partition

Figure 2.5: The flow chart describes the simulation steps of the HYSDEL compiler, including the im-

provements (dashed lines) made in HYSDEL 3.0.

PWA systems is given. The approximation is retained by solving nonlinear program-

ming problems resulting in an efficient and computational tractable algorithm. Under

certain assumption the PWA approximation of multivariable functions narrows down to

solving a series of one-dimensional approximations. A toolbox is introduced to export

the obtained optimal PWA approximations into the HYSDEL language. This enables a

mathematical problem formulation and hence control design.
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2.3.2 Multi-Parametric Toolbox – MPT

MPT is a MATLAB Toolbox especially developed to cope with optimisation tasks in

the field of model predictive control. The improved version MPT 3.0 is based on the

YALMIP modelling language and supports solving problems in computational geome-

try, see Herceg et al. (2013). In the original version of MPT a single entity consisted of

multiple algorithms. In MPT 3.0 the structure follows a hierarchy, derived from object-

oriented programming, to enable better maintenance. A wide range of test cases under-

lines the numerical reliability of the toolbox which shows superior performance com-

pared with the previous version. This toolbox focuses on solving linear and quadratic

optimisation problems including a linear-complementarity problem (LCP) solver and a

parametric LCP solver. Its interface supports modelling autonomous and controlled LTI

systems as well as PWA and MLD systems, e.g. HYSDEL language.

In many practical cases, the mathematical description of the nonlinearity is not avaiable.

Alternatively, the given analytical form misses its numerical parameters. In such cases

one option is to construct the PWA approximation manually using the HYSDEL lan-

guage Bemporad and Morari (1999). Another is to use measured input-output data to

extract the PWA characteristics (Roll et al., 2004; Ferrari-Trecate et al., 2001; Paoletti

et al., 2010) as described in the following.

2.3.3 Hybrid Identification Toolbox – HIT

Considering a MISO system, where only input-output data pairs are available, the hy-

brid identification toolbox (HIT) is applicable. It generalises a classical AutoRegres-

sive eXogenous (ARX) approach to determine a discrete-time hybrid system in PWA

form. Applying a mixture of clustering, pattern recognition and linear identification

techniques, PWA systems can be identified (Ferrari-Trecate et al., 2005). The different

steps of the algorithm are summarised in the following and can be found in detail in

Ferrari-Trecate and al (2003).

1. Given the data (u(k), y(k)) a regression matrix is defined and noise is added,

leading to (x(k), y(k)).
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2. The resulting data points are used for clustering. For each data point (x(k), y(k))

the closest c− 1 data points are collected into a subset Cj . The value c has a high

impact on the quality of the resulting clusters. For every subset Cj a weighted

least squares regression is applied to determine the local data model θj .

3. A feature vector, including information about coefficients and localisation of the

submodels θj , is defined to distinguish models with the same coefficient but dif-

ferent spatial constraints.

4. These feature vectors ζj are clustered with a K-means-like algorithm to minimise

the given cost functional, resulting in a refined classification of the original data.

5. A weighted least squares algorithm is applied to approximate the parameters of

the PieceWise AutoRegressive eXogenous (PWARX) model.

6. Finally a region for each subsystem is determined, using a combination of linear

support vector machines, multi-category pattern recognition strategies and robust

linear programming ideas.

Canty et al. (2012) criticises the algorithm to fail in accurately identifying model pa-

rameters. Due to its sensitivity to the magnitude of noise in the given data, the weakest

element of the algorithm is the least squares approximation (PWA-LS) of the submodel

parameters in step 5. The idea they suggest is to replace the PWA-LS with a PWA-

OE, which means substituting the past output data in the error criterion with past model

output data. The Levenberg-Marquardt-Fletcher gradient based algorithm is applied to

optimise the output error model, improving the experimental results significantly.

Two crucial disadvantages of approaches like this are mentioned in Szűcs et al. (2012).

Due to solving high-dimensional optimization problems the algorithms are very time

consuming. Additionally a well-defined PWA approximation depends on the determi-

nation of a proper partition of the domain. The latter can not overlap nor leave undefined

holes, but to cover the whole space of parameters of interest. To overcome these diffi-

culties another method can be applied.
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2.3.4 PWA OAF Identification Toolbox

In Altın et al. (2018) a framework for hybrid model predictive control for hybrid sys-

tems is introduced. Based on this framework, Števek and Kozák (2011) developed an

identification toolbox to approximate piece-wise affine approximations of the system.

A generalised Fourier series based on orthogonal polynomials is used as approximation

approach. By applying neural networks with orthogonal activation functions (OAF) this

black-box modelling approach identifies nonlinear models.

OAF NN

yk−1, . . . , yk−nb

uk−1, . . . , uk−na

yk

Figure 2.6: PWA approximation structure with OAF neural networks.

For this toolbox linear approximations of the Chebyshev polynomials are used as or-

thogonal function (Kozák and Števek, 2011; Števek et al., 2012b,a). The applied neural

network consists of one hidden layer and the input values of the network have a prede-

fined order which determines the number of past input na and output data points nb, as

depicted in Figure 2.6. The network applies the Chebyshev polynomials to each input,

resulting in a weighted sum predicting the system output yk. Due to the symmetrical

behaviour of the Chebyshev polynomials it is possible to reduce the number of lineari-

sation points by half and therefore decrease the number of changing points of the PWA.

The accuracy of the approximation depends on the trade-off between the number of lin-

earisation points and the complexity of the PWA models. The transition into the PWA

state space enables applying existing tools such as Multi-Parametric Toolbox (MPT)

(Kvasnica et al., 2004).

A similar approach is discussed in Szűcs et al. (2012). Based on the work of Kvas-

nica et al. (2011) a toolbox called AUTOPROX is developed. It applies a two-stage

optimization-based technique to derive PWA approximations of static nonlinearities ob-

tained from measured data. Moreover, it solves a binary optimization problem to reduce

the complexity of the resulting approximation function. The resulting PWA approxima-

tions can be exported to HYSDEL for simulations.





3
Artificial Neural Networks

Neural networks and machine learning are a central part of modern technology. Various

software packages in computer science and engineering apply machine learning meth-

ods. In system identification problems for example, neural networks are used to approx-

imate suitable model structures. This chapter gives an overview of machine learning in

general and discusses artificial neural networks in detail. Hereby, the different elements

of neural networks as well as the necessary training process are described.

3.1 Machine Learning Overview

Machine learning is a broad and continuously growing field of research. Its applications

play an essential role in everyday items, starting with individual dictionaries on smart

phones and browser search adjustments through to individual advertisements as well as

content suggestions on streaming websites. Due to current computer performances as

well as the possibility to gather and save immense amounts of data, many researchers

and developers in various fields of applications focus their research intensively on ma-

chine learning approaches. These methods benefit from the fact that an exact mathemat-

ical model of the underlying process is not required. Instead, it is sufficient to provide

adequate data for the training process.

An overview of machine learning is depicted in Figure 3.1. It currently comprises three

main areas of application: reinforcement learning, classical learning and deep learning.

33
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Figure 3.1: An overview of the different areas of machine learning based on Rodrìquez (2019).

Reinforcement learning has shown amazing results in various applications in control en-

gineering, see Breen et al. (2019) and Nagendra et al. (2017). Classical learning methods

are mainly used for classification tasks, pattern recognition and clustering. The origin

of most of these methods lies in statistics. Deep learning approaches have various fields

of application, including prediction, decision making and time series approximation

(Sahoo et al., 2018).

The scope of this work focuses on the application possibilities of artificial neural net-

works, specifically multi-layer perceptrons.

3.2 Structure of Artificial Neural Networks

In the early 1950s the first neural network was introduced and consisted of so-called

perceptrons (McCulloch and Pitts, 1943). The task of a perceptron is to test incoming

signals against a predefined threshold, whereas exceeding this value results in 1 and

otherwise in 0. Hence, perceptron networks enable implementations of logical func-

tions. The downside of the threshold is the sensitivity in regard to changes in the input
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signal. Small differences in the input can result in the opposite output. To decrease the

sensitivity, current neural networks apply smooth functions instead of thresholds.

...

...
...

x1

x2

xn

f ◦∑

f ◦∑

∑

∑

y1

ym

Input

Layer

Hidden

Layer

Ouput

Layer

Figure 3.2: The structure of a basic artificial neural network, called multi-layer perceptron (MLP).

Despite the application purpose, the structure of a neural network always consist of three

different types of layers:

• the input layer,

• the hidden layer and

• the output layer.

Each layer consists of a particular number of nodes, referred to as perceptrons or neu-

rons. If every neuron of each layer is interconnected to every neuron in the following

layer, the network is called fully connected (Haykin, 2009). Artificial neural networks

(ANN) can be characterised by the way the signals are processed. If a neural network is
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executed and the signal flows from the input layer through the hidden layer and exits at

the output layer, the network structure is categorised as feed-forward. Such networks are

often called multi-layer perceptrons (MLP). For most of the applications, a multi-layer

feed-forward network is sufficient (Hornik et al., 1989). Another possible structure is

the recurrent neural network (Nielsen, 2015). Hereby the edges of the network not only

connect neurons of one layer to the next layer, but also back to the previous layers.

Henceforth, only feed-forward networks are considered.

In Figure 3.2 a one layered feed-forward network is depicted. It consists of one input,

one hidden and one output layer. The shape of the input and output layer is defined by

the given inputs x ∈ �n and the corresponding outputs y ∈ �m. In contrast, there is no

predefined structure for the hidden layers. The number of hidden layers as well as the

amount of neurons in these layers are arbitrary.

u
(l)
j

(
z
(l)
j

)
w

(l)
j1 a

(l−1)
1

w
(l)
j2 a

(l−1)
2

b
(l)
j

a
(l)
j

l-th Layer

Figure 3.3: Input and output for one neuron in a multi-layer perceptron (MLP).

The connections between the neurons in the different layers are called edges. Each

edge carries an individual weight w(l)
ij ∈ �, where l ∈ � defines the target layer of

the connection and i, j specify the end and starting neuron, respectively, as depicted in

Figure 3.3. The value of the weight influences the incoming signal by either damping

(w < 0) or amplifying (w > 0). The weighted sum of the inputs together with a bias

b
(l)
j ∈ �, j, l ∈ � form the input of the neuron in most applications, henceforth denoted

as z
(l)
j and given as

z
(l)
j =

∑
k

w
(l)
jka

(l−1)
k + b

(l)
j .
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The neurons of the hidden layer as well as the neurons of the output layer carry an

activation function. Function u
(l)
j denotes the activation function for the j-th neuron in

the l-th layer and can be defined as

u
(l)
j : �nl−1 ×�nl×nl−1 → � :

(
a(l−1), w(l)

)
�→ a

(l)
j , j ∈ {1, . . . , nl}, l ∈ {2, . . . , L},

where nl ∈ � defines the number of neurons in the l-th layer. The overall number of

layers in the network is denoted as L ∈ �. In most cases the dimension of the domain

fulfils m = 1. The input vector x can be written as x =: a(1). The output of the network,

which is simultaneously the output of the last layer, is labelled a(L).

Assuming a network structure as shown in Figure 3.2 with one hidden layer consisting

of n2 neurons with the activation function f ◦ ∑
, the output of the j-th neuron in the

hidden layer can be given as

a
(2)
j = u

(2)
j

(
z
(2)
j

)
= f

(
n∑

k=0

w
(2)
jk xk + b

(2)
j

)
, j ∈ {1, . . . , n2}. (3.1)

In the basic perceptron, the activation function is a step function delayed by the thresh-

old. In Table 3.1 a selection of commonly used continuous activation functions is given.

For a long time, the sigmoid function was the most used activation function. Due to

the fact that its range is not centred around zero it results in a slow convergence and

has fallen out of popularity. In contrast, the range of the hyperbolic tangent is zero cen-

tred, hence optimisation is easier. Nevertheless, both functions suffer from vanishing

gradient problem. Due to fast convergence as well as absence of the vanishing gradient

problem, rectified linear units (ReLu) have become very popular.

Often the neurons are referred to as unit and are named after the applied activation

function. Neurons applying a linear function are known as linear units and labelled
∑

,

whereas neurons with sigmoid functions can be labelled σ.∑
: u

(l)
j

(
a
(l−1)
j , w(l)

)
= z

(l)
j

σ ◦
∑

: u
(l)
j

(
a
(l−1)
j , w(l)

)
= σ

(
z
(l)
j

)
The structure of the hidden layers as well as the choice of the activation function depend

on the application of the network and the given system specifications. For each layer in
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Sigmoid Function Hyperbolic Tangent

σ : �→ (0, 1) tanh : �→ (−1, 1)

σ(x) = 1
1+e−x tanh(x) = 1−e−2x

1+e−2x

Rectified Linear Unit Smooth Rectified Linear Unit

ReLu : �→ [0,∞) ReLuS : �→ (0,∞)

ReLu(x) = max(0, x) ReLuS(x) = log(1 + ex)

Table 3.1: A list of commonly used activation functions in artificial neural networks.

the network, different activation functions can be applied. Due to the fact that the output

values have to match the expected output data, the activation function of the neurons in

the output layer are often different than in the hidden layers. The output layer usually

consist of linear units, whereas the neurons in the hidden layer use the sigmoid function,

hyperbolic tangent or rectified linear units (ReLu) as activation.

A MLP, as depicted above, is a fairly basic neural network. In literature different feed-

forward structures can be found. In the following, two of them will be introduced in

more detail.



3.2. STRUCTURE OF ARTIFICIAL NEURAL NETWORKS 39

3.2.1 High Order Neural Network

The general structure of a high order neural network (HONN) is similar to a MLP. It

consists of one input, mostly only one hidden and one output layer. Unlike MLP net-

works the HONN applies so-called higher-order processing units (HPU), which realise

higher-order input correlations. HPUs are usually labelled Π. The order of the network

is defined by the highest order of the involved HPUs, whereby the order of a HPU is

given as the maximum number of inputs multiplied. The output of a neural network

with a HPU of third order can be given as

y = f

(∑
j

wjxj +
∑
j,k

wjkxjxk +
∑
j,k,l

wjklxjxkxl

)
, (3.2)

where f is any nonlinear activation function, xj are the inputs and wjkl are the adjustable

weights (Shin and Ghosh, 1991).

The Pi-Sigma network, as depicted in Figure 3.4, is an example for a HONN. It contains

of linear units in the hidden layer and a HPU in the output layer of the following form

a(3) = u
(3)
j

(
a
(2)
j

)
:= σ

(
nl∏
j=1

a
(2)
j

)
,

a
(2)
j = z

(2)
j =

∑
k

w
(2)
jk a

(1)
k + b

(2)
j .

(3.3)

There are of course other forms of high order neural networks, such as the HONEST

and the Sigma-Pi network, see Abdelbar and Tagliarini (1996). The latter is an adaption

of the Pi-Sigma network, exchanging linear units and HPUs. Both structures describe a

higher-order neural network with one single hidden layer.

An advantage of the one-layered structure is a fast converging training. HONNs result

in a functional structure similar to a polynomial function. The linear combination of

the products of input values represents a powerful approximation tool for the functional

relation between input and output (Epitropakis et al., 2010).
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Figure 3.4: The structure of a Pi-Sigma network (Nayak, 2017).

3.2.2 Equation Learner

The equation learner network (EQL) emphasises the idea of high order neural networks.

The intention of this network structure is to understand the functional relationship of

input and output values. The goal is to enable not only an interpolation of the relation

but also to gain insights to extrapolate the behaviour even for new input data. Similar to

the units in the Pi-Sigma network, the EQL structure includes a multiplication unit of

order two. Therefore, the order of the polynomial structure in the resulting output can

be controlled by the number of hidden layers.

Similar to an MLP and Pi-Sigma network, this network defines the input signal of the

neuron z
(l)
j as linear combination of the weighted outputs of the previous layer given as

z
(l)
j =

∑
k

w
(l)
jka

(l−1)
k + b

(l)
j
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Instead of applying the same activation function in every neuron of the hidden layers,

each input signal is treated differently (Martius and Lampert, 2016). Each neuron ap-

plies one of the five distinct units given as identity, sine, cosine, sigmoid function and

product function.

x1

x2

∑

∑

∑

∑

∑

∑ ×

∑

∑

∑

y1

y2

y3

id

sin

cos

σ

Input Layer EQL Layer Output Layer

Figure 3.5: Equation learner network with one hidden layer based on Martius and Lampert (2016).
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This layer structure, henceforth denoted as EQL layer, is depicted in Figure 3.5. Let

a(l−1) ∈ �
p+2v be the output of the previous layer, a generalised EQL layer can be

defined as follows

z
(l)
j =

∑
k

w
(l)
jka

(l−1)
k + b

(l)
j ,

u
(l)
j (z

(l)
j ) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z
(l)
j , j ∈ I1,

sin(z
(l)
j ), j ∈ I2,

cos z
(l)
j , j ∈ I3,

σ(z
(l)
j ), j ∈ I4,

with I1 ∪ I2 ∪ I3 ∪ I4 = {1, 2, . . . , p},
g(z

(l)
j , z

(l)
j+1) = z

(l)
j · z(l)j+1, j ∈ {p+ 1, p+ 3, . . . , p+ 2v − 1}.

(3.4)

As stated in Martius and Lampert (2016) this network is able to learn function relations

and extrapolate them to unseen parts of the data space. If the underlying function of

the problem can not be determined in the training process, the network results in an

approximation of the exact function. In such cases, the extrapolation abilities of the

network might be poor.

An improved version, the Equation Learner÷ (EQL÷), has been developed, to increase

the chances of the network to determine the exact function. Instead of the sigmoid unit

in the hidden layer, a division unit has been added. This modified network improves

accuracy in extrapolation experiments and even succeeds in performing the up-swing

task for a pendulum (Sahoo et al., 2018).

3.2.3 Hybrid Neural Networks

Hybrid neural networks (HNN) represent no specific network structure, it is a descrip-

tive term for the combination of different methods. On the one hand it can used to

describe the fact that a neural network is part of the model description (Psichogios and

Ungar, 1992; Laursen et al., 2007; Yang et al., 2008; Sen et al., 2011; Cheng et al., 2012;

Lu et al., 2016; Lian et al., 2017). On the other hand it is used if the approach combines

different network structures (Gao et al., 2018).
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In the following, the different interpretations of hybrid neural networks, found in litera-

ture, are summarised.

• The neural network is used to calibrate certain parameters in the model.

• The artificial neural network is embedded in a physical model to approximate a

part of the model description.

• The model consists of a combination of different neural networks.

In Wermter and Sun (2000) the term hybrid neural systems is introduced. In addition

to the categories introduced above, Wermter gives a characterisation of connections be-

tween symbolic and neural architectures of a model. It describes the interactions of

different neural networks with other symbolic components, such as symbolic transfor-

mations and reasoning.

3.3 Training of Neural Networks

In order to obtain a good performing neural network, it is necessary to determine the

biases and weights of the network structure. The iterative process determining these

parameters is called training. The complexity of the model, the number of parameters

as well as the accessibility, size and range of datasets affect the success of the training.

In most cases, the input data is preprocessed to enable easier determination of the pa-

rameters and avoid overfitting. There are various methods for data conditioning, e.g.

the minimum and maximum scaling as well as the mean and standard deviation scaling

(Jayalakshmi and Santhakumaran, 2011; Shawash, 2012).

The structure of the neural network defines the number of parameters to be identified.

There are two different categories of training methods: supervised and unsupervised.

The latter includes a sub-characterisation, namely self-organised and reinforcement

learning. Supervised training requires a predefined goal and a cost function. In case

of reinforcement learning, no specific goal is set, instead certain rules and rewards are

defined. In this study only supervised training methods are considered.
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An iterative optimisation process uses the given dataset to improve the results of a pre-

defined cost function, also referred to as loss function. At the beginning of the training

the parameters are initialised randomly using a certain distribution. It is also possible

to use optimisation algorithms to determine useful starting values, e.g. particle swarm

optimisation (PSO), see Zaifei et al. (2009) and Ismail (2002). After the initialisation,

a learning method has to be applied. The different elements of the training process are

explained in the following.

3.3.1 Loss Function

The loss function of a neural network is similar to the cost function in optimisation

problems. It evaluates the performance of the given neural network and by minimising

the loss function the results are improving. Various factors have to be considered when

choosing this function. First of all, the application purpose of the network has to be

determined. For a regression task, one of the most common loss functions is the mean

squared error (MSE) defined as

Lmse =
1

S

S∑
i=1

(
yi − a(L)(xi)

)2

, (3.5)

where xi ∈ �n and yi ∈ �m denote one sample of the given input-output data. The size

of the dataset is given as S and a(L) ∈ �m stands for the output of the neural network.

Other possible loss function are the mean absolute error (MAE), substituting the square

in (3.5) with the absolute value and the mean bias error (MBE), calculating only the

difference between the given output and the network result.

Lmae =
1

S

S∑
i=1

∣∣∣yi − a(L)(xi)
∣∣∣, (3.6)

Lmbe =
1

S

S∑
i=1

(
yi − a(L)(xi)

)
. (3.7)

A special case of regression is the approximation of ordinary differential equations.

For these problems particular structures of the loss function are suggested in literature

(Lagaris et al., 1998; Chen et al., 2018; Bar-Sinai et al., 2019).
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Considering a second order ODE

d2y

dx2
= f(x, y) (3.8)

with the according initial values y(0) = A and y′(0) = B, the approximation of the

solution of equation (3.8) can be approximated using

ŷ = A+ xB + x2aL. (3.9)

The structure of the estimation ŷ is reminiscent of a Taylor approximation second order.

Hereby, a specific loss function is suggested. It can be seen as a special MSE given as

Lode =
n∑

i=1

(
f(xi, yi)−

d2ŷi
dx2

i

)2

. (3.10)

The network applied to calculate aL can be of arbitrary structure.

For classification networks, a possible loss function for convex optimizers is the support

vector machine (SVM) loss or Hinge loss. It is defined as

Lsvm =
∑
j �=yi

max(0, sj − syi + 1), (3.11)

comparing the score of one category sj against the sum of all other categories syi in-

cluding a safety margin (here set to 1). Another example is the cross entropy loss Lcross,

which decreases when diverging from the actual category. It penalises classifiers that

are confident about wrong predictions.

Generally, the loss function visualises a multidimensional plain. The goal of the opti-

misation of the parameters is to find the global minima by decreasing the loss function

value.

3.3.2 Optimisation Algorithms

Most optimisation algorithms deal with the minimisation of convex problem definitions.

Considering a two-dimensional loss function, the global minimum can be imagined as

the lowest point of a paraboloid. Different optimisation algorithms, known from eco-

nomics and control engineering, can be applied to adapt the parameters of the network
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by minimising the loss function value. One method to determine the network parameters

w and b is the Gradient Descent algorithm. Considering a loss function C, its change

ΔC can be defined as follows

ΔC =
∂C

∂w
Δw +

∂C

∂b
Δb. (3.12)

Assuming Δv = (Δw,Δb) and ∇C = (∂C
∂w

, ∂C
∂b
), equation (3.12) can be reformulated

resulting in

ΔC = ∇C ·Δv.

To guarantee convergence ΔC has to be negative. Therefore Δv can be set to

Δv = −ηd,

where η is called the learning rate and d the direction of the algorithm. In case of the

Gradient Descent the direction d is defined as

d := −∇C.

In each iteration, the parameters of the network are updated as given in

wk → wk − η
∂C

∂wk

, (3.13)

bk → bk − η
∂C

∂bk
. (3.14)

Hereby, the learning rate η can be set individually. Apart form the Gradient Descent,

common optimisation algorithms are the Newton’s Method, Conjugate Gradient, Quasi

Newton Method, Levenberg Marquardt and Adams Algorithm. For each algoritm only

the definition of the direction d changes. In Table 3.2 the different optimisation direc-

tions are summarised (Haykin, 2009), where function f stands for the used loss function,

H denotes the Hessian Matrix and J the Jacobian Matrix. Three different conjugate pa-

rameters γ, namely Fletcher-Reeves, Polak-Ribiere and Hestenes-Stiefel as well as two

commonly used iterative processes for G, given as David-Fletcher-Powell (DFP) and

Broyden-Fletcher-Goldfarb-Shanno (BFGS), can be found in literature.

Depending on the size of the input-output dataset, an adequate training algorithm has

to be chosen. The Gradient Descent requires many iterations and therefore results in
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Algorithm Direction

Gradient Descent d = −∇f

Newton’s Method d = −H−1
f ∇f

Conjugate Gradient
di+1 = gi+1 + diγi

d0 = −∇f := g0

Quasi Newton’s Method d = −G∇f

Levenberg Marquardt
d = −(JTJ + λI)−12JT e

f =
∑

i e
2
i

Table 3.2: Step directions of commonly used optimisation algorithms for neural networks.

slow convergences. Advantageously, it does not need the Hessian matrix to calculate d.

Hence, it is best applied for networks with many parameters. For the Newton’s Method,

the Hessian matrix and also its inverse are required. However, less iterations are needed

than for the Gradient Descent. In the Quasi Newton’s method the expensive calculation

of the inverse Hessian matrix is replaced by an approximation using the gradient. The

Conjugate Gradient converges faster than the Gradient Descent and benefits from the

fact, that no Hessian matrix is necessary. It is especially efficient if the neural network

includes a great number of parameters. The Levenber Marquardt algorithm uses again

an approximation of the Hessian matrix but requires large memory storage and is only

applicable for the mean squared error as loss function.

At this point an appropriate loss function and optimisation algorithm can be chosen to

determine the parameters of the network. Both elements have to be embedded into a

learning method. The most common method is the back-propagation.

3.3.3 Back-Propagation Method

The back-propagation algorithm was originally introduced in the 1970s and its appli-

cability was proven in Rumelhart et al. (1986). Today, the back-propagation algorithm

is a well-established standard for the learning process of neural networks. The core of
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back-propagation is the partial derivative of the loss function with respect to the weights

and biases in the network. The derivative describes the rate by which the error changes

relatively to the change in the parameters.

After initialising all parameters with random values, the derivative of the loss function

is calculated according to the chosen algorithm. Starting at the end of the network and

going backwards through the layers, the error of each neuron is determined. Considering

a MLP with a sigmoid function as activation function, the Gradient Descent algorithm

as optimiser, the steps of the back-propagation algorithm can be formulated.

Algorithm 3.3.1 (Back-propagation of a MLP with Gradient Descent). Considering the
Lmse as loss function C, the learning rate η, the weights w(l) and biases b(l) as well as
inputs x and outputs y the algorithm for the back-propagation can be given as

• Set input x: a1 := x

• Feed-forward: z(l) = w(l)a(l−1) + b(l), a(l) = σ(z(l)), l ∈ {2, . . . , L}
• Output error: δ(L) = (a(L) − y) ◦ σ′(z(L))

• Back-propagation: δ(l) = (w(l+1))T δ(l+1) ◦ σ′(z(l)), l ∈ {L− 1, L− 2, . . . , 2}
• Output: ∂C

∂b
(l)
j

:= δ
(l)
j , ∂C

∂w
(l)
ij

:= a
(l−1)
k δ

(l)
j

• Update parameter: w(l)
ij → w

(l)
ij − ηa

(l−4)
k δ

(l)
j , b

(l)
j → b

(l)
j − ηδ

(l)
j

This procedure needs to be repeated for each sample in dataset. After each round,

often referred to as epoch, the algorithm starts again with the first sample until the

network output fulfils the defined approximation requirements. It is also possible to

set a maximum number of epochs. Instead of updating the parameter values for each

sample separately, the mean value of a subset of samples can be considered. The size of

these subsets is known as batch size and decreases the training time.



4
Definition of the Modelling

Framework

Based on the structure of the hybrid dynamical automaton, this chapter introduces a

framework to include artificial neural networks in hybrid dynamical systems. It can be

seen as an example of a hybrid neural network architecture. The framework offers a

standard to apply neural networks in modelling of hybrid dynamical systems. Different

cases, how neural network concepts can be included in the modelling process of hybrid

dynamical systems, will be presented. First, these concepts are explored in an illustra-

tive way, depicting the neural network approaches embedded in the hybrid automaton

structure. Following that, each approach will be motivated and a detailed definition will

be given.

4.1 Framework Overview

The illustration of the hybrid dynamical automaton in Figure 2.3 suggests three pos-

sible situations to apply neural network in hybrid dynamical models, as depicted in

Figure 4.1. Case (a) shows a single neural network representing the entire hybrid sys-

tem. In scenario (b) the nodes of the corresponding hybrid automaton, describing the

local continuous dynamics, are replaced by neural networks. Proposition (c) applies

neural networks to partly administrate the discrete changes. Henceforth, these cases are
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refereed to as (a) artificial hybrid model (HAM), (b) artificial hybrid dynamics (HAD)

and (c) artificial hybrid events (HAE).

d1

d2

d3

a1 a2

a3

NN(a)

d1

d2

d3

a1 a2

a3

NN1

NN2

NN3NN

(b)

d1

d2

d3

a1 a2

a3

NN1 NN2

NN3

NN

(c)

Figure 4.1: Three framework applications for including neural network concepts (red dashed rectangles)

in modelling hybrid dynamical systems.

The framework also facilitates substituting individual elements. It is not necessary to re-

place every node and edge of the model, respectively. Regarding the modelling process

of hybrid dynamical systems, the three scenarios represent every possible application of

neural networks within the hybrid dynamical automaton structure. Merely combinations

of case (b) and (c), replacing a mixture of nodes as well as edges, are possible.

Apart from the automaton description, there is one other possibility to utilise neural

networks. In the simulation process of the local dynamics itself, hybrid neural net-

work approaches can be applied to approximate system parameters, as introduced in

3.2.3. Since this approach affects only the simulation and not the structure of the hy-

brid automaton, no specific modifications of the framework are required to include such

circumstances.

Each case depicted in Figure 4.1 represents a different application of the framework

which will be introduced in this chapter. The framework is defined independently from

any specific feed-forward network. Hence, these definitions facilitate the application of

any network structure introduced in Chapter 3. By the same token, the only require-

ment for the chosen hybrid dynamical system is, that it can be described applying the

automaton defined in Section 2.2.2. In the following, the definition of each framework

application is given.
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4.2 Artificial Hybrid Model

The first framework application discusses the replacement of an entire hybrid system

by an artificial neural network. If data points are given and common dynamical model

methods are not applicable, meaning that the error between model and data cannot be

minimised, a hybrid model can be an appropriate approach. In case the implementation

of the model will be embedded in a real time environment, a low run time of a trained

ANN can be beneficial.

Definition 4.2.1 (Artificial Hybrid Model). An artificial hybrid model is given by the
sextuple

Ann := (L; I;O;N ;U ;T ),

where

• L ∈ � is the number of layers in the network,

• I ⊆ �r is the input data,

• O ⊆ �p is the output data,

• N := (n1, n2, ..., nL) ∈ �L describes the structure of each network layer with
ni, i ∈ {1, ..., L} defining the number of nodes in the i-th layer. Hence, n1 = r

and nL = q refer to the input and output layer,

• U := {u(l)
j }l=2..L

j=1..nl
is a finite set containing every unit of the network. The unit of

the j-th neuron in the l-th layer is defined as

u
(l)
j : �nl−1 ×�nl×nl−1 → � :

(
a(l−1), w(l)

)
�→ a

(l)
j ,

where a
(l)
j is the output of this neuron.

• T := (M,A,C, S, V ) characterises the training process. It contains two strings
defining the used training method M and the training algorithm A. Function C

denotes the applied loss function, S stands for the sample size of the dataset and
vector V = (α, β, γ) ∈ �3 defines the percentages of the dataset used for training
α, testing β and verification γ.

Remark. This formalism assumes the same method for training, testing and verifica-
tion. The variable I describes the final input vector, previous data transformations are
not included in the framework.
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The arguments M and A are assumed to be common methods and algorithms used for

training. For A, common algorithms, such as the Gradient Descent and the Adams al-

gorithm, are applicable optimisers for the parameter iteration. A selection of possible

algorithms is given in Section 3.3.2. Back-propagation, as discussed in Section 3.3.3,

is the most often used training method for feed-forward networks. Other feasible ap-

proaches for M can be found in Taylor et al. (2016).

The definition of the framework application does not answer the question if one neural

network is feasible to approximate an entire hybrid system. The usability depends heav-

ily on the requirements for the output. Two different perspectives can be distinguished.

Having in mind the simulation of a physical model, the network requirements can in-

clude using the same input and output values as for a first principle model. Secondly

the framework could be applied if certain behavioural aspects of the system are of in-

terest. It can be sufficient to train the network for this specific task instead of trying to

find a suitable model that describes the system’s states over time. Hereby, the decision

on the points of interest and omitting unnecessary variables can improve the network’s

accuracy which will be further discussed in Chapter 5 and 6.

Generally, any initial knowledge and system settings can be used as input data. Every

initial condition as well as coefficients and parameters, knowingly influencing the sys-

tem’s behaviour, can be included in the training data for the neural network. The choice

of the output data is more difficult. On the one hand, it can be of interest to approximate

an entire time series of the model. On the other hand, considering a scenario, when

only a part of the output data is significant to characterise the system’s behaviour, these

points can be used as training output for the neural network. Possible dataset structures

that can be used to train the network are summarised in the following. Input data for

this framework application are combinations of

• initial conditions x0,

• values of the state vector x,

• inputs u and

• external variables w including system parameters p.
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Hence the input can be written as I(x0, x, u, w). The choice of the output data depends

on the applied network structure and its purpose. Two different cases can be distin-

guished:

• a single time series O(x0, u, w, t) = x(t) for specific input values and

• output data O(xi
0, u, w) = (xi1∗ , . . . , x

im∗ ) representing special data points x
ij∗ of

the system for various initial values xi
0, i ∈ �.

If the goal is to predict the state vector for the next time step or the system output

for new input values, the training data can be restricted to a time series for specific

initial values. In the second case, a variation of input values and according outputs are

required for training. In this scenario the resulting network aims to approximate the

system’s behaviour with respect to the chosen data points. Considering hybrid systems,

an example for such points are the events.

Definition 4.2.1 generalises not only the application for hybrid dynamical systems, but

allows a standardised framework for feed-forward networks in general. An application

example apart from hybrid dynamical systems is given in the appendix A.3. The broad

application possibilities enhance interdisciplinary exchange of research results for feed-

forward networks.

4.3 Artificial Hybrid Dynamics

In the second application of the framework, neural networks are used to approximate

the dynamical behaviour of a hybrid dynamical system. Having the automaton in mind,

this means that the description of each node is replaced by an artificial neural network,

as depicted in Figure 4.1 (b). The framework is applicable regardless of whether one or

more nodes are approximated by a neural network.

Considering a hybrid dynamical system with two nodes, it is possible, that the descrip-

tion of one node is either known or can be mathematically derived from basic physical

laws, whereas the second process is unknown. In such cases it can be suitable to use

observation data to substitute the unknown dynamical process with an ANN.
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The definition of the hybrid automaton in 2.2.1 and the previous definition 4.2.1, can be

combined to meet these requirements.

Definition 4.3.1 (Artificial Hybrid Dynamics). An automaton for Artificial Hybrid Dy-
namics is described by the tuple

Ahad := (Dan;X;B;Wan;E; Invan; Actan)

where

• Dan := Dh ∪ Da is the finite set of discrete distinguishable states, where Dh

belongs to the hybrid system and Da to the network. Hence, Dh ∩ Da = ∅ is
fulfilled,

• X is the continuous state space containing all continuous states x ∈ X ⊆ �n,

• Wan = Wh ∪Wa contains all external variables, where Wa refers to the external
variables of the neural networks and Wh to the variables of the DAE,

• B is a finite set of symbols,

• E is a finite set of events. Every event e ∈ E is defined by e = (d; b;Gd,d′ ; Jd,d′ ; d
′),

labelled b ∈ B and depicted as an edge interconnecting different locations. Gd,d′

symbolises a finite convex subset of X , the so called guard region. Jd,d′ defines
the jump relation for the transition from location d to d′ on a subset of X × X

with d, d′ ∈ D.

• Invan : Dan → P(X) is called the location invariant and at location d ∈ Dh the
corresponding state x must satisfy x ∈ Inv(d),

• Actan : Dan → Fan maps each location d ∈ Dh to the differential algebraic
equation triplet (fd, gd, hd), as defined in (2.7), and d ∈ Da to the neural network
Ad

an. The neural network is given as sextuple Ad
an = (Ld; Id;Od;Nd;Ud;T d), as

defined in 4.2.1.

Remark. Replacing one dynamical process with a neural network leads to |Da| = 1. If
the dynamics are entirely unknown Dh = ∅ is valid. In some cases the communication
spaces can overlap, hence Wh ∩Wa 
= ∅ is possible.

If the dynamics of at least one node are unknown but data points are available, this

approach enables an approximation of the local system behaviour. Compared to the first

case, the event functions or at least the mathematical definition of the events are known.
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Depending on the required output values different structures of neural networks are

applicable. A time series with a conjecture about the order of the system can be approx-

imated applying the network structure especially designed for ODE, see equation (3.9).

If no pre-knowledge about the order of the system is considered, an ordinary MLP can

be applied. An evaluation of the available datasets, regarding size and quality, might

result in an inapplicability of multi-layer perceptron. The equation learner network

structures presented in Section 3.2.2, can pose a suitable alternative. Their architecture

supports time series approximation even if the structure of the local dynamical system

is unknown. The input data for this framework application is a combination of

• the given initial conditions x0,

• state vector values x,

• input u and

• external variables w including system parameters p.

The output of most first principle models is the state vector. Hence, the options for

output data for the network training include the following:

• a specific time series O(x0, u, w, t) = x(t) and

• the state vector O(xi
0, u, w, t) = xi

e initiating an event, given various initial values

xi
0, i ∈ �.

Instead of defining the mathematical and physical background of the system the mod-

elling process focuses on narrowing down the network structure with the best approx-

imation results. The accuracy of these results depends on the size and quality of the

dataset for training and the requirements for the output data.

4.4 Artificial Hybrid Events

The last application of the framework proposed in this thesis, applies neural networks to

administrate the event handling. The definition is given independently from any specific

feed-forward network structure and facilitates every event type discussed in 2.2.3. The

characterisation of the event, as introduced in the hybrid dynamical automaton, requires
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at least three elements. The mapping Act is considered to be a-priori knowledge since

the local processes and descriptions are accessible. The guard G defines the set of states

initiating the events, whereas the jump map J executes the actual changes happening

during the transition from one local description to the next.

Considering that the local dynamics are known, the jump relation is already implicitly

defined. An investigation of the given dynamical descriptions determines a-priori if J

describes a coordinate transform. A neural network approximation of that transform

is unnecessary. Secondly, assuming a hybrid system with changing parameters and

variables the dynamical behaviour of the system can be characterised mathematically

and the jump relation is a consequence of the model description. Hence, the following

framework focuses on the approximation of the guard region.

Definition 4.4.1 (Artificial Hybrid Events). An automaton including artificial hybrid
events is defined as

Ahae := (D;X;Bae;Wae;Eae; Inv; Act),

where

• D is the finite set of discrete states,

• X is the continuous state space containing all continuous states x ∈ X ⊆ �n,

• Wae = Wh ∪Wa contains all external variables, where Wa refers to the external
variables of the neural networks and Wh to the variables of the DAE,

• Inv : D → P(X) is called the location invariant, where P(X) is the power set of
X . At location d ∈ D, the corresponding state x must satisfy x ∈ Inv(d),

• Bae := Bh ∪ Ba is the finite set of symbols, where Bh belongs to the known
transitions and Ba to the transitions with network approximation. Hence, they
fulfil Bh ∩Ba = ∅,

• Eae is a finite set of events. Every event e ∈ E is defined by e = (d; b;Gae; Jd,d′ ; d
′)

with b ∈ Bae labelling the edge. The function Gae maps to the neural network Ab
ae

for b ∈ Ba, and to the guard Gb
d,d′ for b ∈ Bh. The neural network is given as

tuple Ab
ae = (Lb; Ib;Ob;N b;U b;T b), as defined in 4.2.1.

• Act: D → F : d �→ (fd, gd, hd) maps each location d ∈ D to a set of differential
algebraic equations, as defined in (2.7).
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In definition 4.4.1, the local descriptions and their state variables are known, whereas the

guard region has to be determined. In contrast to both previously explained applications,

the output data for the training set of the ANN has to be defined differently. There is

no feasible output of the system, which can be directly applied for training. Instead the

data has to be analysed and classified. Two different categories can be defined:

Oj =

⎧⎨
⎩0, no event occurred at xj,

1, an event occurred at xj.

With this classification a training set for the network Ab
ae can be given. The input data

for training the neural network include

• the state vector of the system x(t), t ∈ T ⊂ �+,

• the given initial conditions x0,

• input u and

• external variables w including any system parameters p.

Hence, the input can be given as I(x0, x, u, w, t). The output data for the training pro-

cess is O ∈ {0, 1}q, q ∈ �, where q depends on the number of classified state values

included in the dataset. After embedding the trained network into the model structure,

at each time step the state vector of the dynamical process is classified by the network

and an event is initiated if the state vector is labelled 1.

Both previous definitions attempt to approximate the relation between input and output

values. In contrast, the approximation of the event guard represents a classification task.

Hence, neural network structures such as EQL and HONN are not applicable instead

MLP suited for classification tasks are required for this framework application.





5
Framework Application

For the application of the framework introduced in Chapter 4 two different hybrid dy-

namical systems are chosen, each a representative of a different example class. These

examples are used to investigate the applicability of the framework scenarios. The ex-

perimental results are analysed and compared with solutions of common modelling ap-

proaches.

5.1 Definition of Application Examples

The case study consists of the bouncing ball and the pendulum with free fall phase. In

the following, both example descriptions are motivated and a formulation of the hybrid

dynamical automata are given. The examples differ in regard to the dimension of the

state space as well as the number of nodes describing the local dynamics of the system.

5.1.1 Bouncing Ball

The bouncing ball, as defined in Körner and Breitenecker (2016) and Altın et al. (2018),

describes a ball, bouncing off the ground. The state variable of interest is the height

over time t. The acting force in the observed system is the gravity, accelerating the ball

to the ground. Thus, the ODE of the dynamical behaviour of the bouncing ball can be

described as

ḧ(t) = −g, (5.1)
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where g is the gravitational constant. Considering an initial height h0 and velocity v0,

two state variables can be defined, namely the height h(t) =: x1(t) and the velocity

x2(t) := ẋ1(t). Hence, using the state vector x = (x1, x2)
T ∈ �2 equation (5.1) can be

transformed into a state space description resulting in

ẋ(t) =

(
0 1

0 0

)
x(t) +

(
0

−g

)
, x(0) =

(
h0

v0

)
. (5.2)

An advantage of the chosen academic example resides in the existence of an analytical

solution given as

x(t) =

(
−g

2
t2 + v0t+ h0

−gt+ v0

)
. (5.3)

In Figure 5.1 (a), the height of the ball is depicted over time. Two different processes can

be distinguished, the flying and falling phase of the ball, respectively and the bounce.

The latter affects the behaviour of the ball and therefore defines the state event of the

system.

t

h

(a)

h0• d
ẋ(t) = fd(x, w, t)
x(t) ∈ Inv(d)

Jd,d, Gd,d

b

(b)

Figure 5.1: (a) Height of the ball over time. (b) Hybrid dynamical automaton of the bouncing ball.

After the event, the dynamical behaviour of the ball can again be described by equation

(5.1). Based on definition 2.2.1 the elements of the hybrid dynamical automaton for the
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bouncing ball can be formulated. The function Act is defined as

Act(d) := Fd = (fd, hd),

with

Fd =

⎧⎨
⎩ẋ(t) = fd(x, w, t),

y(t) = hd(x, w, t) = x(t).
(5.4)

The state space description in equation (5.2) defines function fd. In this example an

ODE system is sufficient and no additional algebraic equation gd is required. Due to the

fact that the free fall phase is interrupted when the ball reaches the ground, the event

guard Gd,d can be defined. An event occurs if the state vector fulfils

x ∈ Gd,d :=
{
x(t) ∈ �2 : x1(t) = 0 ∧ x2(t) ≤ 0

}
. (5.5)

Regarding the event formulations discussed in section 2.2.3, this state event can be given

in all three forms. The event function can be defined as eb(x) := x1 with eb(x) = 0

initiates the event, whereas the threshold for the event can be given as Δx1 := 0.

Model descriptions are often implying a certain degree of abstraction. In this applica-

tion, the bounce is described by a simplified assumption without modelling the physical

process in detail. When the ball hits the ground the behaviour of the ball is affected. The

friction is realised as simple damping factor λ with 0 < λ < 1. The reflection of the

ball results in inverting the velocity component. Hereby, the time delay due to any de-

formation work is neglected. Thus, the jump map Jd,d at the event can be characterised

by the linear transform

x(t+) = Jd,d(x(t
−)) :=

(
1 0

0 −λ

)
x(t−). (5.6)

The elements defined above combined with the set of external variables

W = {λ, g, v0, h0}

including the one-dimensional parameter vector p = g result in an hybrid dynamical

automaton Ah in the form

Ah = ({d},�2, {b},W,E, Inv ⊂ �2,Act),

with E = (d, b, Gd,d, Jd,d, d).
(5.7)

In Figure 5.1(b) an illustration of the automaton can be found.
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5.1.2 Rotating Pendulum

The rotating pendulum considered in this work is a realisation of a thread pendulum.

Here a mass, imagined as a point and suspended at one point by means of a massless

pendulum rod, can swing back and forth in a vertical plane. The plane pendulum is a

special case of the spherical pendulum. Assuming a non-elastic thread of length l, the

mass can only reach points in the vertical plane within the circle defined by l. Therefore

the overall state space X for this hybrid model can be defined as

X =

{(
x1

x2

)
∈ �2 : x2

1 + x2
2 ≤ l2

}
.

An observation of the system suggests three different model descriptions. First of all

there is the typical swinging of the object, which can be called oscillation. Its mathe-

matical description is given as

ϕ̈ =
g

l
sinϕ− kpϕ̇, (5.8)

where kp denotes the damping factor. The state vector consists of the angle ϕ and the

angular velocity ϕ̇ and is denoted as xp = (ϕ, ϕ̇)T . The oscillation period is determined

exclusively by the length of the pendulum and the prevailing gravitational acceleration g.

For small oscillations, the period of oscillation is almost independent of the magnitude

of the amplitude and shows an almost harmonic oscillation. If enough angular velocity

is applied, the large excitations lead to "flashovers". Then the pendulum body orbits

periodically on the circle in the vertical plane. To an observer the movement looks

different, but the mathematical description is the same as for the oscillation described in

(5.8). The force to keep the pendulum mass in orbit is given by the Lagrange function

F (xp) = F (ϕ, ϕ̇) := −mg cosϕ+mLϕ̇2. (5.9)

If F decreases and reaches zero, the pendulum body leaves the orbit and enters a free

fall phase. This change in the dynamical behaviour marks the first state event of the

model. The guard region for this event can be defined as

Gp,r = {xp ∈ �2 : F (xp) = 0}. (5.10)
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The changing model description results in a different state vector. The state variables

for the free fall phase are denoted as

xr = (x1, ẋ1, x2, ẋ2)
T ∈ �4,

with (x1, x2) begin the coordinates of the ball in the vertical plane and ẋ1, ẋ2 the accord-

ing velocities. The dynamical behaviour of the free fall can be described by an ODE

system of the following form

⎧⎨
⎩mẍ1 = −krẋ1,

mẍ2 = −mg − krẋ2.
(5.11)

Equation (5.11) can be rewritten as linear state space representation

fr(xr, wr, t) := ẋr(t) =
1

m

⎛
⎜⎜⎜⎜⎝
0 1 0 0

0 −kr 0 0

0 0 0 1

0 0 0 −kr

⎞
⎟⎟⎟⎟⎠xr(t) +

⎛
⎜⎜⎜⎜⎝

0

0

0

−g

⎞
⎟⎟⎟⎟⎠ , (5.12)

with the initial condition given as xr(0) = (x0
1, vx1 , x

0
2, vx2)

T . The vector wr of the

external variables is defined as

wr = (g, kr, x
0
1, vx1 , x

0
2, vx2)

T .

Due to the different state vector for the free fall phase, the jump map Jp,r is a coordinate

transform which simultaneously sets the required initial conditions.

Jp,r(xp(t)) :=

⎛
⎜⎜⎜⎜⎝

l sinϕ(t)

l cosϕ(t) · ϕ̇(t)
l cosϕ(t)

−l sinϕ(t) · ϕ̇(t)

⎞
⎟⎟⎟⎟⎠ = xr(t). (5.13)

The change in the model description is defined by the mapping

Act(r) = (fr, hr) with hr = xr(t).
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In the free fall the pendulum body keeps on falling until the thread tightens at its max-

imum length l and the coordinates of the mass are again on the circular path. Thus, the

second event guard Gr,p can be defined as

Gr,p = {xr ∈ �4 : x2
1 + x2

2 = l2}. (5.14)

The mathematical description of the behaviour switches back to equation (5.8) and can

be formulated as

Fp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋp(t) = fp(xp, wp, t) := (ϕ̇, g

l
sinϕ− kϕ̇),

0 = gp(xp, wp, t) := l2 − x2
1 − x2

2,

yp(t) = hp(xp, wp, t) = xp(t).

(5.15)

The output yp is the state vector. For both models the finite set W , the parameter vector

and the external variable vector are given as

W = {x0
1, vx1 , x

0
2, vx2 , ϕ0, ω0, g, kp, kr},

wp = (g, kp, ϕ0, ω0),

wr = (g, kr, x
0
1, vx1 , x

0
2, vx2),

where ϕ0 denotes the initial angle of the ball and ω0 the according angular velocity. The

definition of the dynamics in the free fall can be formulated as

Fr =

⎧⎨
⎩ẋr(t) = fr(xr, wr, t),

yr(t) = hr(xr, wr, t) = xr(t).
(5.16)

Equation (5.12) defines the ODE system fr where the output yr is the state of the system.

Putting the introduced elements together, the hybrid automaton is given as

Ah = ({p, r}, X, {b1, b2},W,E, Inv ⊂ �2,Act),

E = {(p, b1, Gp,r, Jp,r, r), (r, b2, Gr,p, Jr,p, p)},
Inv(p) = {(x1, x2)

T ∈ �2 : x2
1 + x2

2 = l2},
Inv(r) = {(x1, x2)

T ∈ �2 : x2
1 + x2

2 < l2},
Act(i) = Fi, i ∈ {p, r}.

(5.17)
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p
fp(xp, wp, t)

yp = xp(t) ∈ Inv(p)

r
fr(xr, wr, t)

yr = xr(t) ∈ Inv(r)

Gp,r, Jp,r

b1

Gr,p, Jr,p

b2

Figure 5.2: Hybrid automaton of the pendulum with free fall.

An illustration of the automaton can be found in Figure 5.2.

In conclusion, the rotating thread pendulum can be describe with two different state

models, the oscillation and the free fall. If there is a high initial velocity, the oscillation

can turn into a rotation in the orbit. Due to friction the driving forces are decreasing until

the movement transitions into a free fall. Depending on the location where the Lagrange

function reaches zero, the duration of the free fall varies and can be nonexistent. The

final phase is always a damped oscillation around the equilibrium.

5.2 Artificial Hybrid Model Application

For the first framework application the bouncing ball example is considered. In this

scenario the entire hybrid model, as given in equation (5.7), is replaced by a neural

network, considering measurement data instead of a-priori knowledge. As mentioned

before, the output data of the training set depends on the research question regarding

the system’s behaviour. Assuming, the main focus is the event localisation, then the

approximation of the event time and its state vector are of interest. A possible approach

is to identified the first three events in the measurement data and define them as output

data for the network. The external variables and parameters of the system, consisting

of the initial inputs h0 and v0 as well as the gravitational constant g, are possible input

values, as discussed in Section 4.2.
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Dataset BB Train Dataset BB Validate Dataset BB Extra

h0 h0 ∈ [0, 15] h0 ∈ [0, 20] h0 ∈ [20, 30]
Δh0 0.5 0.2 0.1
v0 v0 ∈ [−10, 10] v0 ∈ [−10, 15] v0 ∈ [10, 20]
Δv0 0.5 0.2 0.1
Δt 0.001 0.005 0.01
S 1271 1989 10201

Table 5.1: Dataset definitions for the bouncing ball example.

For the following experiments the damping factor for the bounce is set as constant value

λ = 0.8225. The existing analytical solution enables an arbitrary size of input-output

datasets with varying initial condition. The variation of the initial conditions is given

as h0 ∈ [0, 15], v0 ∈ [−10, 10]. The step size for the initial conditions as well as the

time step for the analytical solution are set accordingly to Table 5.1. There, the dataset

definitions for the following experiments are listed. In addition to the dataset for the

training process an extended dataset Dataset BB Extra is created. It consists of data for

new initial conditions and enables an evaluation of the extrapolation capabilities of the

network structures. In addition to the extrapolation possibilities its application can also

reveal if the training of the network parameters results in overfitting.

For each initial condition [h0, v0] in the Dataset the first three events (E1, E2, E3) of the

according time series are stored as output. To reconstruct measurement data a white

noise N (0, 0.001) is added to the output. For each output the input data is defined as the

initial values and the gravitational constant g. The resulting training data is permuted

and divided, according to the percentages given in V = (α, β, γ), into training, testing

and verification.

Applying the framework, the model for the bouncing ball can be given as

Aham = (4, I, O,N, Umlp, T ) with (5.18)

I := (h0, v0, g),

O := (E1, E2, E3),

Umlp := {u(l)
j }l=2,...,L

j=1,...,nl
with
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u
(l)
j (z

(l)
j ) :=

⎧⎨
⎩σ(z

(l)
j ) , l ∈ {2, . . . , L− 1}, j ∈ {1, . . . , nl},

z
(l)
j , l = L, j ∈ {1, . . . , nL},

T := (M,A,C, S, V ),

C := Lmse, V := (α, β, 0),

where M is the back-propagation method. Two different optimisation algorithms A ∈
{Levenberg-Marquardt, Adam-Algorithms} and two different layer structures

N ∈ {(3, 3, 3, 3), (3, 6, 6, 3)}

are compared for the MLP. The training set can also be used to train and test an EQL

set-up given as

Ai
ham = (Li, I, O,Ni, Ueql, T ), i ∈ {1, 2} with (5.19)

I := (h0, v0, g),

O := (E1, E2, E3),

Ueql := {u(l)
j }l=2,...,L

j=1,...,nl
with l ∈ {1, .., L− 1},

u(l)(z
(l)
j ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z
(l)
j , j = 1,

sin(z
(l)
j ) , j = 2,

cos(z
(l)
j ) , j = 3,

σ(z
(l)
j ) , j = 4,

z
(l)
j · z(l)j+1 , j = 5,

uL(z
(L)
j ) := z

(L)
j ∀j,

z
(l)
j :=

∑
k

wj,ka
(l−1)
k + b

(l)
j ∀l,

T := (M,A,C, S, V ),

C := Lmse, V := (α, β, 0),

with varying layers defined as

L ∈ {3, 4} with N ∈ {(3, 5, 3), (3, 5, 5, 3)}.
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MSE α MSE β MSE γ E1−3 MSE γ E3−6 Method Layer α Epoch

3.6175 e−4 4.2658 e−4 6.6438 e−4 3.6754 e−2 EQL 2(5) 80 1000
3.2282 e−4 3.9579 e−4 5.3113 e−4 3.8308 e−2 EQL 2(5) 20 1000
7.5649 e−4 8.4607 e−4 8.4836 e−4 3.8488 e−2 MLP 2(6) 50 1000
4.5263 e−4 5.3456 e−4 4.8243 e−4 4.1186 e−2 MLP 2(6) 80 1000
4.0074 e−4 3.2488 e−4 4.7142 e−4 4.5297 e−2 EQL 2(5) 80 500
3.6031 e−3 3.6371 e−3 3.6309 e−3 5.0753 e−2 EQL 1(5) 80 1000
1.7402 e−2 1.8055 e−2 1.5773 e−2 7.0394 e−2 EQL 2(5) 50 100
2.7812 2.8264 2.7697 2.2196 MLP 2(3) 50 100

MSE E1−3 MSE E3−6 MSE Extra E1−3 MSE Extra E3−6 Method Layer

3.0335 e−03 5.9518 e−02 4.5410 e−02 1.5169 e−01 MLP 1(12)
1.7923 e−01 3.9186 e−01 2.3156 e−02 1.7219 e−01 MLP 1(6)
2.5409 e−03 5.7638 e−02 2.1195 e−01 1.9962 e−01 MLP 1(9)
2.0243 e−02 1.5326 e−01 2.3040 e−01 2.2946 e−01 MLP 1(3)

Table 5.2: Comparison of different MLP and EQL settings for the approximation of the first three events

and the extrapolation of the following three events for the bouncing ball.

In Table 5.2 the mean squared errors of the different neural networks are given. In the

upper tabular format the MSE α defines the error in training, where value α denotes the

percentage of the training set used. MSE β denotes the loss function value for the rest of

the training set (β = 100%−α). For MSE γ another training set, as stated in Table 5.1,

is used. Hereby, not only the first three events are evaluated but also the following three

events are predicted using the network. The column Layer defines the number of hidden

layer(s) of the network and the value in the brackets defines the comprised neurons.

Focusing on the last two rows, it is obvious that even with a small number of epochs the

results of the EQL network are acceptable. The MLP needs at least 500 Epochs to show

similar mean squared error values. The top 4 rows show that the two-layered EQL can

be trained with only 20% of the training data and still reach an adequate approximation.

In the lower part of Table 5.2 the extrapolation capabilities of one-layered MLP net-

works are tested. The dataset used for MSE Extra consists of unseen samples. The

network is executed to calculate the first three events as well as the following three

events of the time series for each sample in the dataset. The results show, that this re-

duced output structure enables ordinary one-layered MLP networks to extrapolate event

times for unseen initial conditions.
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In some cases, the event location is not sufficient to answer questions about the system’s

behaviour, instead a time series is required. The MLP for this purpose can be defined

similar to equation (5.18), except the layer structure and the dataset have to be mod-

ified. The input changes to I = (t0, . . . , tn) and the output consists of the according

response of the system O = (x0, . . . , xn). The second dataset of Table 5.1 contains

S = 1989 different initial values and for each of them a time series with 2001 time steps

is available.
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Figure 5.3: A MLP approximation of the time series for a specific initial value.

The first approach is a MLP with the layer structure N = [1989, 50, 1989]. Since

MLP are not appropriate for learning the functional relation the training error results

in Lmse ≈ 173. Hence, a network using the entire time series as one input sample is not
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useful. In the second approach, only one time series for one specific initial value is con-

sidered. In this case the input is defined as I = ti and the according output is O = xi.

The according network structure is given as N = [1, 20, 1]. The defined MLP is able to

learn the parameters and succeed the training process with Lmse < 8.85 e−4 for train-

ing, testing and validation. Though, as expected, this network is not able to extrapolate

the behaviour of the system for future time instances which are not included in the train-

ing set, see Figure 5.3. An application of the EQL leads to a similar phenomenon, as

shown in Figure 5.4.
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Figure 5.4: A EQL approximation of the time series for a specific initial value.

In Table 5.3 the results of EQL and MLP approaches are listed. MSE α is the resulting

error for the training using α% of the data. MSE β denotes again the MSE value for
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the unused training data. Since only a part of the time series is taken as training data

MSE TS1 defines the error resulting of the network evaluation for the entire available

time series. Additionally a second time series for another set for initial conditions close

to the original initial condition, is used for validation (MSE TS2). The last calculated

error value MSE TSall evaluates the mean squared error for all 1898 time series.

These results, especially column MSE TS2, confirm the assumption drawn from Figure

5.4. A MLP and unfortunately also an EQL network are not applicable for time series

approximation of the bouncing ball.

MSE α MSE β Method Layer α Samples Epoch

4.6301 e−2 5.9671 e−2 EQL [1, 5, 5, 1] 50 1500 1000
5.2486 e−1 5.2861 e−1 EQL [1, 5, 1] 50 1500 1000
3.1987 e−1 4.452 e−1 MLP [1, 6, 6, 1] 50 1500 1000
1.2565 e−2 1.502 e−2 EQL [1, 5, 5, 1] 50 1500 3000
4.1318 e−1 4.8689 e−1 EQL [1, 5, 1] 50 1500 3000
7.3631 e−2 1.0438 e−1 MLP [1, 10, 10, 1] 50 1500 3000

MSE TS1 MSE TS2 MSE TSall Samples TS Samples all

5.1502 e−1 1.7552 42.1511 2001 1898× 2001
7.1312 8.2132 53.0759 2001 1898× 2001
2.9084 e−1 8.6156 e−1 40.3895 2001 1898× 2001
7.6877 9.5234 55.3003 2001 1898× 2001
3.1582 4.0192 46.7932 2001 1898× 2001
8.8507 e−2 1.0754 40.8014 2001 1898× 2001

Table 5.3: Comparison of different MLP and EQL for a time series approximation of the bouncing ball.

However, as discussed in Section 2.3, there are other established methods for approx-

imating hybrid nonlinear models from measurement data. The algorithm used in the

toolbox HIT is based on regression methods. Therefore the framework is not applica-

ble. The PWA OAF NN approach, as presented in Shukla and Paul (1996) and Števek

et al. (2012b), is based on a special network structure. Figure 5.5 shows an example

structure of an OAF NN.
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Figure 5.5: The structure of a neural network with orthogonal activation functions (OAF NN) based on

(Kozák and Števek, 2011).



5.2. ARTIFICIAL HYBRID MODEL APPLICATION 73

The application of this network results in a generalised Fourier series based on one-

dimensional orthonormal functions (Števek and Kozák, 2011). The input layer in Figure

5.5 shows a preprocessing of the input data. Considering m inputs I = (x1, . . . , xm),

the n chosen orthonormal activation functions Tn(x) with order n are applied for each

input resulting in

P (I) = (T1(x1), . . . , Tn(x1), . . . , T1(xm), . . . , Tn(xm))
T .

The structure of the hidden and output layer is similar to the Pi-sigma network and con-

sists of product units in the hidden layer and a linear unit in the output layer. Only

the edges between input and hidden layer are different. This network is not fully con-

nected but requires specific connections between these layers to guarantee that the HPU

multiplies only orthogonal functions of different inputs. This can be written as

z(2) = (Z1, . . . , Zm),

Zi = W i · I i, i ∈ {1, . . . ,m},
W i ∈ {0, 1}2m×n, I i = (Ii, . . . , Ii+n)

T .

Hence, the framework can be applied and the model description can be given as follows

Aoaf = (3, I, O,N, Uoaf, T ) with

I = P (x1, . . . , xm),

O = y,

N = (n ·m,n ·m, 1),

Uoaf := {u(2)
j }j=1,...,n·m,

u
(2)
j (z

(2)
j ) =

m∏
i=1

z
(2)
ji ,

u(3)(z(3)) = z(3) =
n·m∑
j=1

w
(3)
j a

(2)
j ,

T = (M,A,C, S, V ),

(5.20)

where P denotes the preprocessing of the input data.
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The model of the hybrid system actually consists of one neural network of the form

Aoaf for each PWA system modelling the local dynamics in one region of the state space

partition, see Section 2.3.4. Therefore, not one network is used, but multiple OAF NN

are in place to model the hybrid system. Due to the fact that the starting point is a set of

measurements, it is an approximation of the entire hybrid system using neural networks.

Additionally, it is as well an application of the artificial hybrid dynamics approach since

each local dynamical system is approximated by a network. The difference is that in

the artificial hybrid dynamics framework the event conditions are a-priori known. In

case of the OAF NN approach, the regions for the local models are determined using a

regression based algorithm, see Section 2.3.3.

5.3 Artificial Hybrid Dynamics Application

This section investigates the application of the framework, apart from the OAF network

approach, for systems where the dynamical processes are only given as input-output

data. The event definition including guard and jump are considered a-priori knowledge.

5.3.1 Bouncing Ball

Figure 5.1 (b) shows one dynamical process and its definition is given in equation (5.18).

The framework, as introduced in Section 4.3, can be applied for the dynamical behaviour

as follows

Ad
had = (d;�2;A;W ;E; Invan; Actan), with (5.21)

Invan ⊂ � and Actan : d �→ Ad
nn, where

Ad
nn = (3, I, O,N, Umlp, T ),

I = (h0, v0, g),

O = (tE, vE),

T = (M,A,C, S, V ),

C = Lmse,

V = (α, β, γ).
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The variables A,W and E are inherited from equation (5.7), whereas Umlp,M and A

are the same as in equation (5.18) with different layer structures N . The framework ap-

plication for an EQL network is similar, except the set of units Umlp has to be substituted

with Ueql defined in equation (5.19).

MSE α MSE β Method Layer α Epoch

1.1426 e−2 1.2294 e−2 EQL [3, 5.5, 1] 50 100
6.5946 e−2 6.9320 e−2 MLP [3, 6, 6, 1] 50 100
1.4988 e−3 1.8588 e−3 EQL [3, 5.5, 1] 80 100
3.4077 e−2 4.1005 e−2 MLP [3, 6, 6, 1] 80 100
3.5740 e−4 2.5978 e−4 EQL [3, 5.5, 1] 50 1000
6.2314 e−4 7.2214 e−4 MLP [3, 6, 6, 1] 50 1000
9.9819 e−5 9.3751 e−5 EQL [3, 5.5, 1] 80 1000
2.5902 e−4 2.9231 e−4 MLP [3, 6, 6, 1] 80 1000

MSE E1 MSE E1−3 MSE Extra E1 MSE Extra E1−3 Method

7.8549 e−2 0.5385 1.3667 17.1962 EQL

0.3845 2.3131 4.9861 26.8313 MLP

0.1879 0.4240 6.4578 61.4694 EQL

0.1404 0.3679 3.0436 13.3757 MLP

3.4185 e−2 4.9203 e−2 2.5090 6.3011 EQL

1.2948 e−2 5.3241 e−2 0.2744 2.5792 MLP

5.7118 e−3 0.1099 0.5731 0.41854 EQL

1.3797 e−2 8.1133 e−2 0.7764 4.7044 MLP

Table 5.4: Comparison of different MLP and EQL settings for the approximation of the first event and its

extrapolation for the bouncing ball.

For the experiments to approximate the dynamics, the datasets in Table 5.1 are reused.

Instead of focusing on the first three events this approach requires only storing the first

events. The input data is defined as before, consisting of the initial condition [h0, v0] as

well as the gravitational constant g. The output values consist of the event time te and

the according velocity vE . Hence, each of the 1271 samples is defined as I = (h0, v0, g)

and O = (tE, vE). For the training (α) 50 to 80% of this data is used, leaving 20− 50%

for testing (β).

In Table 5.4 the simulation results for a MLP and an EQL are summarised. The changing

epoch shows that an intense training is more important than the number of samples used.

The different network structures show a high accuracy in predicting the second and third

event for initial conditions in the domain of the training set. The extrapolation for new
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Output MSE E1 MSE E1−3 MSE Extra E1 MSE Extra E1−3 Layer

(te, ve) 1.1097 e−02 8.3003 e+00 3.5516 e−02 2.7728 e+01 2(3)
(te, ve) 1.3611 e−02 8.3250 e+00 7.7100 e−02 3.0234 e+01 1(9)
(te, ve) 2.0303 e−02 8.4143 e+00 8.5657 e−02 2.8415 e+01 2(6, 2)
(te, ve) 2.1441 e−02 8.3161 e+00 2.3364 e−01 2.9578 e+01 1(6)
(te, ve) 1.6752 e−02 8.3683 e+00 2.3422 e−01 2.3866 e+01 1(9)
(te, ve) 2.1446 e−01 6.2800 e+00 2.9381 e−01 2.1027 e+01 2(9, 1)
(te, ve) 9.5669 e−03 8.3091 e+00 3.3316 e−01 3.0816 e+01 1(12)
(te, ve) 5.1260 e−02 8.2436 e+00 4.7611 e−01 2.3711 e+01 1(3)
(te, ve) 3.1343 e−03 8.3001 e+00 8.7262 e−01 3.0891 e+01 2(3, 6)
(te) 5.5952 e−04 8.8302 e−02 2.2811 e−03 2.8851 e−02 1(9)
(te) 1.3634 e−03 9.6518 e−02 7.3375 e−03 3.3124 e−02 2(6, 2)
(te) 5.6004 e−04 8.1020 e−02 1.5032 e−02 3.9409 e−02 2(3)
(te) 8.0539 e−04 8.3926 e−02 1.0225 e−02 5.0373 e−02 1(6)
(te) 4.1091 e−04 8.3086 e−02 1.2095 e−02 5.6290 e−02 1(12)
(te) 9.9303 e−05 8.1708 e−02 1.2096 e−02 8.6462 e−02 2(3, 6)
(te) 8.7971 e−03 1.5440 e−01 3.5814 e−02 9.2501 e−02 1(3)
(te) 3.8970 e−01 1.2481 e+00 5.2202 e−01 4.8766 e+00 2(9, 1)

Table 5.5: Comparison of different MLP networks for of the first event approximation and the extrapola-

tion of the following two events.

initial conditions is rather bad. The best prediction outside of the training set can be

achieved by the 2-layered EQL network.

In Tabel 5.5 different MLP networks are compared. The results suggest, that a one-

layered network with nine neurons approximate better than a two-layered network with

less neurons in each layer. Apart from the state output (te, ve) the results are also tested

with regards to the event time only. Here, the extrapolation results are much better.

Without simulating an entire time series, the model Ahad is able to predict the first three

events even if the initial condition is located outside of the training set. This framework

application replaces the guard Gd,d of the hybrid model. The jump Jd,d can be applied

to the output vE , as defined in (5.6) and with the new initial conditions the network

can approximate the next event. Due to the fact that there is only one dynamical node,

function Actan maps always to the same neural network Ad
nn. This process repeats itself

until the predefined simulation time is reached.

Depending on the application purpose, the event time prediction can be inadequate and a

time series might be required. Two different network structures are chosen for the time
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series approach, an EQL and a MLP. First, an EQL network with an ARX approach

is chosen to approximate the flying phase of the ball. Its training data consists of the

current state vector (tk, hk, vk) of a specific initial condition and aims to predict the

future state vector O := (tk+1, hk+1, vk+1). This data is extracted from the dataset

introduced in Table 5.1. Only the first flying phase is including in the training set.

Using the framework, this scenario can be defined as

Ann = (L, I, O,N, Ueql, T ), with (5.22)

I := (tk, hk, vk),

O := (tk+1, hk+1, vk+1),

T := (M,A,C, S, V ),

C := Lmse,

V := (α, β, γ).

Only 20 − 50%(α) of the dataset with S = 1675 samples are used for training. Even

for higher α values the training error remains at Lmse ≈ 3.4 e−1. The fact that it is not

possible to reduce this error value even when using 80% of the data, suggests that the

ARX approach is not feasible in this scenario. In Figure 5.6 the resulting networks are

used to approximate a time series applying the jump relation Jd,d at the event times. It

is obvious that neither MLP nor EQL are applicable in this case.

Another possible network structure for the framework defined in (5.21) is the ODE NN.

The framework Ahad has to be adapted to the following form

Ahad = (3, I, O,N, Uode, T ), i ∈ {1, 2}, with (5.23)

I := (h0, v0, ti),

O(aL) := aLt2i + v0ti + h0 = xi,

N := [1, 10, 1],

T := (M,A,C, S, V ), C := Lode,

where M is the back-propagation, A is the Gradient Descent algorithm and Uode is

equal to Umlp. In contrast to the EQL approach, each sample in the training set is a point
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Figure 5.6: Time series approximation of MLP and EQL

in time ti and the initial condition (h0, v0) as input resulting in I = (h0, v0, ti). The

corresponding system answer O = xi is defined as output and a white noise is added.

The training samples are taken from a single time series with fixed initial values.

Applying the jump map Jd,d at every event, a complete time series can be approximated,

see Figure 5.7. In Table 5.6 the results for different epochs and sample sizes are listed.

Although the training set consists only of points for one specific initial condition, the

network is able to approximate the system behaviour for other unseen initial value set-

tings. The results also show that it is more important to invest in time for the training

process than in a lot of training samples. It also confirms the superiority of this network

approach compared to a MLP and EQL. This fact comes as no surprise, since the output
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Figure 5.7: Approximation of the dynamics for the bouncing ball.

of the ODE NN approach, as defined in equation (5.23), is based on the same principles

as a Taylor polynomial second order. Hence, the ODE NN network represents a solid

alternative for approximation dynamical behaviour.

5.3.2 Pendulum with Free Fall Phase

In order to evaluate the performance of the framework applications a dataset is created.

Since there is no analytical solution available, the differential algebraic equations de-

fined in (5.15) and (5.12) are implemented and solved by an embedded ODE-solver in

MATLAB R©. The variation of the initial conditions is given as

ϕ ∈ [0.5, 6.2] and ϕ̇ ∈ [0, 5],



80 CHAPTER 5. FRAMEWORK APPLICATION

IC [3, 2] IC [5, 5] IC [5, 6] Samples Epoch

4.9141 e−4 1.0457 e−5 2.8280 e−5 30 1000
7.1115 e−4 1.9453 e−2 8.4800 e−3 100 100
4.4899 e−3 1.2394 e−2 3.0243 e−2 50 100
9.2812 e−4 7.1193 e−2 1.1078 e−1 30 100

IC [6,−2] IC [6, 5] IC [9, 7] Samples Epoch

5.4143 e−4 1.2945 e−5 1.2428 e−2 30 1000
1.9734 e−2 4.8782 e−3 2.4246 e−2 100 100
3.8697 e−3 3.2765 e−2 3.4682 e−1 50 100
3.8898 e−2 1.0601 e−1 2.2654 e−1 30 100

Table 5.6: Comparison of the ODE NN for different initial conditions for the bouncing ball.

with a step size of 0.1. The gravitational constant is approximated as g = 9.81 and the

damping parameters are given as kp = 0.4 adn kr = 0. The length of the pendulum rod

is l = 1 and the pendulum body has mass m = 1.

The application of the artificial hybrid dynamics framework for the pendulum with free

fall is given as follows

Ahad = ({p, r};�2; {b1, b2};W ;E; Invan; Actan), with

Invan ⊂ �,
Actan : D → Fan,

Actan(d) = Ad
nn, d ∈ {p, r}.

(5.24)

Both dynamical processes can be realised as neural networks denoted as Ap
nn for the

oscillating behaviour and Ar
nn for the free fall. The framework definition for these net-

works differ solely it the used network approach is different.

Ap
nn = (3, I, O,N, Umlp, T ), (5.25)

I = (ti, h0, v0, g),

O = xi,

T = (M,A,C, S, V ),

C = Lmse,

V = (α, β, γ).
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The MLP defined in (5.25) can be substituted by an EQL. In that case the layer structure

N has to be adapted and the definition of the units has to be changed to Ueql. In Figure

5.8 the results of a MLP and an EQL for the oscillation of the pendulum are depicted. It

is obvious, that the MLP can learn the training data to a certain extent. Unfortunately.

the network is overfitted because the prediction of every point which was not included

in the training data is incorrect. Whereas the EQL approximates the function also for

new data with a small discrepancy.
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Figure 5.8: MLP and EQL approximation for the oscillation of the pendulum.

In case of the free fall phase, the framework for network Ar
nn applying a ODE NN can

be given as

Ar
nn = (3, I, O,N i, ul

j, T ), i ∈ {1, 2}, with (5.26)

I := (t0, . . . , tn),
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O := (x0, . . . , xn)),

u
(l)
j (z

(l)
j ) =

⎧⎨
⎩σ(z

(l)
j ) , l = 2, j ∈ {1, . . . , n2},

z
(l)
j , l = 3, j = 1,

N := (1, 10, 1),

T := (M,A,C, S, V ),

C := Lode,

whereas M and A are the same as in (5.23).
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Figure 5.9: ODE NN approximation of the free fall phase of the pendulum.

In Figure 5.9 the results for a specific initial condition are depicted and in Table 5.7

the according results are shown. The network is trained with data of one specific initial

condition. Similar to the experiments of the bouncing ball before, the network can
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approximate also solutions for unseen initial conditions. There is almost no difference

in the mean squared error values for the randomly chosen initial conditions in Table 5.7.

IC1 IC2 IC3 IC4 IC5 Samples Epoch

1.4536 e−05 1.0596 e−05 1.5075 e−05 2.6757 e−05 1.1531 e−04 30 100
3.7666 e−06 1.9892 e−06 3.7182 e−06 4.3021 e−06 3.7139 e−06 100 100
3.2992 e−06 1.4747 e−06 3.2822 e−06 4.2290 e−06 4.6056 e−06 30 1000
1.8490 e−06 1.5378 e−06 1.8037 e−06 1.1336 e−06 1.3347 e−06 100 1000

Table 5.7: ODE NN for different initial conditions for the free fall phase of the pendulum.

5.4 Artificial Hybrid Event Application

The last application scenario focuses on the problem of event detection with neural

networks. As mentioned in the framework definition 4.4, the data consists of different

state values of the system and its label states if an event occurred. Neither a EQL nor a

ODE NN is applicable for such a classification task. Hence, a MLP is chosen as network

structure. The framework application to replace the guard region in the hybrid model of

the bouncing ball is given as

Ahae = ({d};�2; {b};Wae;Eae = (d, b, Gae, Jd,d, d); Inv; Act),

Act(d) := Fd,

Gae(b) := Ab
ae.

(5.27)

where W, Inv and Jd,d remain as defined in the hybrid automaton in equation (5.7). In

case of a pendulum with free fall the according framework can be defined as

Ahae = ({r, p};X; {b1, b2};Wae;Eae; Inv; Act),

Eae = {(p, b1, Ap
ae, Jp,r, r), (r, b2, A

r
ae, Jr,p, p)},

(5.28)

where W, Inv,Act as well as the jump maps Jp,r and Jr,p are the same as in definition

(5.17). The network definition does not depend on the application example. Therefore

one network definition can be used for events of both systems, occurring during the

bounce, the free fall and the pendulum phase.
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The framework application for the network is given as

Ai
ae = (4, I, O,Ni, {u(l)

j }l=2,3,4
j=1,...,nl

, T ), i ∈ {d, r, p},
u
(l)
j (z

(l)
j ) = σ(z

(l)
j ), l = 2, 3, j = {1, . . . , nl},

u(4)(z(4)) = z(4),

T = (M,A,C, S, V ),

C = Lcross,

(5.29)

where A is the Scaled Conjugate Gradient Algorithm, M is the back-propagation method

and Ni depends on the application example. The input data consists of the state vec-

tor for various initial conditions and various points in time. For each data point the

occurrence of an event is evaluated

Oi =

⎧⎨
⎩0, no event at Ii,

1, event occurs at Ii.

The resulting dataset Oi ∈ {0, 1}, i ∈ � forms the output data for training. The size

and structure of the state vector depends on the application example. Hence, the input

for the training data is given as

Ii =

⎧⎨
⎩
(
ti, x1(ti), x2(ti), g

)
, D = {d},(

ti, ϕ(ti), ϕ̇(ti), x1(ti), ẋ1(ti), x2(ti), ẋ2(ti), g, kr, kp
)
, D = {r, p}.

The event classification is especially challenging. In most hybrid systems the occurrence

of an event is rather rare. A dataset for the pendulum with various initial conditions re-

sults in ≈ 0.6% events. This problem is often referred to as binary classification of

imbalanced datasets (Wang et al., 2012; Chawla, 2010). In Burnaev et al. (2015) dif-

ferent resampling methods are discussed, to balance the dataset and enable successful

classification. One method suggests to create synthetic observations drawn from a uni-

form distribution within the data of the small category. Due to the fact that the events

are defined by physics this approach is not applicable. Another possibility is to remove

a certain amount of random data from the majority class to balance the dataset. A pa-

rameter k is introduced to coordinate the balance in the training set. For each data point



5.4. ARTIFICIAL HYBRID EVENT APPLICATION 85

Ex S = (E/NoE) Corr. pos. Corr. neg. False. pos. False. neg. k V

FF1 310/615 33.9% 66.1% 0% 0% 2 [0.6, 0.2, 0.2]
FF2 310/615 33.9% 66.1% 0% 0% 3

2 [0.8, 0.1, 0.1]
FF3 615/598200 0% 99.9% 0% 0.1% − [0.6, 0.2, 0.2]
PE1 502/502 50% 50% 0% 0% 1 [0.6, 0.2, 0.2]
PE2 502/96827 0.3% 99.4% 0.0001% 0.3% − [0.6, 0.2, 0.2]
BB1 98485/6010853 1.2% 98.4% 0% 0.4% − [0.75, 0.15, 0.15]
BB2 49243/49243 49.9% 50% 0% 0.1% 1

2 [0.75, 0.15, 0.15]
BB3 49243/49243 50% 50% 0% 0.001% 1

2 [0.75, 0.15, 0.15]

Ex S = (E/NoE) Corr. pos. Corr. neg. False. pos. False. neg. k N

FF1 615/1230 33.3% 56.9% 9.7% 0% 2 [10, 20, 10, 1]
FF2 615/1845 25.0% 64.0% 1.0% 0% 3

2 [10, 40, 10, 1]
PE1 502/131264 0.6% 41.1% 58.5% 0% − [10, 20, 10, 1]
PE2 502/131264 0.1% 99.5% 0.1% 0.2% − [10, 20, 10, 1]
BB1 98485/12021707 0.6% 49.6% 49.6% 0.2% − [4, 30, 20, 1]
BB2 98485/98485 49.9% 50% 0% 0.001% 1 [4, 30, 20, 1]
BB3 98485/147728 40% 0.6% 59.4% 0.001% 3

2 [4, 30, 20, 1]

Table 5.8: Comparision of the classification MLP for both examples.

characterising an event, k data points classified as ’no event occurred’ are added to the

training set.

In Table 5.8 the results for all three events of the two examples are given. The classi-

fication of imbalanced data with regards to hybrid events is a challenge. Even though

some of the values for wrong categorisation seem sufficiently small, the reason is not a

good approximation but the ratio between the two categories.

For all three event types this approach is inapplicable. Even resampling the dataset only

improves the network performance in training but the testing is still not feasible. In

case of the bouncing ball example, not even the events in the training set can be classify

correctly by the network. In case BB3 at least the new data is classified correctly but the

50 events which have been classified false in training, stay incorrect.
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Discussion

The results in Chapter 5 show that artificial neural network approaches can be part of the

modelling of hybrid dynamical systems. In cases, where certain elements of the hybrid

model are missing, neural networks can be used to substitute these elements.

The framework can also be applied to describe neural network applications in other re-

search fields, as shown in A.3. It enables a characterisation of commonly used neurons

and a clear structure for networks such as higher order neural networks and equation

learner. The modular construction of the proposed network description offers the pos-

sibility to reuse and exchange individual elements, as presented in Section 5.3.2. Here,

only the definitions of the units have to be replaced to switch from an ODE NN to

an EQL description. The framework can be applied to characterise as well advanced

approaches, such as OAF NN in a structured way, see equation (5.20). Therefore, an

interdisciplinary exchange of research results in regards to neural network approaches

can be facilitated by the framework application.

If a local dynamical process of a hybrid dynamical system is only described by a set of

input-output data, the application of the framework for a neural network inclusion shows

promising results. Dependent on the research question and the structure of the required

output data an applicable neural network can be chosen. Focusing on specific data

describing the behaviour of the system, an ordinary one-layered MLP provides good

approximation results, as shown in Table 5.5. It even enables predicting the defined

data points for unknown system settings, without including new data into the learning

87
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process of the network. The approximation of the state vector of the next event can

be feasible even if the model description of the dynamical process is available. It can

be used to narrow the region for the next event. If the research question requires an

approximation of the time series, an ODE network approach can be applied. Based on

the given data, the first or second derivative of the system variables can be estimated.

The derivation is used to optimize the network performance, as explained in Section

3.3.1, and results in a trained network, that predicts not only time series for the training

data but also extrapolates the behaviour for new initial conditions of the system. The

outcomes listed in Table 5.6 and 5.7 show the accuracy of this network approach. An

hypotheses about the differential order, the mathematical description of the process is

based on, can improve the network’s results.

For the approximation of a time series of the entire hybrid system, the application of one

single neural network is not appropriate. Applying a network to the data where differ-

ent dynamical systems are included, the training process leads to bad approximations or

overfitting, and a generalised application is impossible, see Figure 5.3 and 5.4. Network

structures such as the equation learner and the multi-layered perceptron can be used to

approximate a selection of specific data points, as shown in the bouncing ball example

in Table 5.2. For the approximation of a time series, these networks lead to overfitting

behaviour. A possible alternative is presented in Ferrari-Trecate and al (2003): The

given input-output data can be clustered beforehand and the results are used to partition

the state space into small regions. For each region, an approximation of the local dy-

namics is required. As discussed in Kozák and Števek (2011) and Števek et al. (2012b)

specially designed neural networks called OAF NN can be applied for this task. Hence,

after preprocessing the given data, the neural networks used to approximate the entire

hybrid system can be characterised using the proposed framework definition as in equa-

tion (5.20). Therefore, the dynamical process can either be replaced by defining specific

points of interest and applying standard network structures or the OAF NN approach can

be used to receive a time series approximation of the system.

In the case of the event detection approach, the available descriptions of the local dy-

namics can be used to classify the available data. If the discrepancy between model

output and system data increases an event can be identified. The gathered state vectors
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where the discrepancies are within a certain range, can be labelled ’no event’. This pro-

cedure results in an imbalanced dataset with two classes, the majority class ’no event’

and the minority ’event’. The results listed in Table 5.8 show the results of a trained

MLP for the classification of imbalanced binary datasets. If the data is resampled, as

suggested in Nguyen et al. (2008) and Burnaev et al. (2015), the training can be suc-

cessful. Unfortunately, even then, the generalised classification of events often does not

work sufficiently. The case study confirms the findings in Murphey et al. (2004), that

the traditional feed-forward neural network has difficulties to learn from imbalanced

datasets (Wang et al., 2012). To cope with imbalanced binary datasets in classification

scenarios possible alternatives to neural networks are presented in Lin et al. (2009).

Therefore, facilitating methods such as regression and projection into the third frame-

work application is a future objective.

In the case study, three different network structures are applied. The advantages of

the ODE NN structure are, that a small sample size and a moderate number of epochs

is sufficient, to approximate the underlying ODE. Additionally, the samples only have

to cover a small part of the actual time series to succeed in training of a one-layered

network with 10 neurons. The lack of hypotheses about the order of the ODE can de-

crease the accuracy of the approach. For the multi-layered perceptron it is crucial to

provide enough data samples for training. Two different layer structures are investi-

gated, a one- and two-layered network. The results showed, that a one-layered network

with 9−12 sigmoid neurons is sufficient and provides a better approximation than some

two-layered networks, see Table 5.5. An increase in neurons does not increase the ac-

curacy of the network, only the risk of overfitting increases. For the equation learner,

two things have to be mentioned: If the EQL layer structure is able to find a plausible

functional relation of the input-output data, a small percentage of training data is enough

to achieve a good approximation. If the function can not be approximated properly, the

results can be worse than for a ordinary one-layered MLP.

Apart from neural network approaches, alternatives for hybrid systems with unknown

model equations can be found in Ferrari-Trecate and al (2003) and Bemporad et al.

(2009). Dependent of the a-priori knowledge of the hybrid system a variety of toolboxes

like HIT, YAMLIP and MPT 3.0 can be used (Herceg et al., 2013).





7
Conclusion

This research aimed to identify useful applications of neural networks in the modelling

of hybrid dynamical systems. A framework was introduced, to standardise the replace-

ment of elements in hybrid dynamical models and to investigate different application

scenarios. In addition, a formalism for multi-layer perceptrons was defined, facilitating

as well the original concept of neural networks, the perceptron, as other network struc-

tures. The application of the introduced framework itself is straight forward. Based

on the analysis of the bouncing ball and pendulum example, it can be concluded that

the usability of the introduced framework depends on the goal of the application. The

required structure of the network’s output is an important factor for the applicability.

The results of the case study show that neural networks are able to approximate the

behaviour of hybrid dynamical systems if an appropriate network structure is applied.

The ODE neural network has shown accurate approximations for different applications

undergoing only a short training process. The EQL network presented a good approx-

imation when confronted with oscillating behaviour. If the EQL is not able to find the

right functional relationship between the data within the training process, the resulting

approximation is as good as a multi layered perceptron. If the function can be found

by the network, the resulting expression can be used as analytical approximation. How-

ever, the research group who introduced this network approach is constantly improving

the layer structure to enable better approximations. In cases which aim to approximate

specific points of interest, also a well-trained MLP can provide feasible results.
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An interesting aspect of this thesis is the extrapolation capabilities of networks. In this

context, the resulting network applications were not only tested for data in the learning

domain but also for data of unknown domain. Dependent on the required information

the accuracy of the results differed. The scenarios in which an ODE NN is applicable

have shown promising results. The network structure has to be chosen based on the

given quality and quantity of the data. An ODE NN leads to accurate prediction even if

little data is available, whereas multi-layer networks are powerful if enough training data

is given. The dimension of the state space of the hybrid system does not influence the

applicability of the framework. For a more generalised application analysis an extended

case study will be used for future studies.

The focus of the framework was, to investigate different application scenarios for neural

networks. In the case of classifying state vectors in ’event’ and ’no event’, the neural

network performance was not sufficient. The classification experiments for both appli-

cation examples have shown, that neural networks are not applicable for imbalanced

datasets like this. Other methods might be more effective. Therefore, adding elements

to the framework to enable an inclusion of other methods in the hybrid dynamical model

is a future objective. In this context, also the preprocessing of the input data in neural

network applications can be included in the framework definition. A future review of

networks other than feed-forward, might require adding new elements. For example a

recurrent network might require more descriptive elements than defined in the frame-

work at the moment. If the dynamical description of each node involves several implicit

formulations, it might be laborious or even impossible to formulate an explicit jump

relation. In such cases, the measured output and input data of the different nodes could

be used to train another network J b
ae to replace the jump relation J in the model de-

scription. In addition, a combined framework application, to facilitate the replacement

of events and local dynamics at the same time, can be one of the next steps.

In conclusion, the framework is easy to apply. In the approximation of an entire hybrid

system, the framework helps to administrate the different applied network approaches.

It is especially beneficial in cases where local dynamical descriptions are absent.
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Appendix

A.1 Switched Affine Systems

A switched affine system represents a sampled continuous hybrid system and can be

described by the following set of linear affine equations.

Definition A.1.1 (Switched Affine System). A switched affine system (SAS) is described
as set of linear affine equations as follows

xr(k + 1) = Ai(k)xr(k) + Bi(k)ur(k) + fi(k),

yr(k) = Ci(k)xr(k) + Bi(k)ur(k) + gi(k),
(A.1)

with k ∈ �0, xr ∈ Xr ⊂ �
nr as state vector, ur ∈ Ur ⊂ �

qr the input vector and
yr ∈ Yr ⊂ �pr as continuous output vector. The variables {Ai, Bi, fi, Ci, Di, gi}i∈I are
matrices of suitable size and i(k) ∈ I selects the system dynamics.

Every time a switch occurs, i(k) changes and another update rule is activated. This prin-

ciple can be realized by combining all dynamic descriptions using an if-else statement

to activate the according system. Another possibility to execute a switch is to introduce

a logical signal, called the event generator (EG), defined by

δe(k) = fH(xr(k), ur(k), k).
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The event generator is the logical analogy to the continuous event function e(x) in sec-

tion 2.2.2. The two possible types of events are realised using logical expressions veri-

fying the predefined conditions.

time event: [δie(k) = 1] ⇔ [kTs ≥ ti], (A.2)

state event: [δie(k) = 1] ⇔ [aTi xr(k) + bTi ur(k) ≤ ci]. (A.3)

The varibales ai, bi and ci are parameters of a linear hyperplane characterising the par-

tition of the affine system (Potočnik et al., 2004, p. 5).

FSM
SAS1

SAS2

EG

MS

ub ur

xb

ub

xr

i

δe

δe

Figure A.1: Schematic layout of a switched affine system (SAS) including the finite state machine (FMS),

the event generator (EG) and the mode selector (MS).

In Figure A.1 a discrete hybrid automata is shown. It contains the switched affine system

descriptions to implement the continuous dynamics and a FSM (Finite State Machine)

for the discrete behaviour. The system changes are realised with the event generator,

similar to the guard, and the mode selector realising the jump relation. Compared to

Definition 2.2.1 this automata introduces additional variables including a binary input

vector xb and a binary output vector ub.

In the time-continuous case the dependence on k is replaced by the continuous time

variable t. A special case of continuous-time hybrid systems is given in (A.4).

ẋ(t) = Ai(t)x(t) + fi(t), i(t) ∈ S,

x(t+) = Ji,jx(t
−), i(t−) = i, i(t+) = j.

(A.4)
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An advantage of this subclass it, that it can be rewritten as linear dynamics by aug-

menting the state-space and to ease the construction of switching tables. (Seatzu et al.,

2006),(Zhu and Antsaklis, 2013).

A.2 Mixed Logical Dynamical System

In the case of the mixed logical dynamical (MLD) system description discrete and dy-

namical behaviour is not totally separable. Therefore MLD contains linear dynamical

equations and linear mixed-integer inequalities including both continuous and binary

variables as explained in detail in Bemporad and Morari (1999). Using MLD systems

various models as hybrid systems, finite state machines, special classes of discrete event

systems and nonlinear systems formulated as PWA are formulated.

Definition A.2.1 (Mixed Logical Dynamical System). Let

x =

(
xc

xl

)
, xc ∈ �nc , xl ∈ {0.1}nl ,

be the states of the system,

y =

(
yc
yl

)
, yc ∈ �pc , yl ∈ {0.1}pl ,

the output and

u =

(
uc

ul

)
, uc ∈ �uc , ul ∈ {0.1}ul ,

the command input. Let δ ∈ {0, 1}rl and z ∈ �rc be the auxiliary logical and continu-
ous variables then

x(t+ 1) = Atx(t) + B1tu(t) + B2tδ(t) + B3tz(t), (A.5a)

y(t) = Ctx(t) +D1tu(t) +D2tδ(t) +D3tz(t), (A.5b)

E2tδ(t) + E3tz(t) ≤ E1tu(t) + E4tx(t) + E5t, (A.5c)

describe a mixed logical dynamical (MLD) system.

The variables A,B1, B2, B3, C,D1, D2, D3, E1, E2, E3, E4, E5 are matrices of suitable

dimension. For a given state x(k) and input u(k) the evolution of the MLD system (A.5)
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is determined by solving δ(k) and z(k) in equation (A.5c) to update x(k + 1) and y(k).

Using computational inference technique to reformulate soft and hard constrains of the

hybrid system, as discussed in Williams (2013), transforms any logical conditions and

constrains of the system into equation (A.5c). The MLD system (A.5) is completely

well-posed if for a given state x(k) and input u(k) the inequality (A.5c) has a unique

solution with respect to δ(k) and z(k).

The mentioned reformulation of constrains can than be used to transform SAS and PWA

into an MLD to enable a common simulation interface. Discrete hybrid automata can be

transformed into MLD systems for control designs. Due to issues and short comings of

this MLD formulation the definition was updated by Michael Kvaynica in 2010 adding

new variables to enable a clear differentiation between continuous and logical variables

(Kvasnica et al., 2009).

A.3 Framework Application - Neural Network

The recognition of hand-written digits is one of the classical introduction examples for

MLPs and will be used to demonstrate the introduced framework for an application

besides HDS. The parameter estimation is done using the data sets for training 60000

and validation 10000, offered by MNIST (Modified National Institute of Standards and

Technology database). After transforming the input data B ∈ �28×28 containing the

colour values of each pixel of all 60000 pictures, the input set is given as vector I ∈
[0, 1]784 . The output is defined as O ∈ {0, 1}10 where the entry 1 marks the prediction

of the digit on the picture.
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Choosing one hidden layer with 15 nodes and applying the sigmoid function σ as activa-

tion function, results in a structure as depicted in Figure A.2. The framework application

for this network is given as

Ann :=(4, I, O,N, {u2
j}j, T ) with

N := (784, 15, 10),

u2
j(z

2
j ) = σ(z2j ) , ∀j ∈ {1, . . . , 15},

T = (M,A, V ),

M = ’Back-propagation’,

A = ’Levenberg-Marquardt’,

V = (50000, 10000, 20000).

(A.6)

Figure A.2: The Illustration shows a neural network structure with 15 neurons in the hidden layer. It is

used to recognise hand-written digits as presented in Nielsen (2015).





List of Figures

1.1 The modelling and simulation process, motivated by Sargent et al. (2016). . 4

1.2 An overview of the different modelling approaches within white and black

box categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 A block diagram of the linear time-invariant state space representation. . . . 16

2.2 A block diagram of the extended LTI including reference signal r and feed-

back loop K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Conceptional structure of a hybrid automaton based on the work of Körner

(2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 The different event constraints are illustrated, depicting the threshold Δx in

(a), an event function h(x) in (b) and the guard region G in (c). . . . . . . . 25

2.5 The flow chart describes the simulation steps of the HYSDEL compiler,

including the improvements (dashed lines) made in HYSDEL 3.0. . . . . . 28

2.6 PWA approximation structure with OAF neural networks. . . . . . . . . . . 31

3.1 An overview of the different areas of machine learning based on Rodrìquez

(2019). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 The structure of a basic artificial neural network, called multi-layer percep-

tron (MLP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Input and output for one neuron in a multi-layer perceptron (MLP). . . . . . 36

3.4 The structure of a Pi-Sigma network (Nayak, 2017). . . . . . . . . . . . . . 40

3.5 Equation learner network with one hidden layer based on Martius and Lam-

pert (2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

99



100 LIST OF FIGURES

4.1 Three framework applications for including neural network concepts (red

dashed rectangles) in modelling hybrid dynamical systems. . . . . . . . . . 50

5.1 (a) Height of the ball over time. (b) Hybrid dynamical automaton of the

bouncing ball. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 The conceptional structure of a hybrid automaton based on Körner (2015). . 65

5.3 A MLP approximation of the time series for a specific initial value. . . . . . 69

5.4 A EQL approximation of the time series for a specific initial value. . . . . . 70

5.5 The structure of a neural network with orthogonal activation functions, called

multi-layer perceptron (MLP), see (Kozák and Števek, 2011). . . . . . . . . 72

5.6 Time series approximation of MLP and EQL . . . . . . . . . . . . . . . . . 78

5.7 Approximation of the dynamics for the bouncing ball. . . . . . . . . . . . . 79

5.8 MLP and EQL approximation for the oscillation of the pendulum. . . . . . 81

5.9 ODE NN approximation of the free fall phase of the pendulum. . . . . . . . 82

A.1 Schematic layout of a switched affine system (SAS) including the finite state

machine (FMS), the event generator (EG) and the mode selector (MS). . . . 94

A.2 The Illustration shows a neural network structure with 15 neurons in the

hidden layer. It is used to recognise hand-written digits as presented in

Nielsen (2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



List of Tables

2.1 Basic Elements for simulation models of hybrid systems. . . . . . . . . . . 22

2.2 Modelling components for HDS using HYSDEL, see Torrisi and Bemporad

(2004). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 A list of commonly used activation functions in artificial neural networks. . 38

3.2 Step directions of commonly used optimisation algorithms for neural net-

works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Dataset definitions for the bouncing ball example. . . . . . . . . . . . . . . 66

5.2 Comparison of different MLP and EQL settings for the approximation of

the first three events and the extrapolation of the following three events for

the bouncing ball. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Comparison of different MLP and EQL for a time series approximation of

the bouncing ball. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Comparison of different MLP and EQL settings for the approximation of

the first event and its extrapolation for the bouncing ball. . . . . . . . . . . 75

5.5 Comparison of different MLP networks for of the first event approximation

and the extrapolation of the following two events. . . . . . . . . . . . . . . 76

5.6 Comparison of the ODE NN for different initial conditions for the bouncing

ball. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.7 ODE NN for different initial conditions for the free fall phase of the pendulum. 83

5.8 Comparision of the classification MLP for both examples. . . . . . . . . . . 85

101





Bibliography

Abdelbar, A. M. and Tagliarini, G. A. (1996). HONEST: a new high order feedforward

neural network. In Proceedings of International Conference on Neural Networks,

volume 2. IEEE.

Altın, B., Ojaghi, P., and Sanfelice, R. G. (2018). A model predictive control framework

for hybrid dynamical systems. IFAC-PapersOnLine, 51(20):128–133.

Antsaklis, P. (2000). Special issue on hybrid systems: theory and applications a brief

introduction to the theory and applications of hybrid systems. Proceedings of the

IEEE, 88(7):879–887.

Bar-Sinai, Y., Hoyer, S., Hickey, J., and Brenner, M. P. (2019). Learning data-driven

discretizations for partial differential equations. Proceedings of the National Academy

of Sciences, page 201814058.

Bemporad, A., Di Cairano, S., Ferrari-Trecate, G., Kvasnica, M., Morari, M., and Pao-

letti, S. (2009). Tools for modeling, simulation, control, and verification of piecewise

affine systems. In Lunze, J. and Lamnabhi-Lagarrigue, F., editors, Handbook of Hy-

brid Systems Control, pages 297–324. Cambridge University Press.

Bemporad, A. and Morari, M. (1999). Control of systems integrating logic, dynamics,

and constraints. Automatica, 35(3):407–427.

Birta, L. G. and Arbez, G. (2013). Modelling and simulation: exploring dynamic system

behaviour. Simulation foundations, methods and application. Springer, 2. ed edition.

OCLC: 935142444.

Borshchev, A. (2014). Multi-method modelling: AnyLogic. In Proceedings of 2013

Winter Simulation Conference, pages 248–279. IEEE.

103



104 BIBLIOGRAPHY

Breen, P. G., Foley, C. N., Boekholt, T., and Zwart, S. P. (2019). Newton vs

the machine: solving the chaotic three-body problem using deep neural networks.

arXiv:1910.07291 [astro-ph, physics:physics].

Burnaev, E., Erofeev, P., and Papanov, A. (2015). Influence of resampling on accuracy

of imbalanced classification. arXiv:1707.03905 [cs, stat], page 987521.

Canty, N., O’Mahony, T., and Cychowski, M. T. (2012). An output error algorithm for

piecewise affine system identification. Control Engineering Practice, 20(4):444–452.

Carloni, L. P., Passerone, R., Pinto, A., and Angiovanni-Vincentelli, A. L. (2006). Lan-

guages and tools for hybrid systems design. Foundations and Trends R© in Electronic

Design Automation, 1(1):1–193.

Chawla, N. V. (2010). Data mining for imbalanced datasets: An overview. In Maimon,

O. and Rokach, L., editors, Data Mining and Knowledge Discovery Handbook, pages

875–886. Springer US.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. (2018). Neural ordinary

differential equations. arXiv:1806.07366 [cs, stat].

Cheng, M.-Y., Tsai, H.-C., and Sudjono, E. (2012). Evolutionary fuzzy hybrid neural

network for dynamic project success assessment in construction industry. Automation

in Construction, 21:46–51.

Choy, K., Chow, H. K., Tan, K., Chan, C.-K., Mok, E. C., and Wang, Q. (2008). Lever-

aging the supply chain flexibility of third party logistics – hybrid knowledge-based

system approach. Expert Systems with Applications, 35(4):1998–2016.

Christin, A., Rosenblat, A., and Boyd, D. (2015). Courts and predictive algorithms.

page 11.

Deatcu, C. and Pawletta, T. (2012). A qualitative comparison of two hybrid DEVS

approaches. SNE Simulation Notes Europe, 22(1):15–24.



BIBLIOGRAPHY 105

Epitropakis, M., Plagianakos, V., and Vrahatis, M. (2010). Hardware-friendly higher-

order neural network training using distributed evolutionary algorithms. Applied Soft

Computing, 10(2):398–408.

Ferrari-Trecate, G. and al, e. (2003). A clustering technique for the identification of

piecewise affine systems. Automatica, 39:205–217.

Ferrari-Trecate, G., Muselli, M., Liberati, D., and Morari, M. (2001). Identification of

piecewise affine and hybrid systems. In Proceedings of the 2001 American Control

Conference. (Cat. No.01CH37148), pages 3521–3526 vol.5. IEEE.

Ferrari-Trecate, G., Muselli, M., Liberati, D., and Morari, M. (2005). Hybrid identifi-

cation toolbox.

Fritzson, P. A. (2004). Principles of object-oriented modeling and simulation with Mod-

elica 2.1. IEEE Press ; Wiley-Interscience. OCLC: ocm52920516.

Gao, G., Liu, F., San, H., Wu, X., and Wang, W. (2018). Hybrid optimal kinematic

parameter identification for an industrial robot based on BPNN-PSO. Complexity,

2018:1–11.

Glock, B., Popper, N., and Breitenecker, F. (2015). Various aspects of multi-method

modelling and its applications in modelling large infrastructure systems like airports.

Hafner, I. and Popper, N. (2017). On the terminology and structuring of co-simulation

methods. In EOOLT.

Haykin, S. (2009). Neural networks and learning machines. Prentice Hall, 3rd ed

edition. OCLC: ocn237325326.

Henzinger, T. A. (1996). The theory of hybrid automata. In Proceedings of the 11th

Annual IEEE Symposium on Logic in Computer Science, pages 278–292.

Herceg, M., Kvasnica, M., Jones, C. N., and Morari, M. (2013). Multi-parametric

toolbox 3.0. In 2013 European Control Conference (ECC), pages 502–510. IEEE.



106 BIBLIOGRAPHY

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks

are universal approximators. Neural Networks, 2(5):359–366.

Huynh, Q.-N. (2016). CoModels, engineering dynamic compositions of coupled models

to support the simulation of complex systems. phdthesis, Pierre and Maria Curie

University.

Ismail, A. (2002). Training and optimization of product unit neural networks. phdthesis,

University of Pretoria.

Jayalakshmi, T. and Santhakumaran, A. (2011). Statistical normalization and back prop-

agation for classification. International Journal of Computer Theory and Engineer-

ing, 3(1):pp. 89 – 93.

Juditsky, A., Hjalmarsson, H., Benveniste, A., Delyon, B., Ljung, L., SjÖberg, J., and

Zhang, Q. (1995). Nonlinear black-box models in system identification: Mathemati-

cal foundations. Automatica, 31(12):1725–1750.

Körner, A., Winkler, S., and Breitenecker, F. (2018). Possibilities in state event mod-

elling of hybrid systems. SNE Simulation Notes Europe, 28(3):109–111.

Kozák, S. and Števek, J. (2011). Improved piecewise linear approximation of nonlinear

functions in hybrid control. IFAC Proceedings Volumes, 44(1):14982–14987.

Krüger, I., Mehlhase, A., and Schmitz, G. (2012). Variable structure modeling for

vehicle refrigeration applications. pages 927–934.

Körner, A. (2015). Mathematical Characterisation of State events in Hybrid Modelling.

phdthesis, Technische Universität Wien.

Körner, A. and Breitenecker, F. (2016). State events and structural-dynamic systems:

Definition of ARGESIM benchmark c21. SNE Simulation Notes Europe, 26(2):117–

128.

Kvasnica, M. (2008). Efficient Software Tools for Control and Analysis of Hybrid Sys-

tems. PhD thesis, ETH Zurich, ETH Zurich, Physikstrasse 3, 8092 Zurich, Switzer-

land.



BIBLIOGRAPHY 107
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