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Kurzfassung

Auf Grund der ständig stiegenden Datenmenge in unterschiedlichsten Wissenschaftsdisziplinen

haben datengetriebene Methoden wie Machine Learning oder Regressionsanalysen einen ho-

hen Stellenwert erreicht. Daher werden an mikroskopische mikroskopische Simulationsmodelle

enorme Anforderungen gestellt. Aktuell finden sich solche Modelle zumeist als Nischenlösung

für Fälle, wo die Datenlage schwierig und die Aufgabenstellungen zu komplex sind um sie

mit datengetriebenen Methoden zu erfassen. Leider ist auch diese Position mittlerweile stark

gefährdet: Einerseits erwarten sich Entscheidungsträger quantitative Antworten auf komplexe

Forschungsfragen trotz geringer Verfübarkeit von Validierungsdaten, andererseits erschweren

altbekannte Probleme mit Modellvalidierung, Kalibrierung, Reproduzierbarkeit und Sensitivität

den Einsatz von mikroskopischen Modellen.

Aus diesem Grund ist diese Arbeit der Weiterentwicklung von mathematischen Analyseme-

thoden von mikroskopischen Modellen gewidmet, über die Kapitel 2 einen detaillierten Über-

blick gibt. Nur mithilfe formaler Analyse eines Modells ist man in der Lage, dessen Systemver-

halten in seiner Gesamtheit zu verstehen und damit die angesprochene Probleme der mikrosko-

pischen Modellbildung zu lösen. Entscheidungsunterstützungs-Tool argumentieren.

Zu diesem Zweck werden Methoden aus dem Bereich der Mean-Field Theory (Molekular-

feldanalyse) verwendet. Dieser, aus dem Bereich der Statistischen Mechanik stammende Wis-

senschaftszweig fußt auf der Idee, die aggregierten Größen eines Modells mit interagierenden

subatomaren Partikeln mithilfe eines makroskopischen Modells, üblicherweise eines Differen-

tialgleichungsmodells, zu approximieren. Mithilfe dieses Mean-Field Modells lassen sich nun

bewährte Analysemethoden von gleichungsbasierten Modellen verwenden, die Prozesse im mi-

kroskopischen Modell zu untersuchen.

Der Mehrwert der Mean-Field Theorie für angesprochene Probleme der mikroskopischen

Modellierung in den Sozialwissenschaften liegt nun darin, dass ihr Einsatzbereich nicht auf

die Statistische Physik eingeschränkt, sondern mit gewissen Modifikationen auf viele andere

Anwendungsbereiche erweiterbar ist. Aus diesem Grund beschäftigt sich ein großer Teil die-

ser Arbeit mit speziell für diese Anwendungsfälle adaptierten Mean-Field Theoremen. Viele

dieser Methoden, insbesondere Theoreme 4.1 und 5.1 mit Beweisen im Anhang und die Be-

nutzerfreundlichen Step-by-Step Anleitungen in Abschnitt 4.6 sind eigene Beiträge zu diesem

Wissenschaftszweig.

Im weiteren wird anhand einer Selektion von Test Cases illustriert wie diese zur Analyse

von mikroskopischen Modellen verwendet werden können und wie sich direkter Added Value

für Modellkalibrierung (5.6.3) und Sensitivitätsanalyse (5.4.3) generieren lässt. Die Cases erstre-

cken sich über unterschiedlichste Anwendungsbereiche wie Populationsdynamik (5.6.1,5.2.3),

Epidemiologie (5.5.2,5.2.1), sowie Spieltheorie (5.4.1) oder Physik (5.5.1).

Motiviert von den Ergebnissen der Mean-Field Analysen wird abschließend argumentiert,

dass die aktuell gängigen Fachtermini zur Beschreibung mikroskopischer Modelle nicht unbe-

dingt für eine System-theoretisch orientierte Kommunikation der Modelle geeignet ist. Aus die-

sem Grund wird in Kapitel 6 eine alternative Klassifikation vorgeschlagen, die auf die Vermitt-

lung von Modellverhaltens-relevanter Information abzielt. Diese stellt zudem das Hauptresultat

der Arbeit dar.
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Summary

Microscopic simulation models in social sciences nowadays have to meet high demands if they

want to compete with data-based approaches like machine learning. The main reason for that

is the rich availability of data for almost all human-centred research problems. Unfortunately,

features like reproducibility, validation, verification, calibration and sensitivity of microscopic

simulation models raise problems, which make these approaches hardly applicable for today’s

quantitative research problems. Consequently, we dedicate this work to the improvement of

methods for mathematical analysis of microscopic simulation models. Only by thoroughly in-

vestigating microscopic models on a formal base we are able to fully understand and characterise

their behaviour and finally find reasonable answers to mentioned problems. A detailed summary

of microscopic modelling approaches is given in Chapter 2.

We use so-called mean-field analysis for investigating the aggregated numbers of these mod-

els. Originating from statistical physics, this method is basically used to describe the aggregated

behaviour of physical models with a large number of interacting physical sub-molecular parti-

cles. Hereby, the aggregated numbers of the model are approximated by a simpler macroscopic

model, a mean-field model, usually an ordinary or partial differential equation. Most impor-

tantly for this work, the concept can partially be used to describe the aggregated numbers in

microscopic simulation models for completely different approaches as well. Hereby, interacting

individuals like persons, cars or animals take the place of the particles.

Obviously, the usage of mean-field theory for social science applications requires slightly

modified methods, as physical particles behave different than entities in microscopic models in

social science. Therefore we present a couple of mean-field theorems, specifically developed for

these applications, in this work. Especially by the novel statement and proof of Theorems 4.1

and 5.1 we contribute to the state of the art in complexity theory.

Using a valid mean-field model, i.e. a macroscopic equation-based model that approximates

the microscopic model results, we utilize the excellent analysis features of equation based ap-

proaches to analyse the microscopic model. We will use case studies from population dynamics

(5.6.1, 5.2.3) epidemiology (5.5.2, 5.2.1), Physics (5.5.1) and Game Theory (5.4.1). We addi-

tionally show how mean-field models can be applied directly for sensitivity analysis (5.4.3) and

parameter calibration (5.6.3) of microscopic models and give hints to other fields of application.

We finally argue that the currently used terminology to label microscopic simulation models

are not optimally suited to convey a scientific picture of the model. Thus, we conclude with the

main result of this thesis in Chapter 6 and propose a new classification concept for microscopic

models: A series of attributive adjectives according to the model’s time-update, state-space,

randomness and interaction do not only convey a unique picture of specific parts of the model,

but also give ideas on possible challenges involved with model, simulation, parametrisation,

sensitivity, and finally its mean-field behaviour.
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CHAPTER 1
Introduction

1.0.1 Role of Microscopic Modelling and Simulation

Since about ten years so-called data-based approaches like machine-learning, data-visualisation,

data-mining or other statistical approaches undoubtedly count to the most significant methods

for answering research questions. The amount of data collected nowadays all over the world

is clearly enormous, mostly due to high usage of interconnected electronic devices. According

to Jim Grey [Hey et al., 2009] data-based approaches supersede many classical modelling and

simulation methods in usability and efficacy.

Nowadays classical computational simulation models become much less frequently used

than in the course of the 1990s and 2000s as it is much more difficult to make use of collected

data with them. Especially the once very successful research on microscopic simulation methods

like agent-based- or microsimulation- modelling almost seems to stagnate, as these methods are

rarely able to compete with data-based approaches for equivalent research questions, if sufficient

amount of data is available.

Yet it is too early to postulate (like done in [Hey et al., 2009]) that computational modelling

and simulation is an outdated concept, as there is still need for this method. The lack of data due

to ethical reasons (e.g. medication tests) or (current) immeasurability of specific target values

(e.g. forecasting of complex processes), high data bias, bad data quality (e.g. heterogeneously

reported data), or data of complex interacting processes in general, to list only a few of the fields

where modelling and simulation is still needed. In these cases modelling and simulation can still

be used to gather additional information by adding causal information in form of hypotheses

while data-based approaches fail.

Therefore, requirements for simulation models are immense as data- availability is bad, but

processes are complex:

1. Simulation models need to be compatible with any available data that might improve the

quality/validity of the result.

2. Simulation models need to be able to validly depict very complex, non-linear processes.

1



2 CHAPTER 1. INTRODUCTION

3. Simulation model results are expected to be quantitatively valid (as this is expected from

data-based approaches as well), yet required validation data is often missing.

While 1 is a very technical challenge, the other two are related to the question: How well do

I know my model? Only if we know precisely how causal hypotheses influence the model’s

behaviour, we can improve the results from data-based approaches and generate added value via

causality. Hence, formal model analysis is crucial.

The analysis of (simulation) models with respect to their behaviour is a very old and rig-

orously researched field of science, which dates back to the first mathematicians dealing with

differential equations. Commonly the names Isaac Newton, Gottfried Leibniz and the Bernoulli

family are stated as founding fathers of this field of research. In these times the model analysis

was clearly prioritised over the model execution (i.e. the simulation), for the latter was, in most

cases, not possible for obvious reasons. This is also true for the first appearance of (simula-

tion) models in human-centred sciences which have been established long before the invention

of computers or other automatised calculators (e.g. the SIR model by Kermack and McKendrik

in 1927 [Kermack and McKendrick, 1927]). Finally, the invention of computers and especially

the great improvement of computer performance in the 1990s made it possible to quickly simu-

late any defined model. Therefore, formal model analysis became less important, as the models

became larger and more complex and also because it was deemed to be of minor importance.

Especially the growing popularity of microscopic modelling approaches in that period

raised issues with respect to model analysis. Due to their flexibility and their algorithmical

description language they are perfectly suited nowadays to validly answer complex research

problems. Nevertheless, these features also make it very difficult to formalise and, therefore,

analyse them with analytical means.

It is anyway difficult to argue why a defined microscopic simulation model should be chosen

in favour of a data-based approach, if the behaviour of the model, i.e. the mechanism that

contains the causal information, are not understood. Both approaches are essentially black-

boxes of which mostly the data-based approach is the more credible one. For this reason, we

dedicate this work to contribute to methods for analysing microscopic approaches.

1.0.2 Abstract vs. Applied Model

In terms of model analysis in general it is crucial to separate the formalised model from its

research question and its modelling process. We may call a model detached from its research

question as an abstract model, while the model in the context of the real reference system will

be denoted as applied model in this section. Information gathered for a specific abstract model

clearly is reusable for any applied model that is based on the same abstract model, or, at least,

on parts of it.

One of the best examples to demonstrate this is the process of heat-transfer trough a solid

medium. Investigation of the real system classically leads to the following second order partial

differential equation
∂

∂t
u = DΔu. (1.1)
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Formal analysis of this equation is required to gain insights into the heat-transfer problem. Yet it

can also be used to get an impression of the related diffusion problem wherein diffusion of liq-

uids is investigated. Hence, also diffusion problems can be modelled validly with the diffusion-

equation. Summarising, both diffusion and heat-transfer, can be modelled with the same abstract

model (note that the equation above is classically called diffusion- or heat-transfer- equation).

Thus, analysis of the latter can be used for both problems.

It is sometimes quite difficult to “distil” an abstract core from an applied model. For micro-

scopic models this is especially difficult, as the models are extremely heterogeneously defined.

This is emphasised by the fact that there is almost no microscopic modelling method that has a

unique formal definition all modelling scientist agree with (e.g. agent-based modelling, cellular

automata, etcetera. See Chapter 2).

In general, mentioned distillation process is considerably easier if models can be classified

with respect to specific properties. Hence, we define the following research question for this

thesis.

Definition 0.1: Research Question

In this thesis we aim to define a classification of the field of microscopic models. The

classification-attributes are chosen for their specific influence on the aggregated behaviour

of the model.

With this work we will contribute to improve understanding of the processes that lead to specific

behaviour in microscopic models. We use and enhance methods from mean-field analysis as

well as specifically chosen test-cases to reinforce the choice of classes.

1.0.3 About this Thesis

We present a broad overview of the thesis to give guidance concerning the intentions of the

different chapters. Hereby the readers get an impression which chapters might be of interest for

them.

� Chapter 2 gives a very broad overview on different microscopic modelling methods. This

overview partly explains why we currently have problems with the analysis of microscopic

models from a historical background. We will focus on the large number of different sub-

classes of microscopic modelling methods in 2.1 and present the origin of each of them.

That way it will become clear why we nowadays don’t have a common wording all can

agree on. In Section 2.3 we focus on the challenges and features of microscopic modelling

in general.

� Chapter 3 gives a very basic overview of important stochastic methods to introduce the

analysis methods which will be used and enhanced later in this work. Starting with defin-

ing random variables through to the Law of the Iterated Logarithm, a very broad summary

of probability theory, statistics and stochastic processes is given.The main idea of this

chapter is not only to summarise a base of commonly known definitions and theorems
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while explaining the more advanced mean-field methods, but also to introduce a formal-

ism for probability concepts that is used in this thesis.

� Our contribution to the complexity-related scientific field of Mean-Field Theory, which

is used for formal analysis and, finally, the classification of microscopic models, can be

found in Chapter 4. Herein we will state a couple of theorems and corollaries which are

proven in cited literature or in the Appendix, if they are a new contribution.

In Section 4.6 two step-by-step instructions can be found which are defined to simplify

the mathematically very demanding concept of mean-field analysis for people which are

less familiar with advanced stochastic formalisms.

� Chapter 5 includes a couple of specifically chosen test cases. First, we aim to show how

mean-field analysis concepts and especially the step-by-step instructions defined in the

prior chapter are used to analyse the behaviour of microscopic models. We will show

examples developed with different microscopic modelling methods and originated in dif-

ferent research fields to show the general validity of the mean-field methods.

Secondly, we will show a couple of direct applications of mean-field analysis apart from

mentioned classification. We will focus on sensitivity, calibration and interpretation of

simulation output.

Thirdly, the test cases will motivate the choice of the classification of microscopic models.

� Finally, mentioned classification of microscopic models can be found in Chapter 6. We

will argue why this classification is helpful for analysis and communication of a micro-

scopic model and give examples for how the classification can be used. This is done for a

selection of well known microscopic models.



CHAPTER 2
Microscopic Modelling

The term microscopic is based on the Greek words mikros (≈ small) and skopeo (≈ see or

look), and therefore can be translated roughly into “looking on small things”. Consequently, a

microscopic model could be denoted as a model that depicts small things. Clearly, macroscopic

can be seen as of opposite of microscopic as it means to “look at large things”. As “small” and

“large” always depends on the observer of the system and the chosen scope we can deduct:

� The term microscopic is meaningful to describe a model for a given system only if there

is a way to look at the system in a macroscopic manner and vice versa.

� The term microscopic model is only meaningful, if there is a point of view, so that the

totality of all microscopic parts of the model form at least one macroscopic object.

Usually a couple of microscopic objects are not enough to change the scale of an observer from

micro to macro. This can be compared with the famous Sorites paradox (see [Kim et al., 2009])

and the question: How many rice grains does it need to form a heap? Hence, a microscopic

model, whenever this term is meaningful, always consists of a high number of parts, i.e. sub-

models. This finally characterises a modelling approach:

Definition 0.2: Microscopic 1

Microscopic modelling is the concept of modelling a system as summary of a high number

of sub-models.

Applying this modelling concept, a microscopic model of the system results.

This definition is not scientifically accredited and can not be found in literature, but is the most

useful for the present work.

It is vitally important to emphasise that, though consisting of sub-models, microscopic mod-

els are not developed to answer research questions that address microscopic elements: A mi-

croscopic model is a model for the macroscopic whole. Thus, the model itself might be valid

5
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even though each microscopic element itself is not a valid image of reality. Yet, in case the

microscopic elements are validly depicted compared to the real system, the summary is valid.

Therefore, the individual sub-model results can but must not be meaningful at all!

The dichotomy between microscopic and macroscopic is quite similar to the differences

between bottom-up and top-down. A bottom-up approach starts analysing a given problem

with the smallest parts (the bottom) and aggregates the findings to get information about the

whole. A top-down approach starts analysing the problem as a whole (the top level) and uses

decomposition to get information about the parts. Consequently, a bottom-up approach applied

to model a system will lead to a microscopic model, while a top-down approach will lead to a

macroscopic model. Hence

microscopic approach = bottom-up approach,

macroscopic approach = top-down approach.

Yet the terms bottom-up model and top-down model are in general bad choices to describe the

resulting model as top-down and bottom-up can only be used adverbial, i.e. to describe pro-

cesses. On the contrary, it is worthy to discussion whether microscopic and macroscopic can be

used adverbial to describe the manner a model is derived, but it seems to be the common way in

literature.

The summary of all sub-models in a microscopic model is classically called population.

Notice, that there is a subtle but important difference between the population itself, which is a

set of sub-models, and the size of the population, which is a natural number. Clearly, it makes

a major difference whether the population in a microscopic model changes with time or not.

Addition and removal of sub-systems during run-time raises additional questions not only for the

conceptional model, but also for the simulation of the model. One may think of pre-allocation of

arrays and computational efforts for extension and deletion of array elements. Hence, we split

the set of microscopic models into two subsets:

Definition 0.3: Population-Dynamic vs. Population-Static Microscopic Model

A microscopic model is called population-static if its population does not change with

time. Otherwise it is called population-dynamic.

A population does not change if any of the sub-models changes its state, features or behaviour,

as the sub-model retains its “identity”. It only changes if sub-models are removed or added.

Based on the concept of microscopic modelling many different, more distinct modelling

methods have been established. Some of them will be discussed in detail in the following sec-

tions. These methods often feature a specific term that is used instead of the term sub-model:
Agent, site or entity are only three of the most commonly used terms. Also individual is com-

monly used.

The concepts of microscopic modelling and simulation can (in the contrary to most macro-

scopic approaches) be seen to overlap heavily, as it is not easy to strictly distinguish between the

formalisation of the model and its implementation. Nevertheless, we try to discriminate between

a formalised model and the simulation of the model from now on.
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2.1 Microscopic Modelling Methods

While differential equation models can be analysed with pen and paper, microscopic models

usually require a computer to be simulated. Therefore, the history of microscopic modelling and

simulation is a comparably short one. In literature two so to say founding fathers of this science

could be identified: Stanislaw Marcin Ulam and John von Neumann.

According to the biography of von Neumann [Ulam, 1982] which Ulam wrote for his good

friend post-hum, the two met in 1933 on a congress in Warsaw. Ulam followed von Neumann’s

call to Princeton in 1935 where both started a long lasting, vital collaboration. Both researchers

have been invited to the, now famous but formerly secret, Manhattan-project in 1943. Undoubt-

edly the frenetic research for bombs and other scientifically demanding weaponry during World

War II has formed the scientific basis for today’s computer technology, simulation and numerics

due to high availability of resources for research and the collaboration of eminent scientists of

this time. Also von Neumann and Ulam benefited from the rich equipped secret research lab in

Los Alamos, especially from its computer technology. Besides the progress in solving formal

Physical and Mathematical problems also computer programming was stressed and improved to

solve those problems, which could not be solved by hand.

2.1.1 Monte Carlo Simulation

To solve current physical problems with multi-particle systems computer technology was stressed

in order to compute all particles individually while applying the average afterwards. Stanislaws

Ulam established the term of Monte Carlo Simulation which was, to our knowledge, first pub-

lished in 1951 [Ulam, 1951].

In its original concept the Monte Carlo method can be interpreted as the precursor of modern

microscopic simulation. It is based on the Law of Large numbers (see Theorem 3.1), which states

that the sample mean of a number of independent events converges towards the mean value.

Suppose an average value of a specific random event is not known or cannot be computed, a

computer can be used to sample a high number of these random events. After applying the

sample mean, an approximation of the unknown value is gained.

In the 1940s Ulam and von Neumann used this technology for a couple of applications. One

of them was based on ideas of Enrico Fermi in the 1930s and considers the approximation of

integrals of bounded functions, in case they cannot be solved by hand.
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Example 1.1: Monte Carlo Integration

Suppose a bounded, positive function f is to be integrated on the finite interval [a, b]. Let

c denote an upper bound of the function on [a, b]. By definition the integral
∫ b
a f(x)dx is

equivalent to the area between y = f(x) and y = 0 bounded by x = a and x = b, while∫ b
a (c − f(x))dx describes the area, which is bounded by y = f(x), y = c and x = a and

x = b. In sum, both areas sum up to the area of the rectangle described a, b, c, 0 which is

c · (b− a).
A randomly (uniformly) generated point, sampled in the rectangle a, b, c, 0, clearly lies

below the curve with a probability that depends on the area below the curve compared to

the total area. Say a random variable X = 1 if the point lies below the curve and X = 0
otherwise, then

E(X) = 0 · P (X = 0) + 1 · P (X = 1) = P (X = 1) =
area below

area total
=

∫ b
a f(x)dx

c(b− a)
.

Generating N samples Xi of X , the Law of Large numbers guarantees that

E(X) ≈ 1

N

N∑
i=1

Xi.

Hence ∫ b

a
f(x)dx ≈ c(b− a)

1

N

N∑
i=1

Xi

poses an idea to approximate the integral.

Above version of the Monte Carlo Integration is hardly used nowadays as it can be seen to be

considerably less performant than other integration algorithms (ordinary differential equation

(ODE) solvers). Yet, this does not necessarily hold for high-dimensional problems. A sketch of

this concept is shown in Figure 2.1 where the integral∫
0,π

sin(x) exp(−x2)dx

is approximated.

Although Ulam is usually denoted as the founding father of Monte Carlo simulation on

computers, the basic concepts of Monte Carlo Simulation without computers can be seen to be

significantly older. Mathematician Georges-Louis Leclerc de Buffon was probably the first one

who ever used a microscopic (Monte Carlo) simulation to answer a macroscopic problem: the

famous Buffon’s Needle Problem ( [Todhunter, 1865] page 203).
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Figure 2.1: Illustration of Monte Carlo Integration on the example of sin(x)e−x2
. Though the

function cannot be integrated analytically, the integral can be approximated by the quotient of

the number of points below the curve and the number of points in total.

Example 1.2: Buffon’s Needle Problem

Goal of this model is the approximation of π. Therefore, the following experiment is set

up:

A sufficiently large area on a flat floor is lined. The lines are drawn vertically, parallel to

each other and the gaps between the lines are a length units broad. A total of N equivalent

needles with length b ≤ a are dropped onto the floor from some height leading to a random

sample. The number of needles that intersect at least one of the lines is counted and denoted

as M .

LetX ∈ {1, 0} denote the random variable whether or not one of the needles intersects

a line. Let α ∈ [−π, π) describe the (random) angle of the needle, then c(α) := b| cos(α)|
describes its horizontal component. By the laws of conditional expectation (see later in

Corollary 1.5)

E(X) = E(E(X|α)).
Given a specific angle α the probability that the needle intersects one of the lines is given
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by the difference of c compared to a. Hence,

E(X|α) = c(α)

a
=
b

a
| cos(α)|.

As also the angle α is a uniformly distributed random number the expected value can be

calculated by integration:

E(X) =
b

a
E(| cos(α)|) = b

a

1

2π

∫ π

−π
| cos(α)|dα

=
b

a

4

2π

∫ π/2

0
cos(α)dα =

b

a

2

π
sin(π/2) =

2b

aπ

Compare with 1.1, the sample mean M/N approximates the expected value E(X). Hence

2bN

aM
≈ π.

A sketch of this concept is seen in Figure 2.2. A total of 1000 needles with length 0.5 were

randomly dropped into a grid with line distances 1 of which M = 312 needles were counted to

intersect. This leads to an approximation of 1000/312 ≈ 3.2051 for π. The same experiment

with 100000 needles already resulted in N/M = 100000/31827 = 3.1420, but cannot be

visualised that nicely.

Figure 2.2: Illustration of Buffon’s Needle Problem with a = 1 and b = 0.5 with N = 1000
needles, randomly dropped onto the grid. They are marked blue if they intersect with a lines,

red otherwise.
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The Monte Carlo method has been the first concept that uses bootstrapping and statistics

to find answers to problems which cannot be solved directly by formal analysis. Although the

single elements of the method are always stochastic (they are sampled according to distribution),

the original question is usually a deterministic one. As a consequence it can be interpreted as

a microscopic modelling method: the rules and complexity of the method is defined on the

microscopic scale, while the results are investigated on the aggregated level.

As mentioned, the origin of Monte Carlo methods lies within (Statistical-) Physics and has

been further developed to server this field of research in many ways.

� In 1953 Nikolas Metropolis, also a colleague of Ulam and von Neumann, published the

famous Metropolis algorithm, which allows to generate pseudo random numbers based

on Monte Carlo bootstrapping concepts [Metropolis et al., 1953]. Based on available

methods for generation of uniformly distributed (pseudo) random numbers, the metropolis

algorithm allows to generate streams of random numbers with arbitrary distribution. This

method was refined in 1970 by W. Hastings [Hastings, 1970] and belongs to the so-called

Markov-Chain Monte Carlo (MCMD) methods for efficient sampling of pseudo random

numbers.

� In the 1960s, so-called Sequential Monte Carlo methods, formerly called Particle fil-

ters,were introduced. The sampled random numbers are not independent, but rely on each

other sequentially. The most prominent example for this was given by Rudolph Kalman

in [Kalman, 1960] by the commonly known Kalman filter.

� While the basic concept of Monte Carlo method is originally a static one, it did not take

too long before the first dynamic simulation method was introduced. Kinetic Monte Carlo

Method, sometimes called Dynamic Monte Carlo method, was first mentioned in 1966

by Young and Elcock [Young and Elcock, 1966]. Herein the sampled stream of random

elements is defined to evolve with time according to specific transition rates.

� In 1965 McMillian laid the foundation for the development of Quantum Monte Carlo

methods when he approximated the ground states of liquid helium by Monte Carlo sam-

pling methods [McMillan, 1965]. In Quantum Monte Carlo bootstrapping and statistics

are used to find solutions of the Schrödinger equation for systems of a large number of

particles. In this simulation particles may evolve in time (dynamic Schrödinger equation)

or interact in various ways, e.g. to match their spin or to apply forces.

� At least since 2007 the also the term Lattice Monte Carlo could be found in literature

[Belova and Murch, 2007], in which particles are distributed on a lattice which allows

them to make discrete jumps.

Experienced modellers might recognise parallels of mentioned methods and the “classic” micro-

scopic modelling methods used for human-centred research problems. While physicists would

denote a model as Sequential Monte Carlo simulation, a classical modeller would denote it as

a Markov model. Quantum Monte Carlo simulation for multiple interacting particles would be

denoted as agent-based models and Lattice Monte Carlo models could be interpreted as cellu-

lar automata. Hence, the (Statistical-) Physics community often use very similar microscopic
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modelling concepts as the classical modelling community, but unites them under the term Monte
Carlo. In contrast to standard approaches, Monte Carlo methods usually result in very spe-

cialised white-box models as the foundation for used probabilities and distributions is directly

found in Physical axioms and laws (e.g. the Schrödinger equation).

2.1.2 Cellular Automata

While Stanislaws Ulam laid the cornerstone for probabilistic, continuous microscopic simula-

tion, John von Neumann is mainly deemed to be responsible for launching the discrete and de-

terministic branch: The theory of (cellular) automata (see [Shannon, 1958]). Motivated by Alan

Turing’s Turing Machines [haz, 1988] and the idea of generating self-reproducing systems, he

derived the concept of an infinite rectangular grid – each grid point has one of 29 discrete states

– that, updated in equidistant steps, depicts the logic of a machine that can reproduce itself. This

model, also known as the Von Neumann Cellular Automaton, can definitely be seen as one of the

first cellular automaton (CA). Also, the CA related technical term Von Neumann neighbour-
hood can be dedicated to this model as it was used there for the first time. Yet some earlier ideas

can be found in literature for which we refer to a summarising work of Günter Schneckenrei-

ther [Schneckenreither, 2014], but their influence on the development of the modelling method

was a minor one.

The concept of CAs has not become famous until the work of John Horton Conway in 1970

in which he established the famous Game of Life, which is probably still the most prominent

representative of this method. First published as a “mathematical game” in [Berlekamp, 2001],

the Game of Life was the first cellular automaton that became popular also among the non-

scientific public.

As mentioned in [Schneckenreither, 2014] there is no unique formal definition of a CA

all scientific fields agree with, yet the different definitions only differ in technical details and

share the same basic components. As we are not interested in doing fundamental research on

the modelling method, we only give a very shallow and rather algorithmic definition of the

modelling concept. Figure 2.3 shows a standard rectangular cellular automaton before (left) and

after (right) the update.

Definition 1.1: Cellular Automaton (practical oriented definition)

A cellular automaton is given by the following components.

1. A set of cells, the cell-space. A cell, sometimes called site, node or individual, is

a passive entity that poses the foundation of the automaton. In order to establish

a useful automaton a sufficiently large number of cells need to be summarised in a

finite set, the cell-space. Say a number ofN cells ci, i ∈ {1, . . . , N} are summarised

to the cell-space

C := {c1, . . . , cN}.

2. State and state-space. Moreover, there a common state-space S is required. In prin-

ciple there is no restriction to the state-space but sometimes a vector-space structure
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is useful for analysis. Additionally, some concept that assigns each cell a specific

state is required. It is commonly done via a so-called state-mapping that maps each

cell onto an element of the state-space.

f : C → S : f(ci) = si.

We say, sloppily, a cell ci “has” a specific state or “is in” state si.

3. Cell arrangement. To find relationships between the cells, the cell space needs to

be arranged in some way. Usually this is done by distributing all cells onto some

rectangular or hexagonal lattice. This can be described formally via a bijective index

mapping

Ix : ZK → C : (i1, . . . , iK) �→ cj ,

which assigns a tuple of whole numbers, also-called the index, to each cell. We say

that two cells ci, cj are connected to each other, if
∥∥Ix−1(ci)− Ix−1(cj)

∥∥
1
= 1.

The natural number K is hereby denoted as the dimension of the CA. To achieve a

simply-connected arrangement, it is common to claim that for any two cells cs, ce a

finite sequence cj , j = 1 . . .M of cells exists so that all pairs

(cs, c1), (c1, c2), . . . , (cM−1, cM ), (cK , ce)

are connected.

4. Neighbourhood and boundary conditions In order to define some range of in-

fluence of a specific cell, a so-called neighbourhood is introduced. Thinking of a

rectangular lattice, all four directly connected cells can be defined as neighbours of

the cell in the middle (so-called Von Neumann neighbourhood). Moreover, we could

also think of increasing the radius of influence by the four corner-cells as well (so-

called Moore neighbourhood). Also, more abstract neighbour definitions could be

applied. Note, that the neighbourhood must not necessarily be reflexive, transitive

or symmetric. The idea of neighbourhood could be formalised via a neighbourhood

mapping on the index set:

H : ZK → (
ZK
)J

: (i1, . . . , iK) �→ ((j1,1, . . . j1,K), . . . (jJ,1, . . . , jJ,K)).

Hence, any index is assigned a vector of neighboured indices. As not every cell nec-

essarily has to have the same numbers of neighbours, J might additionally depend

on the index. This is relevant especially at the borders of the cellular automaton,

where the topology of the automaton is usually different than in the middle. Some

extra rules need to be set up in this case.

5. Update Rule. The heart of any CA is the way, the states of the automaton are up-

dated to generate a dynamic simulation method. Hereby each cell’s state is updated
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according to the states of the neighboured cells. Hence

s+i = f(ci)
+ = U(f(Ix(H(Ix−1(ci)))))

for some update function U . The latter is applied to all cells simultaneously. Per-

forming the last step iteratively finally results in the dynamics of the CA.

Figure 2.3: Illustration of a cellular automaton (Ising Model) before (left) and after the update

(right). Cells are arranged on a rectangular grid and their states are marked with one of two

possible colours. The neighbourhood used considers all 4 directly connected cells and the cell

itself.

Cellular automata are known and famous for generating very complex behaviour based on simple

rules. A good example for this is the so-called Ising model [Ising, 1925] shown in 2.3. This

Physical model, developed from early statistical Physics, only considers two states (±1), which

describe the spin of small ferromagnetic particles. Yet it can be seen to result in very complex

behaviour.

From the methodological point of view the Ising model has one feature which is not depicted

in the definition of a classic CA: stochasticity. The update rule depends not only on the states of

the neighbours but also on some Boltzmann-factor e−
J
T dependent probability distribution.

This feature is usually excluded from the standard definition of CAs as it requires additional

concepts for analysis [Schneckenreither, 2014]. Update rules of classic CAs need to be strictly

deterministic. Yet many famous and interesting Cellular Automata would not be considered

as such anymore due to this restriction (the Ising model would be a prominent member of this

class). Consequently, it is useful to distinguish between classical CAs, wherein the same initial
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distribution necessarily leads to the same dynamics, and stochastic CAs, wherein the update-rule

as well as the neighbourhood might contain random elements.

2.1.3 Agent-Based Models

In 1970 economist and Nobel prize winner Thomas Crombie Schelling unwittingly laid the

foundation to the development of a novel modelling approach while analysing Ghetto-ism in

American cities (according to [Bianchi and Squazzoni, 2015] there have been others in the mid-

1960s, however we could not find them to be sufficiently convincing). In his own words,

Without knowing it I was pioneering a field of study that later became known as
“agent-based computational modeling”,

according to a short biography he wrote in 2005, only a short time before winning th Nobel

price [Schelling, 2017] We refer to his famous Model of Segregation which was first mentioned

in 1971 [Schelling, 1971] and analysed in more detail in 1978 in his book Micromotives and

Macrobehaviour [Schelling, 1978].

Example 1.3: Schelling’s Segregation Model (1)

In the 1970s Schelling investigated the behaviour of different races in the US with respect

to their residence area. He observed that they form clusters of different sizes and shapes

and wanted to find reasons for this behaviour. He was especially interested how the level

of xenophobia impacts the size and shape of the resulting clusters. To get a picture of the

underlying dynamics he decided to establish a cellular automaton for this problem. In the

language of cellular automata, we could describe the model defined in [Schelling, 1971] as

follows:

A set of M · N cells are distributed on a rectangular N ×M grid. Every cell may

have one of the three states: occupied by race 1, occupied by race 2 or empty. We apply

the Moore neighbourhood and define a parameter 0 ≤ α ≤ 1. The update rule is set as

follows: Say a cell is occupied with race i ∈ {1, 2}, then the cell is said to be happy if

the fraction of surrounding cells with same state i is larger than α, otherwise it is said to

be unhappy. If the cell is unhappy the cell switches state with the nearest possible cell

that would make the cell happy. The rules on the boundaries of the automaton are set

analogously. If the automaton remains static after one update (all cells are happy), it has

terminated and the simulation is finished.

The given definition of the model is clearly that of a cellular automaton, although the switching

of states with an empty cell in principle requires a more formal definition. The main reason why

this model especially posed for a novel concept is not, what the model does, but how it was

described by Schelling (buzzwords explicitly used by Schelling in [Schelling, 1971] marked by

italic text):
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Example 1.4: Schelling’s Segregation Model (2)

Given a M × N rectangular grid. First distribute a population that is subdivided into

two separate races. Every individual has its neighbourhood consisting of the 8 grid-points

directly attached to it. Say that any individual that lives in the neighbourhood of an indi-

vidual is denoted as neighbour. In case the ratio of neighbours that share the same race

drops below α percent, the individual moves to the nearest vacant spot that surrounds him
with a neighbourhood that meets his demands.

Although technically the same model results from both definitions, the words Schelling used to

describe the model are clearly more intuitive and exceed the concepts of cellular automata. He

introduced an additional layer which lies in between the cells and the state: the individual. While

CAs use cells as carrier of the information of the model, Schelling’s description individual that

carries the state (e.g. the race) and a specific position of the grid. Hence, the cells are not the

subjects of the model anymore, but become, together with the race, the objects of individuals.

These individuals are henceforth denoted as agents, the resulting modelling method as agent-

based modelling. This concept is depicted in Figure 2.4. The sketch shows nicely how the

introduction of a new subject changes not only the inner relations of the model, but also the

identity (and hereby also the number) of microscopic sub-models.

agent

state

cell

alignment

place

alignment

state

Figure 2.4: Sketch of Schelling’s Segregation model depicted as cellular automaton (left) and as

agent-based model. The subjects of the model are coloured with grey background.

Introducing the concept of agent to a model is not only the more intuitive and natural point

of view in case of the segregation model, but it also guarantees a lot more freedom to establish



2.1. MICROSCOPIC MODELLING METHODS 17

models. While cellular automata are bound to a very firm structure given by the cell space and

the alignment it is very unhandy to introduce concepts like e.g.

� movement of individuals (i.e. switching of cell states as in Schelling’s model),

� state-changes that depend on prior states of the cell or the automaton (e.g. a memory), or

� goal oriented behaviour.

It is moreover completely impossible to regard e.g.

� individuals that live/interact on abstract environments like networks that may change with

time,

� individuals that live/interact on continuous environments,

� use different update concepts (e.g. event-driven update times), or

� uniquely track single individuals

using cellular automata concepts.

Like all microscopic modelling techniques, especially agent-based modelling requires the

use of high performance computers to generate executable models. Hence, it almost took until

the 1990s until agent-based modelling approaches finally became applicable for real world ap-

plications. Thomas Schelling, for example, used a chequerboard and coins to simulate his own

model.

The concepts of agent-based models finally made it possible to investigate the concept of

human interaction and cooperation via formal models. Probably the first one who dedicated his

work to this question was political scientist Robert Axelrod. His book Complexity of Coopera-
tion [Axelrod, 1997] based on his game-theoretic work The Evolution of Cooperation [Axelrod,

1984] has become standard literature for research on agent-based models.

In contrast to cellular automata which were in principle developed for Physical applications,

the origin of so-called agent-based models lies within social sciences. As an inconvenient

result, there is no common base that allows a formal definition of agent-based models. We

already said this before about cellular automata, but the situation here is much worse. A lot

of good literature is available giving ideas and tutorials to establish an agent-based model for

a given question [Railsback and Grimm, 2012, Macal and North, 2006, Epstein, 2012]. Yet, it

is almost impossible to state a common denominator. Therefore, agent-based modelling should

rather be seen as a general concept than a modelling method.

We chose to stress the ideas of [Macal and North, 2006] and [Breitenecker et al., 2013] to

give a broad overview about necessary and optional properties of agent-based models.
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Definition 1.2: Agent-Based Model (practical oriented definition)

An agent-based model is a model that consist of (a large number of) individual sub-models

henceforth denoted as agents that change with time. Every agent has a certain state, which

can be split into dynamic states and static properties, and a certain behaviour that allows

the agent to change its state. Hereby every agent needs to

a) be uniquely identifiable (traceable),

b) be autonomous and independent, and

c) inhabit an environment with other agents, wherein the agent needs to be able to

communicate.

Every agent can additionally

d) be able to act targeted, and

e) be able to change its behaviour.

The latter two points have formerly (2006 in [Macal and North, 2006]) been stated as required

properties of agents, but it turned out that it is more convenient for practical applications if these

two points are relaxed.

The “definition” of agent-based modelling leaves many open questions as a lot of important

points are completely left out. We give a few examples:

� The definition does not give any restrictions on how agents should be updated. A si-

multaneous update concept for all agents is common but it is also possible to update only

one agent at a time while leaving the others untouched. Also, some causal update order is

possible where one class of agents is updated first, while the other is updated later.

� The definition does not give any restrictions on how time should be advanced. We could

update the model in equidistant time steps, which is the most commonly used concept, but

we may use arbitrary step-sizes as well. We could also use an event-driven update.

� The definition does not give any restrictions on how agents interact. They may interact

on the local level e.g. using some neighbourhood, some distance metric or according to

a contact network. They could also interact on a global level wherein each agent uses

information about the macroscopic scope of the model. Also some interaction with the

environment is possible. Some definition concepts for agent-based modelling also con-

sider the definition of “objects”, i.e. static sub-models placed in the environment without

their own behaviour solely generated for communication.

� The definition does not give any restrictions on how many agents are required to receive

an agent-based model. In literature, agent-based models with one or only a few agents can

be found. We do not consider these kind of agent-based models in this work, as we focus

on microscopic models for which we required a large number of sub-models.
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Consequently, the freedom for developing agent-based models is gigantic and the variety of

different modelling ideas is enormous. This can be interpreted as an advantage, with respect to

flexibility of the modelling method and as a disadvantage, with respect to reproducibility and

documentation of a model, at the same time. We will target this problem in Section 2.3.2.

2.1.4 Microsimulation Models

In 1957 American econometrician Guy Henderson Orcutt laid the foundation to a modelling

method which is commonly denoted as microsimulation. In [Orcutt, 1957] he stated that, al-

though important observables for decision makers are usually macroscopic, there are a lot of

mechanisms in economy that cannot be modelled on the macroscopic base. Hence, scientific

decision-support in economy can only be done correctly if the microscopic level is regarded.

He made this clear by a simple gedankenexperiment which is shown here with slightly modified

language:

An individual decides as reaction of a given input/stimulus. Say it decides for 1 if input 1 or

2 is given and it decides for 0 if input 0 is given. Say that input is given to 100 individuals and

define the sumX of all inputs and the sum Y of all outputs as the observables of the experiment.

In case 50 individuals are given an input of 2 while the remaining 50 receive 0, the first 50
individuals will result in output 1 while the remaining 50 react with 0. Hence, X = 100 and

Y = 50. Now consider the case that all 100 individuals are given 1 each, then each of them will

respond with 1. Hence, X = 100 and Y = 100. Consequently, there cannot be a model that

depicts X on Y without considering the microscopic level.

He moreover gave the ideas to a modelling method that can depict this problem:

Definition 1.3: Microsimulation (according to Orcutt [Orcutt, 1957])

The main concept originally given by Orcutt in 1957 is given as follows:

This new type of model consists of various sorts of interacting units which
receive inputs and generate outputs. The outputs of each unit are, in part,
functionally related to prior events and, in part, are the result of a series of
random drawings from discrete probability distributions. These probability
distributions specify the probabilities associated with the possible outputs of
the unit. The appropriate probability distributions are determined by inputs
into the unit and the operating characteristics of the unit. They therefore
change from period to period as new inputs occur. . . . Input into a unit is
anything which enters into, acts upon, or is taken account of, by the unit.
. . . Inputs may have been produced as previous outputs of other units or they
may derive from the physical environment.
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In a more formal language this idea of a model could be summarised as follows:

This model consists of a number of individual sub-models each given a set of properties

(operating characteristics) and some initial state in a discrete state-space. The model is

updated in discrete time-steps wherein each sub-model changes its state (input) according

to given probabilities to a new state (output). The probabilities may depend on any kind of

input from outside the system (physical environment), the sub-model’s properties and all

prior states of any number of other sub-models.

Surprisingly, Orcutt did not refer to any other work related to already developed ideas about

microscopic modelling like the CA concepts of Ulam and Von Neumann. Yet the given definition

can be interpreted as a very discrete version of what was described to be an agent-based model

in the prior section.

Indeed, it is a very delicate problem to distinguish between agent-based models and mi-

crosimulation models. We state a few observations:

Microsimulation models, according to the given definition by Orcutt, compared with agent-

based models

� cannot depict (complex) targeted and adaptive behaviour of individuals,

� are memoryless (i.e. the input only depends on the previous output – compare with Defi-

nition 4.5),

� are only updated in equidistant time-steps and hereby simultaneously for all sub-models,

� cannot take continuous states (although Orcutt mentions this as an opportunity for exten-

sions in his work), and

� cannot use complex interaction strategies.

Contrarily, agent-based models

� are required to have at least the opportunity, to enable interaction between the microscopic

sub-models.

Though the last point seems irrelevant it poses a restriction with respect to simulation of the

model. A microsimulation model without interaction could be simulated in serial, i.e. one

sub-model after the other, while agent-based models necessarily need to be simulated in paral-

lel. Microsimulation models that fulfil this property are usually called Markov- or Microscopic

Markov- models due to their strong relationship to Markov chains.

Definition 1.4: Markov model

A microscopic model wherein the state of each sub-model follows a Markov chain

(i.e. a time-discrete memoryless stochastic process as defined later in Definition 4.5) is

called (Microscopic) Markov model. The transition probabilities (transition matrix) of the

Markov chain may depend on individual properties of the sub-model and external inputs.
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As mentioned it is tricky to decide if a model is called agent-based or microsimulation. It

surprisingly depends on the field of application up to which extent models are called the one or

the other. We state some results of a small literature review on the terminology used in scientific

work.

� In economy the terms agent-based (or agent-based computational economics as it is com-

monly called within this field or research) and microsimulation are in principle used for

the same modelling concept. Papers that apply the word agent-based usually avoid the

word microsimulation and vice versa. We state some examples: In [Baroni and Richiardi,

2007, Baroni and Richiardi, 2007, Basu et al., 1998, Li and O’Donoghue, 2013] the term

microsimulation is used to describe the discussed model, in [Tesfatsion, 2001,Van Dinther,

2007, Axelrod, 1997, Farmer and Foley, 2009, Aoki, 2002] the term agent-based is used.

Publications [Barton and Stamber, 2000, Raney et al., 2003] even defined their models as

agent-based microsimulation model.

� Situation is very similar for models for traffic flow and pedestrian simulation. Although

interaction and even goal oriented behaviour is necessary for models also the term mi-

crosimulation is used to describe related models (e.g. [Salgado et al., 2016,Wood, 2012]).

Yet literature that use agent-based is the clear majority (e.g. [Ljubovic, 2009, Barthélemy

and Carletti, 2017]).

� For health care applications (e.g. health technology assessment) which are closely related

with population modelling mostly the term microsimulation is used [Fone et al., 2003,

Spielauer, 2007, Jahn et al., 2016]. In general this is justified as most of the models

addressed in the three stated literature reviews could be described by the term Markov

model as defined above. Martin Spielauer [Spielauer, 2007] mentioned in 2007 that the

introduction of agent-based behaviour in microsimulation models for health-care would

pose for an interesting contribution to this science.

� For the modelling of diseases and disease spread, the situation is, again, different as mainly

the term agent-based is used. This is obvious for infectious diseases, where human con-

tacts are a necessity (e.g. [Lander, 2015, Miksch et al., 2011, Skvortsov et al., 2007])

but also non communicable diseases are conveniently modelled with agent-based models

(e.g. [Nianogo and Arah, 2015, Li et al., 2016]).

For some concluding remarks about the terminology in microscopic models we refer to Section

2.1.7.

2.1.5 Discrete Event Models

In the early 1960s the fast developments in computer technology provoked a lot of new thinking

in computer simulation. A few of the developed concepts in this decade have already been

explained in the previous sections. According to [Nance, 1996] also the origin of so-called

discrete event simulation can be dated to this time-period which can be seen to differ from the

already introduced concepts as follows:
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� Already shown concepts (CAs, microsimulation models and most of the agent-based mod-

els) are updated in discrete time steps. Hence, the dynamics of the models are defined by

numbers that consider: the amount of change per time or the probability for a change

per time.

� On the contrary, applying a discrete event paradigm a model is defined by numbers that

consider: the amount of time per change.

Consequently, a discrete event model can be defined as follows

Definition 1.5: Discrete Event Model (analogously found in [Robinson, 2004])

A discrete event model is a model which states are defined to remain constant between

any two consecutive occurrences of so-called events. Occurrence of such an event may

lead to a state-change of the model and/or to the scheduling of new, future events.

Thus, a discrete event simulation only needs to regard the management of events, while

the time in between two consecutive events is bypassed.

As a consequence, a discrete event model basically consists of two main components: A number

of state variables that describe the state of the modelled system at any point in time, and a set

of possible events which may lead to changes for the system variables and may lead to planning

future events. Hence, simulating a discrete event model one needs to deal with two main objects:

A list that stores the states of the system variables of the model at specific event-times, the so-

called state-list, and a list that stores all planned future events, the so-called event-list. For

simulation, one needs to run through the event list and search for the event, which is to occur

in the most recent future. Furthermore, one needs to execute the event, i.e. possibly change the

state variables writing into the state-list and plan new events, and finally search the event-list for

the next event to occur.

The history of discrete event modelling is directly coupled to the history of discrete event

simulators, i.e. simulation programmes on a computer that accept a specific description lan-

guage of a model, usually a graphical one, and automatically execute the simulation. The first

executable concepts have been developed in the 1960s. Among many pioneers (most can be

found in [Nance, 1996]) we would like to especially mention computer scientists Keith Dou-

glas Tocher, who was responsible for the development of the First General Simulation language

(GSL) [Tocher and Owen, 2008] in 1960, i.e. the first computer simulation language that can be

used to automatically simulate systems given in a specific description form applying the ideas

of discrete events. A few years later Geoffrey Gordon, probably better known for his work

on the General Purpose Simulation System (GPSS, an extension of the GSL) [Gordon, 1978],

specifically described the use of block diagrams in order to define models for such simulation

programs [Gordon, 1961].

In 1983 Lee W. Schruben introduced the Event Graph notation, sometimes called Simula-

tion Graph for describing discrete event models in a graphical way [Schruben, 1983]. Later he

developed the SIGMA simulator for his description language as well [Schruben, 1992].

Figure 2.5 shows a minimalist example for an Event Graph that depicts the behaviour of a

bouncing ball with damping. It is a good example that the Event Graph formalism and hereby
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bounce

Figure 2.5: Minimalist example of a bouncing ball described by an Event Graph. The “bounce”

event occurs every time, the ball hits the floor. In case of a bounce the velocity of the ball at the

time instant of the bounce is reduced by a damping factor d < 1. The time to the next bounce

can easily be calculated by the larger root of the equation 0 = −gt2

2 + vt

arrival
start

service
end 

service

Figure 2.6: Event Graph of a single-server queue. Variable Q, initially 0, describes the length

of the queue, S ∈ {True, False} describes whether or not the server is available. The time

between two arrivals of customers ta and the time required to serve one of them ts can be fixed

with values or positive random numbers.

discrete event simulation can be used to depict continuous systems if one focuses on the discrete

parts of the system. Yet, it turned out that this is hardly necessary for practical applications, of

which most of them can be found in logistics and scheduling, summarising, so-called process

modelling. One example is given by the Event Graph of a single server queue in 2.6 which

depicts a model of a simple queuing process e.g. for a supermarket cash desk. It is clear, that

depicting logistic processes like this does not require the enormous flexibility of Event Graphs.

Hence, more recently developed and applied simulation tools tend to be focussed on elements

that are generated (compare the arrival node in Figure 2.6) and processed through e.g. production

or transportation systems (compare with the serving process on the right hand side of the Event

Graph in Figure 2.6). Hereby we especially address the simulators Enterprise Dynamics [noa, c]

and Anylogic [Grigoryev, 2012], but also the SimEvent library in MATLAB could be mentioned.
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The resulting diagrams in these simulators are very similar to event graphs but depict the process

of generated entities more directly. Figure 2.7 shows how the single server queue looks like if

translated to an (AnyLogic-like) graphical description of the process.

source sinkservice

ressource

Figure 2.7: Single-server queue modelled with the Enterprise Library of AnyLogic 7. The

underlying model is equivalent to the one shown in the event graph in Figure 2.6, yet the process

is more intuitively depicted here.

Models depicted by such process oriented languages are always microscopic models al-

though this is not generally the case for discrete event models (compare with the bouncing-ball

in Figure 2.5). The dynamics of the system can easily be seen as the result of a large number

of individuals, in case of discrete event simulation usually called entities, which are processed

through the system. The position of the entity inside the process can be interpreted as its time-

dependent state. Commonly used elements that are used to process the entities through the

system are sources, sinks, queues, severs, path splitters and joiners, switches, and various forms

of resources.

On the contrary to agent-based models, the entities are usually passive and do not “decide”

about how to continue their path through the system, but are processed by their environment.

This feature is probably the most obvious distinction between those two modelling approaches.

Clearly, this distinction characteristic is quite vulnerable: from the technical point of view it is

basically undistinguishable if the entity or its environment made the decision to proceed – both

are computer programs implemented by the modeller. For this reason (discrete event) simulation

expert Averill M. Law is convinced that agent-based modelling is only a special case of discrete

event simulation [Law, 2007].

2.1.6 Discrete Event System Specification (DEVS)

The Discrete Event System Specification (DEVS) mechanism, developed in 1976 by Bernhard

Zeigler [Zeigler, 1976], is a general mathematical concept to formally describe a model. Hence,

it is in principle neither a modelling method, nor has it anything to do with microscopic or macro-
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scopic models. Yet, the mechanism is very general and is, in principle, capable of depicting any

kind of microscopic models. In [North, 2014] American agent-based expert Michael J. North

addresses the possibility to depict agent-based models via DEVS formalism though remarking

that this can only be done with restrictions:

Unfortunately for agent-based modeling, DEVS imposes an awkward boundary be-
tween state and behavior that makes it difficult to represent dynamically generated
agent behaviors.

He also states that there are ongoing developments to omit this problem, but in 2014 this has

still been unsolved. Nevertheless, using DEVS to fully formalise a microscopic model is a great

improvement compared to other usually informal description forms like decision trees, flow

charts or even text or pseudo-code. Not only do we receive a reproducible model description,

but it can also directly be fed to a DEVS simulator (e.g. PowerDEVS [Bergero and Kofman,

2011]).

2.1.7 Concluding Comments about Microscopic Modelling Terminology

To develop any kind of model it is essential to establish a unique and reproducible definition of

the model. I.e. a description level that is sufficient for a skilled programmer to independently

create an implementation of the model which produces (at least stochastically) equivalent results.

In case of differential equation models this process is (said to be) comparably easy as e.g. the

differential equation

ẍ = −ω2x, x(0) = x0, ẋ(0) = dx0

fully describes a (linearised) pendulum model. Thinking about implementation and simulation,

the description is incomplete without mentioning the used numerical methods for solving the

equation, but besides that, a reproducible definition is given in solely one line of text.

For microscopic simulations it is usually a lot more difficult to reach this level of repro-

ducibility. The modeller needs to be much more careful about the definition of system variables,

microscopic entities, their behaviour and states, time enhancement, initialisation and even ran-

domness (i.e. random number generators). Hence, reproducible descriptions or documentations

of microscopic models are usually long and full of technical details, which mainly disturb the

reader from understanding the main mechanics of the model. There seems to be a trade-off

between reproducibility and comprehensibility of a microscopic model description. This is

a difficult problem when it comes to publishing microscopic models in journals or conferences

wherein the model description should be both, reproducible and comprehensible – and, last but

not least, short.

Therefore, it is vitally important to label the model or at least parts of the model with specific

buzzwords that convey a certain image of the model concept. The terminus agent-based model
will almost surely convey an image of communicating individuals with some kind of swarm

behaviour. The terms discrete-model or discrete event model will clearly convey an image of

a process diagram with queues and servers. Moreover, the communicated image also depends

on the audience, the model is communicated to (compare with the discussion about the use of

the term Microsimulation model in Section 2.1.4 or Monte Carlo simulation in section 2.1.1).

Hence, it might be formally correct to denote a process oriented discrete event model as an
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agent-based model – individuals are uniquely identifiable and (passively interact) – but it might

not be the best idea to do so, as the term might communicate a misleading image.

From this point of view terms like agent-based or microsimulation not only label a modelling

strategy which can be used to set-up a microscopic model, but they also represent a certain image

that is transferred when communicating a model. Hence, we finally deduce the following three

remarks.

� It is not beneficial to ask, whether a specific model is e.g. a microsimulation model or an

agent-based model, as this question can hardly be answered uniquely. The definitions for

specific microscopic model classes (even Cellular Automata) are too fuzzy and depend

too much on the scientific field for making sharp distinctions.

� It is possible to ask whether a model was modelled using a e.g. microsimulation or an

agent-based modelling approach, as there is one answer to this question only the mod-

eller can knows. Nevertheless, the answer to this question is very likely to be useless to

somebody who is interested in the model itself and not the modelling process.

� It is important to ask whether the established model is communicated in the best way

as e.g. microsimulation or agent-based model. This question decides about the image the

modeller transmits to its audience. Clearly, this has a major influence on credibility and

scientific acceptance of the model and it needs to be done with care.

Finally, the discussion about problems with communication of microscopic models in terms of

the lack of unique definitions is another motivation for finding a formal classification that can

be used to uniquely label a microscopic model.

2.2 Simulation Methods for Microscopic Models

The lack of a firm modelling method definition is both an advantage (mentioned in 2.3.2) and a

weakness of microscopic models. The huge level of flexibility basically all microscopic mod-

elling methods provide makes it very hard to develop simulation environments that are capable

to guarantee this flexibility to its full extent. Hence, most simulators for microscopic models are

quite restrictive. As a result, mainly two simulation strategies can be found:

� The model is implemented from scratch using a fundamental programming language e.g.

by using loops and if clauses.

� The model definition is (re)formulated so that it can be used in a microscopic simulator

with large restrictions.

On the contrary to partial- or ordinary- differential equation models, the first strategy based on

“hard-coding” is comparably easy to accomplish, as it is not necessary to make use of difficult

numerical algorithms (e.g. like ODE solvers, finite element method or advanced zero crossing

methods). Microscopic models can usually be implemented quite straight forwardly and only

require the basic elements of almost any programming language. Yet other challenges occur

which will be stressed in Section 2.2.1.
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In case one aims to use one of the predefined simulators for microscopic models (a few

examples will be given in 2.2.2), it might be necessary to adapt certain parts of the model to the

restrictions of the simulator which might be quite demanding. Hence, it quite often happens that

implementation in the simulation seems to work quite well and fast at the beginning, but might

still be destined to fail in the end, as specific, delicate parts of the model are surprisingly difficult

to implement due to restrictions.

In recent years alternative concepts apart from the two mentioned strategies have been es-

tablished. We already mentioned the idea of modularity of microscopic models, wherein it is

intended that specific parts (modules) of the simulation or at least a validated base simulation

can be reused and easily coupled to establish new executable models. This concept is one of

the main objectives of research project DEXHELPP. This FFG-financed project aims to improve

the Austrian health-care system by data- and model-based decision-support. Hereby a validated

model for Austria’s population poses the base-level, while models for morbidity, health-care

demand and supply, intervention scenarios or payment system are conceptualised as modules

on top [Bicher et al., 2015]. (More about this specific model is given in Section 5.6.1). The

first publications that prove that this is more than only a theoretical concept, are going to appear

in near future as the mentioned population model has already been enhanced by three different

modules for health-care research purposes [Zauner et al., 2017]. Anyway, modularity of models

is very restrictive with respect to applicability, but it is very efficient in case a greater number of

models for similar purposes are required.

Additionally, we would like to mention the concept of multi-level modelling languages for

microscopic models [Warnke et al., 2015]. This idea is also developed for efficient development

of a large number of models for similar purposes. Yet, instead of complete simulation parts,

small sub-processes that have a prominent role in the hard-coded simulation model are combined

to much semantically shorter commands. Hereby some kind of meta-language is generated

that allows to quickly establish new models for a specific purpose without really taking care

about technical details. For an agent-based population model, implementation of the hard-coded

operations: Create a new agent-instance, extend the agent pool, assign sex and a unique ID,
assign age 0, update the family record, . . . could be summarised to a much shorter and more

representative give-birth command.

2.2.1 Microscopic Simulation - Hard Coded

Whenever a modeller/programmer wants to exploit the full flexibility of microscopic modelling

it is unavoidable to use a fundamental programming language. Hereby the modeller/programmer

accepts the problem, that probably more time is spent on the implementation of the code, than

using a predefined simulator. We distinguish between procedural and object-oriented program-

ming languages. The latter are clearly the more advanced and much younger. As for several

other applications (like web programming etc.) they are commonly said [Axelrod and Tesfat-

sion, 2006] to be advantageous for microscopic model implementation.

This trend is a consequence of the smaller difference between the way microscopic models

are defined (i.e. as a conceptional model) and the way they can be implemented. Object oriented

programming languages make it possible to use the microscopic sub-model (entity, agent, cell,

. . . ) to be the centre of the simulation as so-called objects (to be precise instances of objects).
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Hereby a clear distinction between the implementation of the microscopic parts of the model and

the, superior, “macroscopic” system of the model, which takes care about how the microscopic

elements work together, is given. This is not possible for procedural languages wherein the sub-

model implementation needs to be embedded in the implementation of the macroscopic system.

Mentioned distinction between the implementation of the microscopic and the macroscopic be-

haviour of the model is not only more intuitive when translating the conceptual model to hard

code, it is also more flexible with respect to model changes, improves readability of the code

and, therefore, positively influences the verification and validation process. Figure 2.8 shows the

difference between a microscopic model implemented using a procedural and an object oriented

programming language on the example of a population model.

Of all object-oriented programming languages Java [noa, d] and Python [noa, e] are clearly

the most prominent with respect to microscopic modelling (and probably in general). They are

not only extremely flexible when implementing microscopic models, they are also unproblem-

atic regarding software licenses – they are essentially free-ware. The latter is another bonus of

accepting the additional workload when hard-coding a microscopic model in a rather fundamen-

tal programming language in comparison to using pre-developed simulators.

class agent

State 1
State 2
State 3

Behaviour 1
Behaviour 2
Behaviour 3

simulation process

create initial agent-
instances

get states of
instance

apply instances
behaviour

make time-step

update all states

simulation process

create initial State1

get states

apply Behaviour 1

make time-step

update all states

create initial State2

create initial State3

apply Behaviour 2

apply Behaviour 3

procedural programming languageobject-oriented programming language

Figure 2.8: Microscopic model (agent-based model) implemented in an object-oriented pro-

gramming language (left) compared to the same implementation in a procedural language (right)
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2.2.2 Microscopic Simulators

Existing microscopic simulators or simulation environments have a couple of properties in com-

mon. First, as mentioned before, they are quite restrictive regarding how the conceptional model

is defined and which modelling concept was used to develop the model. Second, they are usu-

ally limited with respect to the number of individuals, due to large computational overhead (e.g.

because of a graphical user interface). For this reason, most microscopic simulators are mainly

used for prototyping, while the final applied model is developed in a more fundamental language.

In this section we want to summarise a couple of prominent microscopic simulators and state

a few of their features.

� AnyLogic [Grigoryev, 2012, noa, a]:

The Java-based simulator AnyLogic is probably the most flexible microscopic simula-

tor. Besides the macroscopic modelling technique System Dynamics, AnyLogic provides

graphical environments for agent-based modelling and discrete event modelling in the

process oriented sense (Enterprise library). The latter is easily applicable and offers great

flexibility with respect to different interarrival distributions of entities and entity attributes

as well. The agent-based features of AnyLogic are a little bit more difficult to apply as

they require Java programming skills. Yet, the most important feature of AnyLogic is to

allow the combination of all three modelling methods to establish hybrid simulations. Un-

fortunately, large overheads due to the rich graphical user interface prevent simulation of

models with a really large number of sub-models. Based on experience the limit is reached

with about 105 individuals for agent-based models with mediocre demanding behaviour

and features.

� Netlogo [Tisue and Wilensky, 2004, Wilensky, ]:

Based on personal experience the simulation language NetLogo is currently the best sim-

ulation tool for agent-based models and cellular automata. It is a development of the

Logo language, which became popular in the 1980s for teaching purposes and combines

a specifically developed programming language (comparable with the already mentioned

concepts of multi-level modelling languages [Warnke et al., 2015]) and a simulation tool

that automatically simulates and visualises the simulation results. As it is a free-ware

product and the developers are open to cooperate with scientific partners, a lot of research

is going on to improve the quality and performance of the tool. Currently the tool is

mainly used for educational purposes, but the software and the programming language

will probably gain in impact during the next years due to these developments.

� Arena [noa, b] and Enterprise Dynamics [noa, c]:

Both, Arena and Enterprise Dynamics, are classical (microscopic) discrete event simula-

tors which can be used for the modelling of processes. They are, both, highly advanced

and are equipped with a great number of toolboxes for specific fields of application. They

additionally offer a user-friendly environment for 2-d and 3-d visualisation of the simula-

tion process.

� TreeAge [noa, f]:

TreeAge is the most frequently used tool for simulation of microsimulation models in
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health-care, which, as mentioned in Section 2.1.4, are essentially microscopic Markov

models. It has become the “holy grail” for modelling health-technology-assessment dur-

ing the last decades. Moreover, it is known for its ability to intuitively depict state-discrete

Markov processes, not by their transition matrix, but by a transition graph (the ”tree” ac-

cording to the User’s Manual available from the web-page cited above). Herein every

node corresponds to one of the states while a directed weighted edge between them indi-

cates that a transition between two states is possible and how high the probability for it is.

For its simplicity and the intuitive graph-based structure TreeAge became one of the most

popular tools for researchers without or with hardly any mathematical background.

Clearly, there are hundreds of other microscopic simulation environments, but the selected ones

were detected to be the most general ones with respect to the field of applications. Most other

simulators are specialised in implementing models for specific research areas (e.g. traffic mod-

elling, fluid flow modelling, population modelling,. . . ).

2.3 General Properties of Microscopic Models

French Physicist Eric Bonabeau is one of the leading researchers in complexity theory and

swarm intelligence. In one of his articles about agent-based modelling he stated three gen-

eral properties of microscopic models that distinguish the modelling approach from most other

modelling techniques (see [Bonabeau, 2002]). As agent-based modelling is clearly the most

general microscopic modelling method these three statements hold for microscopic models in

general, if interpreted correctly.

� Microscopic models can depict emergent behaviour.

� Microscopic models are flexible with respect to model extensions and modifications.

� Microscopic models pose for a natural description of the system.

In the following we will critically discuss each of them in more detail.

2.3.1 Emergent Behaviour

In general a system is said to generate so-called emergent behaviour if the observed behaviour

is in some way surprising or unexpected. Consequently, it is a very philosophical question,

which behaviour is really “emergent” as it might surprise the one, while being a logic conse-

quence to an other. To discuss this topic more formally, we cite American biologist and complex

system scientist Peter Corning who stated (in [Corning, 2002]) the following characteristics of

emergent behaviour, based on the work of Jeffrey Goldstein [Goldstein, 1999] and more exten-

sive literature research:

The common characteristics (of emergent behaviour) are:

1) radical novelty (features not previously observed in systems);

2) coherence or correlation (meaning integrated wholes that maintain them-
selves over some period of time);
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3) a global or macro level (i.e. there is some property of wholeness)

4) it is the product of a dynamical process (it evolves); and

5) it is ostensive (it can be perceived).

In 1) Corning addresses the idea, that behaviour which is generally labelled as emergent
is somehow new to the observer and has not yet been observed in this system. Otherwise it

would not be unexpected anymore. This also matches 5) as emergent behaviour is nothing you

specifically need to look for, but, also using the words of Corning ( [Corning, 2002] page 22),

you will know it when you see it.
Parts 2), 3) and 4) are dedicated to the causes of emergent behaviour and are probably the

most interesting for a modeller. They address that emergent behaviour occurs if there is an

observable whole that changes dynamically with time. As this whole can be interpreted as a

macro-level, also a micro-level needs to be included. Consequently, emergent behaviour occurs

for the macro-level of system consisting of microscopic elements.

Example 3.1: Bird Flocks

The most obvious example for emergent behaviour in systems can be found directly in

nature: bird flocks. A flock of starlings is known to consist of up to tens of thousands of

individual birds, yet seen from afar, the complete swarm poses as a gigantic tube which

murmurates comparable with the bubbles of a lava-lamp. This object and its unexpected

sudden movements are probably the most beautiful example for emerging behaviour: it is

obvious (ostensive) and unpredictable. The behaviour of the swarm is (solely) determined

by the behaviour of the microscopic elements of the system, the birds. Their behaviour

on the individual level, as simple as it is, results in highly complex behaviour for the total

swarm due to interactions of tens of thousands of individuals.

One of the key features of microscopic modelling is the possibility to easily depict such

emergent behaviour. Hereby the key term in the sentence is “depict” as this feature is quite often

misunderstood:

It is a general property of microscopic models, that emergent behaviour can be observed in

model output. Yet, this alone is not the advantage of microscopic modelling: It is in general

unwanted if one is surprised by emergent model results as it makes the validation process more

complicated. It is a feature of microscopic modelling that a microscopic model it is easily able

to depict emergent behaviour if it is observed in the real system.
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Example 3.2: Bird Flocks - Boids Model

According to the given bird flock system (Example 3.1) artificial-life expert Craig Reynolds

published his famous Boids-model in 1987 [Reynolds, 1987]. As implied, the motivation

for this microscopic (in this case, agent-based) model was originated in the observation of a

bird or fish swarm. The individual birds are modelled with three very simple rules, namely,

get attracted from the centre of the swarm, adjust your direction miming your neighbours,

keep a safety distance to your neighbours. Yet the swarm, seen as a whole, behaves, similar

to the real system, almost arbitrarily complex. Hence, the emergent behaviour of the real

system is depicted in the model. A sample screenshot of a 3-d Boids simulation can be

seen in Figure 2.9.

It is worth to discuss whether the emergent behaviour of a real bird-swarm is depicted

validly or not. Nevertheless, the model was not developed to explain how a bird swarm

moves in the sense of a prognostic model, but why it moves in that unusual and unexpected

way, and that these simple rules on the microscopic level may lead to almost arbitrarily

complex behaviour of the swarm. From this point of view, it is clearly a valid model.

Although commonly believed, the possibility to depict emergent behaviour, is (in our opin-

ion) not only a property of microscopic models alone. One famous example for a macroscopic

model that shows emergence was developed by American mathematician Edward Lorenz (who

is commonly believed to have introduced the term butterfly effect in chaos theory). His non-

linear ordinary differential equation system

dx

dt
= σ(y − x), (2.1)

dy

dt
= x(ρ− z)− y, (2.2)

dz

dt
= xy − βz (2.3)

published [Lorenz, 1963], also-called Lorenz attractor, is known to result in arbitrarily com-

plex, almost chaotic solutions for specific parameters and initial conditions, which clearly seem

“emergent” on the first sight. A sample path is depicted in Figure 2.10. Since 1963 the funda-

mental processes behind the attractor have been rigorously studied e.g. using bifurcation analysis

and the main why- and how- questions behind the strange paths of the solution curves have been

answered satisfactory. Hence, many mathematicians would not consider the behaviour of the

solution curves as emergent nowadays – the magic has disappeared. Unanswered we would like

to raise the question: Would we still consider the behaviour of the Boids model as emergent, if

we analysed it as rigorously as the Lorentz attractor?

Besides from the Lorentz attractor, which was mainly derived for academic purposes to

show the concept of chaos theory, also the Navier-Stokes equations can be stated as example for

emergent behaviour in macroscopic models. The occurrence of turbulences in their solutions is

mostly emergent (e.g. [Li, 2007]).

Consequently, it is, in our eyes, not necessary to model a system in a microscopic way in

order to depict emergent behaviour, yet it is surely the easiest way to do so, as microscopic mod-
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els are defined on the microscopic level while the results are observed on the macroscopic level.

This can be interpreted as a natural way of disguising the actual mechanics that are responsible

for the output. We are easily able to generate models that show some version of emergence,

but we have no guarantee that the specific behaviour the model shows can be found in reality as

well, or if it is just a by-product of modelling errors.

This has not been a problem for the Boids model as the research problem for this model was

very shallow, but it might be a problem when it comes to applications where we not only aim

to find more meaningful qualitative but also quantitative model results to perform prognoses or

scenario tests for real-world problems.

Figure 2.9: Screenshots of a 3-d Boids simulation run with 4000 individual swarm members.

While the single sub-models only follow three simple rules, the swarm, as a whole, moves

almost unpredictable.
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Figure 2.10: Sample solution of the Lorenz attractor for σ = 10, β = 3, ρ = 28 in three

dimensions x, y, z. The curve runs from blue t = 0 to red t = 100.

2.3.2 Flexibility

It is a matter of our ephemeral times that the amount resources and time modellers are given to

develop new models to given research problems is steadily decreasing.

On the one hand, this is justified as new technologies definitely make model development

easier. It is the concept of so-called simulators, that models do not have to be implemented

totally from scratch with a fundamental programming language like C or Fortran as specific

basic modelling parts are already pre-implemented. Moreover, also much more user-friendly

object-oriented programming languages like mentioned Java [noa, d] or Python [noa, e] have

become almost equivalently powerful and are continuously extended by modules that make the

life of programmers considerably easier. Additionally, it has become a lot easier to get access to

necessary validation data (as discussed in Chapter 1).

On the other hand, with the increasing availability of data as well as more and more complex

research questions also the requirements on the quality of models increased. Summarising, more
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and more complex models need to be developed validly in shorter time.

As a result reusability of valid models or at least of valid model-parts for different research

questions has become vitally important. This idea can be enhanced even further by developing

single so-called modules which are investigated stand-alone small valid models themselves and

may be linked together to form larger combined models. Consequently, the question arises:

Given a research problem where this question makes sense: is a macroscopic or a microscopic

model more capable for developing reusable modules?

In almost all circumstances the answer to this question will be the microscopic approach.

Reason for that is the enormous level of flexibility the microscopic model offers compared to

macroscopic models for the same problem. Clearly, flexibility is the key to modularity as it

is necessary to define interfaces to couple and to extend the model. We give a few ideas why

microscopic approaches, probably with exclusion of classic cellular automata, are usually more

flexible than analogous macroscopic models:

� First, very generally, the fact that microscopic models are defined on the microscopic level

makes it possible to extend models on the microscopic scope, but also on the macroscopic

scope. Note, that although the dynamics of a microscopic model are usually given by

the microscopic elements, it does not exclude that additional dynamics are defined on the

macroscopic, i.e. the aggregated level. Clearly, macroscopic models can only be extended

on the macroscopic level – aggregation of microscopic elements is always easier than

decomposition of macroscopic ones.

� Secondly, the definition of microscopic models is a lot less formal than that of macro-

scopic ones. Hence, it is a lot easier to add and to change specific components. Usually

some state- or flow-chart-like notation is used to specify the behaviour of the sub-models

which is easily adapted and modified. Macroscopic modelling methods, on the other hand,

usually require (differential-) equations and, hence, a more mathematical and less algo-

rithmic notation. Also, boundary-, initial- conditions, state-space, and state-variables

always need to be defined formally.

� Thirdly, a lot of model extensions for systems with a micro-macro-scope regard the intro-

duction of (additional) heterogeneity on the individual level. One may think of introducing

a disease in a population model (persons may be diseased or not), additional species in

a cohabitation model, different individual biological fitness levels in an escape routing

model, or different types of cars in a traffic model. On the microscopic level, these ideas

pose for a very easy model modification as only one additional variable needs to be intro-

duced. On the macroscopic level a so-called state-space blow up effect can be observed:

Each additional characteristic introduced to the model, say an individual may have this

characteristic or not, the total number of (differential-) equations to describe the system

on the macroscopic level is multiplied by two.

We give a small example which specifically emphasises the last point.
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Example 3.3: Case Study: Agent-Based Versus System-Dynamics

As the main result of project GEneric POpulation Concept (GEPOC) in the course of

mentioned research project DEXHELPP we developed two different versions of a popula-

tion model for Austria, a microscopic and a macroscopic one [Bicher et al., 2015]. On the

one hand, this idea made it possible to use either of the models to verify the functionality

of the other. Also, some cross-validation attempts were done. On the other hand, it is

possible to decide whichever of the two models is better suited for a model-extension to a

specific application. The first model is a classic agent-based model with birth, death and

migration processes. Age and sex are were defined as states of the agent. It is, in more

detail, explained in Section 5.6.1.

The macroscopic model was developed using system dynamics. The concept of system-

dynamics, introduced by J.W. Forrester and first published in 1961 [Forrester, 1961], can

be stated as the most flexible and modular concept to macroscopically model and simulate

black-box systems that consist of microscopic elements. It is based on ordinary differen-

tial equations which are well hidden behind graphical stock and flow diagrams comparable

with blocks and connectors in standard physical simulators. A stock represents a total

number of a certain type of microscopic elements, while the flows depict their change in

time. The formal equation basis is automatically generated and simulated using supporting

simulators. System dynamics models can be enhanced easily by introducing new flows

and stocks and can, therefore, be denoted as the only serious alternative to microscopic

simulation models with respect to flexibility.

In the GEPOC system dynamics model the population was split into a high number of

stocks. As a fine age-resolution was necessary, 99 stocks had to be used to simulate the

change of population in each age-class. As sex was an additional layer of heterogeneity,

a total of 99 · 2 = 198 stocks define the model. It was simulated using the simulator

Anylogic [Grigoryev, 2012, noa, a]. As seen in [Bicher et al., 2015] the system dynamics

model worked reliably and even turned out to be a lot faster than the agent-based approach.

To compare the level of flexibility, we introduce a hypothetical research question: We
aim to compare the total number of patients suffering from diabetes in specific NUTS3
regions in Austria.

Clearly, each agent in the agent-based approach needs to be extended by two addi-

tional states. First the agent needs to be assigned a specific residence (district) e.g. via a

distribution, second a diabetes-state needs to be introduced with specific incidence rates.

In the system dynamics model each population stock needs to be subdivided into 35
(NUTS3 regions in Austria) stocks of which each of them, again, needs to be subdivided

into 2 (diabetes: yes or no) stocks. Consequently, a system-dynamics model with 2 · 99 ·
35 · 2 = 6930 stocks results, which is neither executable nor verifiable anymore.
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We could blame the modelling method for not being suited for the given research ques-

tion, but this would not be totally fair: A system dynamics model that only considers

diabetes cases and districts (as specified in the research question) with 79 · 2 = 158 would

be possible. The main problem lies within the ineligibility of the underlying population

model as a modular and flexible basis model. Consequently, only the agent-based model

has been used for applications in health services research so far.

Summarising, microscopic models usually turn out to be very flexible with respect to model

extensions and coupling. Herein they usually outperform their macroscopic alternatives for the

given research question.

2.3.3 Natural Description of the System

It is commonly known that there is always some gap between researcher and decision maker

which makes communication difficult. This is a tricky problem that needs to be overcome to

perform scientific decision-support. This can be seen by investigating the vast number of sci-

entific publications solely dealing with this topic (some examples [Verdon-Kidd et al., 2014,

Uzochukwu et al., 2016, von Winterfeldt, 2013]). They basically denote the question how to
communicate with decision makers to a science of its own. This gap is especially large in human-

centred sciences like epidemiology, sociology, biology or economics wherein most decision

makes are either politicians or experts in the specific field with hardly any technical background,

especially regarding mathematics or informatics.

Most of applications for microscopic modelling can be found in mentioned sciences. Hence,

this problem is very present. Independent of the used modelling approach and validity of a

developed model, decision makers will not deem the model as credible if

� the model is not internationally accredited as a valid standard-method (e.g. by a high

number of ranked publications) or

� they do not at least get the impression of understanding the concepts of the model.

Regarding the first point, we already discussed in Section 2.1.7 that there are difficulties to

publish microscopic approaches as reproducible and comprehensible definitions of models are

very hard to establish, especially when publication-volume is restricted.

When required to develop new methods for a given research question, the first bullet point

is no option anyway. To satisfy the second discrepancy, it is the modellers responsibility to

give the involved decision maker a basic image of the model functionality to arouse credibility.

Hence, if comparing a microscopic with a macroscopic approach for the same research problem,

the question arises, which of them is easier explained to persons without modelling background.

We will henceforth denote these persons short as non-experts, indicating that they are not experts

for modelling or any other science which is based on mathematics or informatics. This should

not be confused with the idea that they are not experts for their original research field.

As mentioned in the previous section microscopic models are usually defined in an algo-

rithmic way using state-charts or other causal diagrams that describe the behaviour of the sub-

models. Compared to macroscopic models which are usually defined via (differential-) equa-
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tions, these processes are, in principle, a lot easier to explain to non-experts. Though this is

obvious, it cannot be used as an argument for prioritising the use of microscopic models to

macroscopic ones for two reasons: First, there are macroscopic approaches, especially system

dynamics, that are specifically developed for simple communication of macroscopic models.

Secondly, it is not necessary and sometimes not even beneficial to communicate the whole model

mechanics to convince a decision maker of its credibility.

Modellers [Waldherr and Wijermans, 2013,Jahn et al., 2014] as well as visualisation experts

[Parry, 2011] agree that the key to communicate simulation models to non-experts lies within

graphical representation. Herein microscopic models are clearly more suited than a macroscopic

analogue:

� First, microscopic models can be visualised in a lot of different representation forms: They

can be visualised on the microscopic or on the macroscopic level and any level in between.

Moreover, visualisation is not bound to representation of the simulation results but can be

used to show the dynamics of the simulation during runtime on any layer as animations.

Macroscopic models can only be shown on the macroscopic level and animation does not

really improve understanding of the results.

� Secondly, visualisation of the model on the microscopic layer directly shows the viewer

what are the sources for the aggregated behaviour of the model, while these processes

are hidden behind formulas in macroscopic models. Humans are used to observe their

environment analytically and, therefore, on the microscopic level. Hence, they are more

qualified to decide about the validity of a presented process if they can see their compo-

nents and how they work together.

The concept of causality additionally supports the last point. Clearly, the causal reason for

the behaviour of the aggregate follows is given by the individual parts. If we do not directly

regard the individual parts by modelling the system macroscopically we cannot see this causal

relationship. Hence, the microscopic approach is referred to as the natural description of a

system by Bonabeau [Bonabeau, 1997]. All arguments that support the use of microscopic

models in this section can, in principle, be attributed to this fact.



CHAPTER 3
Stochastic Methods

As mentioned in the introduction, microscopic models are usually applied for highly complex

systems wherein even the microscopic elements show a tricky behaviour. Consequently, models

for individual sub-processes of microscopic models are usually black-box models and, as it

is usually the only feasible approach to model them, contain random elements. Hereby it is

irrelevant whether the real system components behave randomly or are simply too complex to

describe.

Simulation of human behaviour is the most obvious example for this: We want to model

the behaviour of a person that needs to pick one of two possible options. In reality the human

decides based on personal memory, observations, logic, feelings and a variety of other factors,

but very rarely purely on randomness (e.g. by a coin-flip). Thus, the process would be con-

sidered as deterministic in reality. Nevertheless, it is basically impossible to model the process

deterministically in a simulation model for one of these reasons:

� The real process of making a decision requires components which are not included in the

model.

� The real process is not fully known.

� The real process is too individual.

� To include the complete complexity of the real decision process would make the model

unusable as it cannot be parametrised

As a result microscopic models are usually stochastic models and require different treatment than

deterministic models. Hereby we especially address parametrisation, calibration (identification

of parameter values), sensitivity analysis, simulation output interpretation, result post-processing

and, in general, any kind of formal model analysis.

As a lot of the mentioned features are focus of the current work this chapter to gives quick

summary of basic formal stochastic methods which will be needed to analyse stochastic micro-

scopic models. As stochastics can be split into probability-theory and statistics we first discuss

39
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a couple of basic theorems and definitions for these two research areas. Then we discuss some

applications of probability theory for sums or random numbers via limit theorems, which are

very interesting for aggregated analysis and result post-processing of microscopic models. Later

we introduce the concept of stochastic processes.

All theorems and definitions presented in this section can be found in standard literature

for statistics, measure and probability theory. Thus, we do not state any proofs. For more

information the reader is referred to literature, e.g. [Gardiner, 2009].

3.1 Probabilistic Basics

3.1.1 Probability and General Concepts

The letter P indicates a so-called probability measure, i.e. a positive measure normed to 1. We

write

P (A) := P (an event in A occurs) := probability that any event in A occurs.

Interpreted as a generalised function that maps events to correspondent probabilities we also

denote P as a (probability) distribution. Moreover, a probability space is given by a triple

(Ω,A, P ) wherein A denotes a σ-algebra on Ω, the so-called sample-space, and P : A → [0, 1]
is a probability measure. We conventionally write

Aσ(Ω) = A

whenever a sigma algebra is defined on a space Ω in order to save precious variable names and

to instantly show the direct relation between σ-algebra and underlying space. It is only used

when the choice of the σ-algebra does not matter or is clear, given the context. It should not

be confused with the sigma operator σ(M) that defines the smallest possible sigma algebra

containing all sets in M.

When considering integrals of measurable functions f : Ω → Γ we interpret∫
Ω
f(x)dμ(x)

in the Lebuesgue sense for f : Ω → R.

The calculus of the Lebuesgue integral is highly influenced by the properties of the underly-

ing space and especially if it is continuous or discrete. These two are commonly used terms to

describe two contradicting fundamental properties of a set or space. Surprisingly they are very

rarely formally defined in literature, as they are rather self explanatory. Nevertheless we deem it

important to give a definition here, as the border between continuity to discreteness is for one of

the central topics of this work.
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Definition 1.1: Discrete Set

A totally ordered set A is called discrete if for any element x both sets {y ∈ A : y < x}
and {y ∈ A : y > x} are either empty or have a maximum and a minimum.

Above definition surely leads to a countable set – i.e. the elements can be enumerated and

there is a bijective mapping from A to some subset of N. In most applications for modelling and

simulation discrete is usually equivalent with finite as a computer, responsible for the simulation,

cannot deal with infinite sets anyway. In this case every function defined on a discrete set A
can be represented via a finite lookup table which can be written as a |A|-dimensional vector.

Consequently, functions on A×A can be written as |A| × |A| matrices.

On the contrary, functions on continuous sets need to be described with analytical means.

Definition 1.2: Continuous Set

A totally ordered set A is called continuous if for any element x ∈ A the set {y ∈ A :
y < x} has no maximum and set {y ∈ A : y > x} has no minimum.

The definition above implies that in between any two elements x < y ∈ A we can always find

a third element z ∈ A with x < z < y. Consequently, the number of elements {z ∈ A : x <
z < y} can never be finite and any continuous set always has an infinite number of elements

(note that a set with only one element cannot be continuous). Thus, it is (in general) impossible

to describe functions on continuous sets via tables, vectors or matrices, but we require algebraic

expressions.

Remark 1.1:

Note, that we do not distinguish between R and Q in terms of continuous sets in this

work as it has no practical relevance for the discussed modelling and simulation methods.

We will henceforth consider any continuous set to be a real interval.

As continuous sets lead to difficulties for implementation sometimes a so-called discretisa-

tion is applied.



42 CHAPTER 3. STOCHASTIC METHODS

Definition 1.3: Discretisation

For a function f : A→ Γ on a continuous set A a function

f̂ : Â→ Γ

that approximates f or f |Â is called a discretised version of f . The process of calculating

f̂ and Â based on f and A is called discretisation or discretisation process. The difference

between f and f̂ is called discretisation error.

In most cases a discretisation has to be applied in order to execute a stated model on a computer.

Hence, applying discretisation has usually a negative connotation as it is an unavoidable source

for errors.

As it is going to be necessary to deal with both, discrete and continuous spaces, it is conve-

nient to define two standard measure spaces which are used for this analysis.

� For discrete spaces Ω we usually consider (Ω, 2Ω, μ) wherein 2Ω stands for the power set

and μ(A) := |A| denotes the counting measure on Ω.

� For continuous Banach spaces Ω the power set usually turns out to be unnecessarily large.

Hence, we usually use (Ω,B(Ω), μ) wherein B(Ω) denotes the Borel σ-algebra or, more

conveniently, Borel sets on Ω and μ the uniquely (w.r. to a normalisation factor) induced

measure – the Borel measure.

The counting measure transforms any Lebuesgue/Bochner integral into a possibly infinite sum.

Hence, calculus with functions like so-called random-variables on discrete spaces is usually

easier than on continuous spaces.

We conclude this introducing section by briefly introducing a measure that is applicable for

both, discrete and continuous sets. The so-called Dirac measure plays a key role in the mean-

field applications in Chapter 4 as it is required in proofs.

Definition 1.4: Dirac Measure

Given a space Ω, a sigma algebra Aσ(Ω) and a fixed element x ∈ Ω. The Dirac measure

δx is defined as

δx(A) =

{
1, x ∈ A
0, else.

(3.1)

With a real- or Banach- space valued function f : Ω → Γ clearly∫
Ω
f(y)dδx(y) = f(x). (3.2)
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3.1.2 Random Variables

As the concept of random variables is vitally important for this work we will discuss it in more

detail.

In general the sample space Ω of a probability space (Ω, Aσ(Ω), P ) is of a rather abstract

nature. Although we are able to unite and cut sets we are (in general) not able to sum, subtract or

perform other mathematical operations with its elements, which might yet be important to find

specific distribution parameters. This becomes clear when thinking of the outcomes of a simple

coin-toss experiment wherein Ω = {heads, tails} does not provide any structure to perform

algebraic operations.

In order to solve this problem the concept of random-variables is introduced.

Definition 1.5: Random Variable

Given a probability space (Ω, Aσ(Ω), P ) and a measure space (Γ, Aσ(Γ), μ).
A (Aσ(Ω), Aσ(Γ)) measurable function

X : Ω → Γ, ω �→ X(ω) (3.3)

is called a Γ valued random variable on Ω.

Usually we expect Γ to have some metric vector-space structure. We will only consider real

valued random numbers in this Chapter, but they can straight forwardly be extended to Banach

space valued random-numbers.

For some cases it might be useful to define Γ = Ω with a different measure. An example

for this would be the distribution of body weights among the population. While having some

Gaussian probability measure P on the sample space R we could use the standard Lebesgue

measure on R as the value-space.

The concept of random variables allows us to transfer the investigation of likelihood to a

different space. Therefore, we define the image or push-forward measure of P .

Definition 1.6: Image Measure of P w.r. to X

Let X be a Γ valued random variable on Ω and A ∈ Aσ(Γ) then

PX(A) := P (X ∈ A) := P (X−1(A)) (3.4)

is called the image- or push-forward- measure of P w.r. to random variable X .

The inversion X−1 is naturally defined as

X−1(A) := {ω ∈ Ω : X(ω) ∈ A}.

The image measure transfers a stochastic problem from the sample space Ω to Γ as it is much

more convenient for analysis. The random variableX is very often chosen as a bijective mapping
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so that the underlying space does not need to be regarded at all – it is simply identified with the

target space of the random variable. Naturally we write P (X = c) := P (X ∈ {c}). Clearly,

any measurable function f(X) : Γ → Γ2 becomes a random variable Ω → Γ2 itself.

As a direct consequence of the definition of the Lebuesge integral the image measure fulfils

the transformation formula∫
Ω
f(ω)dP (ω) =

∫
X−1(Γ)

f(ω)dP (ω) =

∫
Γ
f(X)dPX(X) (3.5)

for measurable and integrable f : Γ → Γ which is probably the basis for all probability calculus

with random variables and, therefore, also random processes.

The most obvious way to imagine this, is given by considering the so-called indicator func-

tion as a random variable.

Definition 1.7: Indicator Function

For arbitrary measure space Ω and A ∈ Aσ(Ω)

� : Ω → {0, 1}, x �→ �A(x) =

{
1, x ∈ A
0, x /∈ A

.

is called indicator function of A.

Clearly

P �A({1}) = P (�A = 1) = P (�−1
A (1)) = P (A)

and

P�A({1}) =
∫
{1}

dP�A(X) =

∫
�
−1
A

(1)
dP (ω) =

∫
A
dP (ω) = P (A).

As the indicator function maps any space onto the finite state-space {0, 1} it poses the basis for

many discretisation concepts.

3.1.3 Density Functions

For practical applications a probability measure P is usually very difficult to define directly as

the underlying sample space Ω is hardly known and difficult to describe. More conveniently the

measure is implicitly defined using so-called density functions. This concept is motivated as

follows:

Investigate a random variable X : Ω → Γ and a measurable function f : Γ → Γ. According

to equation (3.5) the inconvenient Lebuesgue integral on Ω is already expressed by a Lebues-

gue integral on Γ which is usually more handy. Yet it remains to find a transformation from

dPX(X) to dμ(x), the defined measure on the measure space (Γ, Aσ(Γ), μ). For this purpose

the following version of the Theorem of Radon-Nikodym can often be applied.
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Theorem 1.1: Radon-Nikodym (Special Case)

Let μ be a σ-finite measure on Γ and ∀A ∈ Aσ(Γ) : μ(A) = 0 ⇒ PX(A) = 0 (we say

PX is absolutely continuous w.r. to μ and write PX 	 μ) then there exists a μ integrable

function g classically called density or Radon-Nikodym density so that

PX(A) =

∫
A
g(x)dμ(x) (3.6)

and ∫
B
f(X)dPX =

∫
B
f(x)g(x)dμ(x), (3.7)

for all PX integrable functions f : Γ → Γ.

While the sigma-finiteness of a measure on a Banach space is usually given for practical applica-

tions, the absolute continuity of the measure is sometimes violated. A very prominent example

for this is given by investigating the life expectancy of light bulbs as a real valued random num-

ber. While the one-element set {0} has Borel measure μ({0}) = 0 yet the probability that the

light bulb does not work at all, i.e. it survives 0 seconds, P (X ∈ {0}), is usually positive.

Hence, a density function is a handy feature of a distribution but its existence is not guaran-

teed.

Remark 1.2:

We will often write dP instead of dPX if the random variable(s) which is/are used

for the image measure will become clear, given the context or the integration variable,

respectively.

3.1.4 Mean, Variance and Covariance

In order to investigate properties of a distribution we are interested in meaningful (deterministic)

parameters that can be used to describe its behaviour. Surely the density function defined in

Theorem 1.1 poses for such a parameter, but there are much quicker ways to get a basic idea

of the behaviour of a random number. Moreover, we have already seen that it does not always

exist.

The most prominent are mean or expected value, variance, and the standard deviation,

which all belong to the so-called moments of a distribution.
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Definition 1.8: Expected Value

Given a Γ valued random variable X , the scalar

μX := E(X) :=

∫
Γ
XdP (X) (3.8)

(if it exists) is denoted as expected value of X .

The expected value can be shown to be the most accurate guess for predicting the value of the

random number. In case we are interested in the average of a measurable function f(X) instead

of X we may apply the following corollary.

Corollary 1.1: Law of the Unconscious Statistician

Given a Γ valued random variable X and a measurable function f : Γ → Γ then

E(f(X)) =

∫
Γ
f(X)dP (X). (3.9)

The irritating name of above corollary results from the problem, that the equation above is not

treated as a law/theorem but, falsely, as the definition of the expected value itself as the statement

seems so obvious. In that case the “statistician” was “unconscious” about the fact that E(f(X))
is basically defined by the distribution of f(X) and that it requires a simple transformation law to

rewrite it using the distribution of X instead – therefore “Law of the Unconscious Statistician”.

Definition 1.9: Variance and Standard Deviation

Given a Γ valued random variable X then the scalar

σ2X := V(X) := E((X − E(X))2) :=

∫
Γ
(X − μX)2dP (X) (3.10)

(in case it exists) is denoted as variance of X . The square root σ of this positive number is

denoted as standard deviation of X .

Given a second random variable Y : Ω → Γ based on the same probability space, we can

investigate the common distribution ofX and Y by investigating the image measure on Γ×Γ via

= PX,Y (A,B) = P (X ∈ A∧Y ∈ B) = P (X−1(A)∩Y −1(B)). This idea can be generalised

as follows.
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Definition 1.10: Common Distribution of Random Variables

Given Γ valued random variables X1, . . . , Xn and A1, . . . , An ∈ Aσ(Γ) then

PX1,...,Xn ((A1, . . . , An)) := P
(
X−1

1 (A1) ∩X−1
2 (A2) ∩ · · · ∩X−1

n (An)
)

(3.11)

is denoted as common image measure of the random variables. Hereby

PX1,...,Xn :
n×

i=1

Γ → [0, 1].

We usually write

P (X1 ∈ A1 ∧X2 ∈ A2 ∧ · · · ∧Xn ∈ An) := PX1,...,Xn ((A1, . . . , An)) (3.12)

as it is easier to interpret.

Using this notation, the covariance of two random variables can be defined.

Definition 1.11: Covariance

Let P define the common image measure of X and Y then

Cov(X,Y ) := E((X − E(X))(Y − E(Y ))) =

∫
Γ×Γ

(X − μX)(Y − μY )dP (X,Y )

denotes the random variables’ covariance.

Calculation with expected values and variances are usually done using their handy properties.

We summarise them without proof in the following corollaries.

Corollary 1.2: Properties of Expected Values

The expected values of random numbers X,Y on R fulfil

� E(c) = c for all constants,

� E(cX + Y ) = cE(X) + E(Y ) (linearity), and

� X ≥ Y, a.s.⇒ E(X) ≥ E(Y ) (monotonicity).
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Corollary 1.3: Properties of Variances and Covariances

Variance and covariance of random numbers X,Y, Z on R fulfil

� V(X) = Cov(X,X),

� Cov(c,X) = Cov(X, c) = 0 for all constants c,

� Cov(cX, Y ) = cCov(X,Y ) = Cov(X, cY ) for all constants c (multilinearity),

� Cov(X + Y, Z) = Cov(X,Z) + Cov(Y, Z) (multilinearity),

� Cov(X,Y + Z) = Cov(X,Y ) + Cov(X,Z) (multilinearity),

� Cov(X,Y ) = Cov(Y,X) (symmetry),

� V(cX + d) = c2V(X) for all constants,

� Cov(X,Y ) = E(XY )− E(X)E(Y ) (Steiner Theorem) which results in

V(X) = E(X2)− E(X)2,

� V(X + Y ) = V(X) + V(Y ) + 2Cov(X,Y ), and

� Cov(X,Y )2 ≤ V(X)V(Y ) (Cauchy-Schwartz inequality).

3.1.5 Conditional Probabilities and Bayesian Theorem

Investigating the execution of an experiment with two outputs, X and Y , very likely the knowl-

edge of one of these output values has an influence on the probability of second one. Imagine

rolling a six sided dice twice and define Y as the result of the first throw and X as the sum of

both throws. In this experiment the knowledge of Y = 1 already indicates that X > 7 is im-

possible. The probabilistic term for this feature is dependence of two random variables which

is formally defined as the opposite of independence.

Definition 1.12: Independent Random Variables

Two random variables X,Y : Ω → Γ are called independent if ∀A,B ∈ Aσ(Γ)

PX,Y ((A,B)) = P (X ∈ A ∧ Y ∈ B) = P (X ∈ A)P (Y ∈ B) = PX(A)P Y (B).
(3.13)

Note, that this is equivalent to

∀A,B ∈ Aσ(Γ) : P (X−1(A) ∩ Y −1(B)) = P (X−1(A))P (Y −1(B)). (3.14)
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Although it seems to be more convenient to work with independent random variables, as the

common probability image measure PX,Y can be written as a product of the individual mea-

sures PX and P Y , in reality dependence of two random events is a highly welcome feature:

As mentioned, the knowledge of the value of either of the two random variables increases the

chances of successfully predicting the value of the other. This is done by so-called conditional

probability.

Definition 1.13: Conditional Probability of Random Variables (1)

For two random variables X,Y : Ω → Γ and P Y (B) > 0 the measure PX|Y ∈B(A)
defined via

PX|Y ∈B(A) :=
PX,Y ((A,B))

P Y (B)
=
P (X−1(A) ∩X−1(B))

P (Y −1(B))

is called conditional image measure of X dependent on Y ∈ B. We more conveniently

write

P (X ∈ A|Y ∈ B) := PX|Y ∈B(A).

This definition, known as the Formula of Bayes, may looks harmless, but leads to a couple of

problems regardingP (Y ∈ B) = 0. Say we investigated the conditional probability with respect

to the one-point set {b} for a real valued random number Y very likely P (Y ∈ {b}) = 0, which

makes it impossible to define the conditional probability via Bayes’s formula. Yet, investigation

of the probability P (X ∈ A|Y = b) definitely makes sense for phenomenological reasons.

Trivially deducing a definition for it from the conditional image measure P (X ∈ A|Y ∈ B)
by applying some limit Uε(b) −→

ε→0
{b} does not work either as Kolmogorow and Borel already

showed in their paradoxon [Kolmogorov, A, 1931,Jaynes and Bretthorst, 2003] that the resulting

limit is not unique. Hence, the conditional probability P (X ∈ A|Y = b) cannot be defined with

measure theoretic means alone, but poses a new concept.

Definition 1.14: Conditional Probability of Random Variables (2)

Define

P (X ∈ A|Y = y) := P (X(ω) ∈ A|Y (ω) = y) := P (X ∈ A under condition that Y ∈ {y})

which denotes the conditional probability of X ∈ A knowing that Y = y. Let P(Aσ(Ω))
stand for the set of probability measures on Γ it follows that

� P : Γ → P(Aσ(Γ)) : y �→ P (X ∈ ·|Y = y) is a probability-measure- valued

measurable function on Γ and

� P : Ω → P(Aσ(Γ)) : ω �→ P (X ∈ ·|Y = Y (ω)) =: P (X ∈ ·|Y ) is a probability-

measure- valued random variable on Ω.
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For P (Y ∈ B) > 0 both definitions 1.13 and 1.14 are reunited again as∫
B
P (X ∈ A|Y )dP (Y ) = P (X ∈ A|Y ∈ B)

can be proven. This implies the Theorem of Total Probability.

Corollary 1.4: Theorem of Total Probability

For two random variables X and Y on Γ and any A ∈ Aσ(Γ)

E(P (X ∈ A|Y )) =

∫
Γ
P (X ∈ A|Y )dP (Y ) = P (X ∈ A). (3.15)

3.1.6 Conditional Expectation and Covariance

Similar to classic random variables also expected values w.r. to conditional probabilities can be

calculated. Hereby we denote the expected valued of a random variable X or f(X) with respect

to the conditional measure PX|Y , which itself is a random variable. Hence, also the resulting

expected value is a random variable.

Definition 1.15: Conditional Expectation

The random variable E(X|Y ) defined by

E(X|Y ) :=

∫
Γ
XdP (X|Y ) :=

∫
Γ
XdPX|Y (X) (3.16)

is called conditional expectation of X w.r. to Y . The function

y �→ E(X|Y = y) =

∫
Γ
XdP (X|Y = y)

is measurable and denotes the conditional expected value of X given Y = y.

Analogous to the Law of the Unconscious Statistician 1.1 it follows that

E(f(X)|Y ) =

∫
Γ
f(X)dPX|Y (X).

Analogously conditional variance and covariance can be defined.

Definition 1.16: Conditional Variance and Covariance

The random variable V(X|Y ) defined as

V(X|Y ) := E((X − E(X|Y ))2|Y ) (3.17)
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is called conditional variance of X w.r. to Y . Moreover, random variable

Cov(X,Y |Z) := E((X − E(X|Z))(Y − E(Y |Z))|Z) (3.18)

is called conditional covariance of X and Y w.r. to Z. For specific Y = y both are

measurable functions.

The conditional expectation can be interpreted as the most feasible prognosis for the value of

random variable X when knowing random variable Y . For the dice rolling example introduced

earlier the conditional expectation for the sum of both dices X when knowing the result of the

first dice Y would be E(X|Y ) = Y + 3.5 and can be seen to be a random variable. Similarly a

measurable function f(y) := E(X|Y = y) = y+3.5 is defined. For a specific first throw result

Y = 2 we get f(2) = E(X|Y = 2) = 2 + 3.5 = 5.5.

Clearly, E(E(X|Y )) = E(Y + 3.5) = 3.5 + 3.5 = 7 = E(X) holds, which can be proven

to be a general law. We summarise this and other properties of mentioned conditional moments.

Corollary 1.5: Properties of Conditional Moments

In addition to all properties presented in Corollaries 1.2 and 1.3 conditional moments

satisfy the following formulas.

� If X is independent from Y then E(X|Y ) = E(X) and V(X|Y ) = V(X) (Y does

not provide any information)

� E(X|X) = X,V(X|X) = 0 and Cov(X,Y |X) = 0 (X is perfectly known)

� E(E(X|Y )) = E(X) (Theorem of Total Expectation)

� V(X) = E(V(X|Y )) + V(E(X|Y )) (Theorem of Total Variance)

�

Cov(X,Y ) = E(Cov(X,Y |Z)) + Cov(E(X,Y |Z)) (3.19)

(Theorem of Total Covariance)

3.2 Statistical Basics

In this work we will mostly use methods from so-called descriptive statistics and mathe-

matical statistics which include estimation of moments and probability- or density- functions.

Exploratory statistics mainly deals with hypothesis testing and seems to be of lesser use for

stochastic analysis of simulation models.

Given a set ofN drawn observations x1, x2, . . . , xN , henceforth called a sample, of indepen-

dent, identically distributed (iid) random variables X1, . . . , XN with Xi ∼ D, i ∈ {1, . . . , N},

we aim to make most likely assumptions for moments of D or the distribution of D itself. In
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general, any measurable function f that operates on a sample is called an estimator or estima-

tion function if it estimates the value of an unknown parameter p of the common distribution

D = D(p) of X1, . . . , XN via

f(x1, . . . , xN ) ≈ p.

Function f(X1, . . . , XN ) is a random number of which we usually expect to converge towards

the constant parameter p (at least) in probability

f(X1, . . . , XN )
p−→

N→∞
p.

In that case we speak of a consistent estimator. If E(f(X1, . . . , XN )) = p the estimator is

called unbiased.

3.2.1 Standard Estimators for Moments

The most famous estimation functions are clearly the estimators for moments.

Definition 2.1: Sample Mean

The estimator

X := f(X1, . . . , XN ) :=
1

N

N∑
i=1

Xi

is called sample mean. The resulting parameter

x := f(x1, . . . , xN ) =
1

N

N∑
i=1

xi

is a consistent and unbiased estimator for E(X1) = · · · = E(XN ).

While it is easy to see that the estimator is unbiased (linearity of the expected value) it is a little

bit more difficult to show that it is consistent. The latter follows from the Law of Large Numbers

(see later in Theorem 3.1). As a direct consequence of the latter also

f(X) :=
1

N

N∑
i=1

f(Xi) (3.20)

is a consistent and unbiased estimator for E(f(Xi)) for every measurable function f . In case f
additionally depends on other estimators p1, p2, . . . on the sample set X1, . . . , XN via

f(Xi, p1, p2, . . . ) the resulting estimator is consistent as long as the individual estimators are

consistent. Yet independent of the quality of the individual estimators f(X, p1, p2, . . . ), it must

not be unbiased anymore. The most prominent example for this is given by

(X −X)2 =
1

N

N∑
i=1

(Xi −X)2
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used as an estimator for the variance. It is consistent but can easily be calculated to violate the

condition for unbiased estimation

E

(
(X −X)2

)
�= V(Xi).

Yet there is a way to remove this bias by slight modification of the pre-set factor.

Definition 2.2: Sample Variance (unbiased)

The estimator function

f(X1, . . . , XN ) =
1

N − 1

N∑
i=1

(Xi −X)2

is called sample variance. The resulting parameter

s2 := f(x1, . . . , xN ) =
1

N − 1

N∑
i=1

(xi − x)2

is a consistent and unbiased estimator for V(X1) = · · · = V(XN ).

Clearly,

s :=
√
s2 (3.21)

is a consistent estimator for the standard deviation – the so-called sample standard deviation –

but it is biased. Moreover, it can be proven that it is impossible to give a closed formula for an

unbiased estimator for the standard deviation without additional knowledge of the underlying

distribution (more about this problem is found in [Bolch, 1968]).

3.2.2 Estimators for Probability- and Density- Functions

While above estimators focus on finding approximation for scalar distribution parameters, it is

possible to find estimators for the whole probability- or density- function as well. In this case

the estimated parameter is not a scalar but can be interpreted as an executable function uniquely

describing a distribution P̂ . It is determined so that the difference between P̂ and the original

unknown distribution P , is as small as possible. Most commonly this is done by estimating the

distribution’s density function f either by a histogram or by so-called kernel density estimation.

Definition 2.3: Kernel Function

A positive function K : R → R+ that integrates to one is called kernel function. Kernels

are usually chosen symmetric and with K(x) ≤ K(0).
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Definition 2.4: Kernel Density Estimation

Given N iid samples x1, . . . , xN then

f̂(x) :=
1

Nh

N∑
i=1

K

(
x− xi
h

)
(3.22)

approximates the distribution’s density function ifK is a kernel function and the bandwidth

h is chosen reasonably small.

As it is not important for our applications we will not go into details about convergence speed

or similar technical issues. More importantly a suitable kernel and a fitting bandwidth has to be

chosen for its application. We want to introduce two commonly used kernels.

Definition 2.5: Gaussian Kernel

K(x) :=
1√
2π
e−

x2

2 . (3.23)

Definition 2.6: Uniform Kernel

K(x) := �[− 1
2
, 1
2 ]
(x). (3.24)

Clearly, the Gaussian kernel is highly suited for distributions which are close to a normal distri-

bution but quite expensive with respect to computational resources. The uniform kernel evaluates

very quickly but (usually) results in unsteady solutions.

The bandwidth h needs to be chosen as small as required, but not smaller. If it is too small,

the resulting density estimation receives unrealistic fluctuations. However, if it is too large, the

curve is too much flattened. For the Gaussian kernel the rule of thumb estimate (see [Silverman,

1998])

h ≈ 1.06
√
s2

1

N
1
5

(3.25)

can be proven to result in good approximating density estimates. Herein s2 denotes the sample

variance. It also turns out to be quite applicable for the uniform kernel.

Clearly, a probability density can be approximated with a standard (normed) histogram as

well. Here the success of the density approximation depends on the number of bins which can

be seen to pose for some analogue of the bandwidth in kernel density estimators. The difference

between histogram and kernel density estimation is seen in Figure 3.1.

In case of solely discrete random variables, i.e. Γ ∼= A ⊆ N, the density function, which

is usually called probability mass function in that case, can also be approximated using both
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methods. Yet both concepts, the histogram and the kernel density estimation, lead to the same

result. Note, that the only useful kernel for that application is given by

K(x) := �{0}(x).

Figure 3.1: Comparison of different methods for density estimation with 100 uniformly U(0, 1)
generated pseudo random numbers. While the upper two images show standard kernel density

estimations with Gaussian and uniform kernel the third plot shows a standard histogram with a

comparable number of bins.

3.3 Limit Theorems of Stochastic Sums

While probability theory deals with the question how knowledge about distributions can be used

to make statements about experimental results, the field of statistics deals with the question how
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experimental results can be used to make statements about underlying distributions. Surely both

sciences strongly overlap and are usually applied together. A perfect example for this is the

analysis of the distribution of stochastic sums, i.e. a sum

YN :=

N∑
i=1

X0
i :=

N∑
i=1

Xi − E(Xi)√
V(Xi)

(3.26)

of N random numbers Xi with finite expected value and variance. This case study is, of course,

motivated by the estimation of moments like mean and variance which is usually done via sum-

mation. Nevertheless the analysis of the underlying distribution of YN based on the individual

distributions of Xi is done using methods from probability theory. Moreover, these sums are

playing a key role in the analysis of microscopic models via mean-field analysis.

When investigating stochastic sums three key-theorems can be seen to be vitally important.

All three deal with the question what happens with the limit

Y i
∞ := lim

N→∞
CN ·

N∑
i=1

X0
i (3.27)

for specific N -dependent constants CN . Herein the following three cases will be investigateds:

1. The limit is a constant random number (Law of Large Numbers).

2. The limit is a random number that spreads (somehow) on a finite interval (Law of Iterated

Logarithm).

3. The limit is a random number on [−∞,∞] with finite variance (Central Limit Theorem).

3.3.1 Law of Large Numbers

The Law of Large Numbers considers CN := 1/N leading to

YN =
1

N

N∑
i=1

X0
i = X0. (3.28)

As X0 is an estimator for the mean of the individual random numbers X0
i we expect that

YN → 0

as all X0
i = Xi−E(Xi)√

V(Xi)
are normed to have mean 0 and variance 1. If the random numbers Xi are

independent this assumption is true, which is guaranteed by the Law of Large Numbers. Hereby

two (main) versions exist, a strong and a weak one. They differ by the type of convergence.
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Theorem 3.1: Law of Large Numbers (Kolmogorov)

If Xi are independent random numbers with finite variance and expected value then the

stochastic sum X0 fulfils the Strong Law of Large Numbers

lim
N→∞

P (X0 = 0) = 1
(
⇔ X0 a.s.−→ 0

)
, (3.29)

which implies the Weak Law of Large Numbers

∀ε > 0 : lim
N→∞

P (X0 > ε) = 0
(
⇔ X0 p−→ 0

)
. (3.30)

Clearly, for any CN < 1
N we also obtain YN

a.s.−→ 0 but 1
N plays a key role. In case all random

numbers are identically distributed with finite mean μ and variance σ2 we get

YN =
1

N

N∑
i=1

Xi − μ

σ
=

1

σ

(
X − μ

) a.s−→ 0 ⇒ X
a.s−→ μ. (3.31)

3.3.2 Law of the Iterated Logarithm

The Law of the Iterated Logarithm considers CN := 1√
2N ln(ln(N))

which results in

YN =
1√

2N ln(ln(N))

N∑
i=1

X0
i (3.32)

Although the shape of the limit distribution depends on the individual distributions ofXi the law

of the iterated logarithm states that the support of Y∞ is limited.

Theorem 3.2: Law or the Iterated Logarithm (Hartman & Windtner)

If Xi are independent random numbers with finite variance and expected value then

lim sup
N→∞

1√
2N ln(ln(N))

N∑
i=1

X0
i = 1 a.s. and (3.33)

lim inf
N→∞

1√
2N ln(ln(N))

N∑
i=1

X0
i = −1 a.s.. (3.34)

For identically distributed random numbers with mean μ and variance σ2 we observe that

lim
N→∞

N√
2σ2N ln(ln(N))

∣∣X − μ
∣∣ = lim

N→∞
1√

2N ln(ln(N))

∣∣∣∣∣
N∑
i=1

X0
i

∣∣∣∣∣ = 1.
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Thus,

√
2σ2N ln(ln(N))

N =

√
2σ2 ln(ln(N))

N can be used as an estimator for the error of the sample

mean via ∣∣∣∣∣ 1N
N∑
i=1

Xi − μ

∣∣∣∣∣ = O
(√

ln(ln(N))

N

)
(3.35)

and for reasonable large N∣∣∣∣∣ 1N
N∑
i=1

Xi − μ

∣∣∣∣∣ ≤
√

2σ2 ln(ln(N))

N
≈
√

2s2 ln(ln(N))

N
. (3.36)

3.3.3 Central Limit Theorem

Finally the Central Limit Theorem considers

CN :=
1√
N

and results in a very prominent limit distribution for Y∞ – the normal or Gaussian distribution.

Theorem 3.3: Central Limit Theorem (Lyapunov)

If Xi are independent random numbers with finite variance and expected value then

lim
N→∞

1√
N

N∑
i=1

X0
i = Y∞ ∼ N (0, 1), (3.37)

in case the individual variances V(Xi) do “not grow too fast” with N – i.e. they fulfil the

Ljapunov condition

lim
N→∞

1

V(XN )δ+2

N∑
i=1

E(|Xi − E(Xi)|2+δ) = 0 (3.38)

for some δ > 0.

The first limit needs to be understood in distribution.

The most important feature of this theorem is the fact that (in contrary to the Iterated-Logarithm

Theorem 3.2) the limit distribution is independent from the individual distributions of Xi. A

direct consequence of the Theorem is given for identically distributed random numbers Xi with

E(Xi) = μ and V(Xi) = σ2 by

√
NX =

1√
N

N∑
i=1

Xi
d−→ Y∞ ∼ N (μ, σ). (3.39)
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3.3.4 Extensions and Limitations of the Three Limit Theorems

Above limit theorems are of vital importance in descriptive statistics wherein the convergence

of sums implies the convergence of specific estimators. In reality observed samples are very

unlikely guaranteed to be independent from each other which leads to doubts about whether

1√
N

N∑
i=1

X0
i −→

N→∞
N (0, 1)

as all three limit theorems are basically defined for independent samples. Yet it might be im-

portant to know if especially V( 1
N

∑N
i=1X

0
i ) disappears for N → ∞ (which would be a direct

consequence of all three theorems).

Rigorous research about sums of dependent random samples started in the middle of the

last century. It is still a heavily researched area and it can be seen as a part of ergodicity theory.

This research is justified as experiments clearly imply that the Central Limit Theorem (and

consequently the Law of Large Numbers) also holds for certain series of dependent random

numbers. Nevertheless there are very simple examples showing that this validity is not a general

one. Define X1 ∼ δ0.5({−1, 1}) and

P (Xi+1 = 1|Xi = y) = �y(1), P (Xi+1 = −1|Xi = y) = �y(−1).

Clearly, Xi = X0
i and

∑N
i=1Xi =

∑N
i=1X

0
i ∈ {−N,N} which leads to

1√
N

N∑
i=1

X0
i

a.s.−→
N→∞

±∞ (3.40)

instead of N (0, 1).
It follows that a general extension to dependent random numbers is impossible. Most con-

cepts that prove conservation of the validity of the Central Limit Theorem for dependent series

use concepts that restrict the level of dependency between the random variables. To our knowl-

edge Murray Rosenblatt [Rosenblatt, 1956] was the first who stated that the Central Limit Theo-

rem 3.3 remains valid for sequences of random numbers which fulfil a so-called strong mixing

condition. Using our notation a sequence of random numbers is called strongly mixing if

∀A,B ∈ Aσ(Γ) : P (Xi ∈ A ∧Xi+j ∈ B)− P (Xi ∈ A)P (Xj ∈ B) −→
|i−j|→∞

0. (3.41)

Sloppily spoken, the dependence of Xi and Xj disappears when |i− j| gets sufficiently large.

Applications for this Theorem are easily found when investigating random time series wherein

Xi+1 = f(Xi)

for some randomness-containing function f that maps one random number onto the subsequent

one. As the relation between Xi and Xj is given by |i − j| times recursively applying f it is

very likely that the random parts in f will dominate the influence of the input, in this case Xi,



60 CHAPTER 3. STOCHASTIC METHODS

for sufficiently large recursion depth. Note, that the given example which lead to (3.40) violated

the strong mixing condition as f was completely deterministic and

P (Xi = 1|Xj = −1)︸ ︷︷ ︸
0

−P (Xi = 1)︸ ︷︷ ︸
1
2

P (Xj = −1)︸ ︷︷ ︸
1
2

−→
|i−j|→∞

−1

4
�= 0.

We can generalise the idea of a random time series by increasing the recursion order like

Xi+1 = f(Xi−m, . . . , Xi), m ∈ N,

or by interpreting the series as a spatial field via

Xi = f(Xi−m, . . . , Xi−1, Xi+1, . . . , Xi+m′), m,m′ ∈ N. (3.42)

which should conserve the validity of the Central Limit Theorem if f contains sufficient level

of randomness. Based on this idea we are basically able to analyse microscopic models with

respect to their limit distribution. Assuming that the sum of random numbers describes the

aggregated numbers in a microscopic model, equation (3.42) is comparable with the concept

of neighbourhood in a cellular automata (CA) seen in Section 2.1.2. Hence, stochastic CAs

are very likely to fulfil a Gaussian limit distribution on the aggregate level if their transition

function contained “sufficient randomness”. For deterministic CAs for which randomness is

only obtained due to a (possibly) random initial configuration this argument cannot be applied.

This will be verified by a very prominent test-case in Section 5.4.

In agent-based models (Section 2.1.3) it is possible that agents might interact on a global

level or via complex networks which directly violates the strong mixing condition. Consider an

agent-based model wherein a designated group leader, agent 1, has a random opinion X1 which

influences not only its neighbours, but all agents in the complete environment. So problems with

central limit conditions appear and the limit distribution of the aggregated numbers might have

an unexpected shape. Some of these problems are discussed in [Kitzler, 2016].

In summary, limit theorems for stochastic sums are very useful for the analysis of estimators

applied on observed independent random experiments. In case the experiments are executed

serially, it is very likely that the strong mixing condition is fulfilled even for slightly dependent

experimental results. In case they are executed in parallel, the condition is very likely to be

violated if dependence appears on the global level. For more information about limits of sums

of dependent random variables, the reader is referred to [Rio, 2013].

Unfortunately the three discussed Theorems can hardly be used to gain quantitative state-

ments about microscopic models as, first, they are not constructive and, second, do not allow to

analyse time and state as separate state variables of a model. I.e. either we may fix a specific

point in time and approximate the limit for infinite number of sub-models or we discretise the

time-space and investigate the limit distribution for t→ ∞, but we cannot combine these ideas.

A more powerful concept needs to be introduced to solve this problem for formal mean-field

analysis.
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3.4 Stochastic Processes

One of the few common denominators of microscopic models is that their system components

somehow change with time. Moreover, as most of them contain stochastic elements the con-

cept of random- or, more frequently, stochastic- processes turn out to pose for a applicable

mathematical foundation to formalise them.

A stochastic process is usually defined as a time (we will write T for the time-domain to the

process) dependent random variable.

Definition 4.1: Stochastic Process

Let Ω be a probability space. Γ a measure space and T ⊆ R+ the so-called time-space.

A function

X : Ω× T → Γ : (ω, t) �→ X(ω, t)

is called stochastic process, if ∀t ∈ T : X(·, t) is (Aσ(Ω), Aσ(Γ))-measurable. Space Γ is

called state-space of the process.

Defining M(Ω,Γ) as the set of measurable functions from Ω to Γ it is possible to

investigate

X : T → M(Ω,Γ) : t �→ X(·, t) =: X(t)(·)
as a random-variable valued function in time. It is henceforth called path or trajectory of

the process. For fixed ω an evaluation

t→ X(t)(ω)

is a measurable function in time and called sample trajectory or sample path. The col-

lection of all possible trajectories {t → X(t)(ω), ω ∈ Ω} is called path-space of the

process.

We will henceforth mostly use the representation of the stochastic process in form of its trajec-

tory.

On the one hand, the summary of all state variables in a microscopic model can clearly be

formalised as one stochastic process with arbitrarily complex state-space while every simula-

tion execution corresponds to a trajectory of the process. On the other hand the states of all

individual sub-models in the microscopic model can, as well, be formalised as a (very likely

dependent-) stochastic processes. Hence, the stochastic process model is uniquely defined as

the summary (this is not trivial and may include other stochastic processes) of all individual

stochastic processes individually. This feature makes stochastic processes to the probably most

valuable concept for formalising and analysing microscopic models.

Above definition of a stochastic process is very general and does not contain any advise how

to (uniquely) describe a process using mathematical terms. While a random variable can, for

example, be defined via its probability density or probability mass function it is easy to see that

this concept is not very practicable for stochastic processes. We would require to define one



62 CHAPTER 3. STOCHASTIC METHODS

density function for every point in the time-space T which is neither convenient nor picturesque

as a system evolving in time.

Consequently, stochastic processes use a different definition-concept which is based on how

the trajectory of the process is expected to evolve given the already sampled path. The meth-

ods to define stochastic processes via their trajectory focus on the following classification of

stochastic processes.

It is generally useful to demand that the path of a stochastic process only depends on its

prior states. This is phenomenologically founded thinking of the causality of time as the under-

lying space. Hence, the trajectory of a stochastic process is, in the general case, defined by the

conditional probabilities

P (X(t) ∈ A|X(s) = x(s), s < t), A ∈ Aσ(Γ), ∀s : x(s) ∈ Γ. (3.43)

Analogous to other time evolution systems like differential equations, also an initial condition

needs to be given which, in this case, poses for an initial distribution ∀A : P (X(t0) ∈ A).
For applications this concept is quickly seen to be too general to be applicable. It is, essen-

tially, infinitely-dimensional as we would have to define probabilities for any element of the path

space. Hence, a lot of classes are defined to simplify a unique definition of the process.

3.4.1 Classification with Respect to Space Structure

The classification with respect to input and output formats of the trajectory plays a key role to

simplify the definition. Hereby we refer to the set-specific basic properties of the spaces T and

Γ. We recall the definitions for discrete and continuous sets 1.1 and 1.2.

Definition 4.2: State Discrete/Continuous Stochastic Process

A stochastic process

X : Ω× T → Γ : (ω, t) �→ X(ω, t)

is called state, value or spatially discrete/continuous if Γ is a discrete/continuous set.

As with classical random numbers, the distinction between discrete and continuous state-space

has a major influence on how the random process can be defined and analysed. For state discrete

processes the definition given in equation (3.43) can be shortened to

P (X(t) = x|X(s) = x(s), s < t), x, x(s) ∈ Γ (3.44)

which might even lead to a finite number of different probabilities. This can moreover be sum-

marised in a matrix with row-dimension |Γ|. Moreover, trajectories of state discrete processes

can be seen as piecewise constant, while trajectories of state continuous processes may result in

arbitrary functions on T .
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�
�
�
�
�
�
�
��

time

state
discrete continuous

discrete The trajectory can be imagined

as a vector or sequence on a

time-space grid.

The trajectory is a vector or se-

quence with arbitrary values.

continuous The trajectory is piecewise con-

stant.

The trajectory may have an arbi-

trarily complex shape.

Table 3.1: Classification of stochastic processes with respect to different space formats. Impact

of discrete and continuous time- and state- spaces on the trajectory.

Definition 4.3: Time-Discrete/Continuous Stochastic Process

A stochastic process

X : Ω× T → Γ : (ω, t) �→ X(ω, t)

is called time-discrete/continuous if T is a discrete/continuous set.

For discrete time processes it is convenient to write the time-space as a vector T = (t0, . . . , tend)
T

or sequence T = (ti)
∞
i=1. Clearly, the discreteness of the input (time) leads to a discrete output

(the trajectory). Hence, Xi := X(ti) can be seen as a vector or a sequence as well. A definition

in form of equation (3.43) rewrites to

P (X(ti+1) ∈ A|X(tj) = xj , j ∈ {1 . . . i}), A ∈ Aσ(Γ), ∀j : xj ∈ Γ. (3.45)

Time-continuous processes result in continuous output paths, which can be drawn as a closed

(possibly unsteady) line in a time-state diagram.

We summarise the classification of stochastic processes via the influence of different time-

and state- spaces on the trajectory in Table 3.1.

3.4.2 Classification with Respect to Memory

Considering equation (3.43) a stochastic process evolves with a probability depending on the

past i.e. the former states of the process. Knowing the total path of the stochastic process until a

certain point in time t the distribution for its future is uniquely defined. Let

T (t) := T ∩ [0, t) (3.46)

and define m(t) as the supremum of the set

{q ∈ [0, t] : ∀A, x(s) :
P (X(t) ∈ A|X(s) = x(s), s ∈ T (t)) = P (X(t) ∈ A|X(s) = x(s), s ∈ [t− q, t) ∩ T )},

(3.47)
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then m(t) is called the memory of the process as the process needs to “remember” the last m(t)
time instances of it’s past to uniquely define its future distribution. Only if m(t) = t the process

requires its entire past to evolve uniquely.

It is possible to go one step further: In almost all cases it is possible to find a countable

subset D(t) of T (t) that fulfils

P (X(t) ∈ A|X(s) = x(s), s ∈ T (t)) = P (X(t) ∈ A|X(s) = x(s), s ∈ D(t))

for all A and x(s). Hence, it is possible to find a transition mapping that does not depend on an

infinite dimensional function x(s) but on a countable number of previous states of the process.

We call this property separability.

Definition 4.4: Separable Process

A stochastic process X : T × Ω → Γ is called separable if for any t ∈ [0, t) there is a

countable set D(t) ⊂ [0, t) so that

P (X(t) ∈ A|X(s) = x(s), s ∈ T (t)) = P (X(t) ∈ A|X(s) = x(s), s ∈ D(t)) (3.48)

for all A ∈ Aσ(Γ) and all possible trajectories x(s) : [0, t] → Γ.

Consequently, there is a series of time instants ti and states X(ti) = xi so that

P (X(t) ∈ A|X(s) = x(s), s < t)

= P (X(t) ∈ A|X(s) = x(s), s ∈ T (t))

= P (X(t) ∈ A|X(t1) = x1, X(t2) = x2, . . . ). (3.49)

This definition of separability is unusual, but, in comparison with the classical one, we consider

it for more picturesque. Mathematician Josef Doob proved that any stochastic process on Rn has

a separable version. Hence, most stochastic processes used as models for real world applications

are separable as well. We will henceforth only discuss separable processes.

Using the concept of separability it is possible to introduce another important feature of a

stochastic process with respect to memory.

Definition 4.5: Memoryless

Given a separable stochastic process X : T × Ω → Γ. If for any vector with arbitrary

length m ∈ N of descending points t > t1 > t2 > · · · > tm in T , set A ∈ Aσ(Γ) and

values x1, . . . , xm ∈ Γ

P (X(t) ∈ A|X(t1) = x1, . . . , X(tm) = xm) = P (X(t) ∈ A|X(t1) = x1), (3.50)

the process is called memoryless.

The conditional probability function of the process does not depend on any state of the process

which took place before the last observation x1. Therefore, the process does not “memorise”
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anything which is not directly “observable” anymore. Hence, the term “memoryless” is justi-

fied. For time-continuous processes we receive m(t) = 0 and for time-discrete processes (with

equidistant time-steps of length 1) m(t) = 1 using the notation of (3.47).

This condition is probably the most powerful restriction to a stochastic process and is fre-

quently called Markov condition. Consequently, memoryless processes are usually called

Markov processes which, in case they are moreover time-discrete, may be called Markov

chains. The Markov condition implies a number of useful properties of which the following

two are probably the most important.

First, all sample trajectories of memoryless processes are right-continuous. This means that

∀A ∈ Aσ(Γ) : the set {t ∈ T : x(t) ∈ A} has a minimum or is empty. Hence, there is always a

specific point in time when the process enters a specific state or a set of states.

Second, the process is uniquely defined by a mapping Γ × Γ × T → R+ that indicates

how likely the process switches from one state in Γ to any other state in Γ at a given time. A

switch between different states is typically called transition. For discrete time processes this

mapping directly relates to the so-called transition probabilities, i.e. the probability that the

process switches from one state to a different state at time t. For continuous-time processes it is

better to interpret the mapping as switching tendencies between states – we speak of so-called

transition rates. In case the state-space is discrete, the mapping can be stated as a possibly

infinite dimensional time-dependent matrix. More about this transition mapping is given in the

next sections (Section 3.4.3 and 3.4.4).

Not completely memoryless stochastic processes, i.e. processes with small memory, are

usually defined only for time-discrete processes. A time-discrete process that fulfils

∀n > m : P (X(ti) ∈ A|X(ti−1) = xi−1, . . . , X(ti−m) = xi−m) =

= P (X(ti) ∈ A|X(ti−1) = xi−1, . . . , X(ti−n) = xi−n) (3.51)

for all ascending points in time ti−n < · · · < ti, set A, and values x1, . . . , xn is called Markov

chain of mth order. Note, that every nth order Markov chain on Γ can be redefined as a standard

Markov Chain X ′ on the extended state-space Γm. Defining

X ′(ti) := (X(ti), X(ti−1), . . . , X(ti−m+1))
T . (3.52)

then X ′ follows a Markov chain of first order. This strategy can be imagined as “saving” the

memory, i.e. the previous states of the process, as additional vector entries to the state. We give

a short example for this:
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Example 4.1: Fibonacci Sequence

Consider the recursive Fibonacci sequence xn = xn−1 + xn−2 interpreted as a discrete-

time, discrete-space stochastic process via

P (X(ti) ∈ A|X(ti−1) = xi−1, X(ti−2) = xi−2) =

{
1, xi−1 + xi−2 ∈ A

0, otherwise.
(3.53)

Clearly, a (deterministic) second order Markov chain on R is given as the probabilities

for the next state not only depend on the current state xi−1, but also on the state before.

Defining X ′(ti) := (X(ti), X(ti−1))
T we deduce

P
(
X ′(ti) ∈ A|X ′(ti−1) = (xi−1, xi−2)

T
)
=

{
1, (xi−1 + xi−2, xi−1)

T ∈ A
0, otherwise.

(3.54)

and receive a standard Markov chain on R2.

We will now take a closer look on mentioned transition mapping of stochastic processes

which was already stated to be the most convenient way to define the dynamics of a stochastic

process. Herein we briefly distinguish between time-discrete and time-continuous stochastic

processes.

3.4.3 Transition Probabilities

Any process used in this and the next section can be considered as memoryless.

The term transition or, more precisely, state-transition is used to describe that a random

process switches from one to a different state. I.e. for a stochastic process X with state-space Γ
there is a certain point tt in time so thatX(t−t ) = x1 andX(t+t ) = x2 for two different elements

x1, x2 ∈ Γ. As memoryless processes have right-continuous paths X(tt) = x2 moreover.

Defining a process via its transitions requires the definition of the so-called transition prob-

abilities. Hereby we refer to the probability that a process being in state x1 has a transition to a

different state in a certain interval.

Definition 4.6: Transition Probability

Given a stochastic process X , two points in time t > t1 ∈ T , a state x1 and a set A then

P : Γ× T ×Aσ(Γ)× T → [0, 1] : (x1, t1, A, t) �→ P (X(t) ∈ A|X(t1) = x1) (3.55)

is called transition probability of X from x1 to (a state inside) A. Analogous to the condi-

tional probability measure

P (X(t) ∈ A|X(t1))

is a measure-valued random variable.
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This definition is crucial for the analysis methods of microscopic models in the next chapters.

In case the transition probabilities are absolutely continuous (as a measure) with respect to the

measure of Γ there exists a transition-density

P̃ : Γ× T × Γ× T → R+ : (x1, t1, x2, t) �→ P̃ (X(t) = x2|X(t1) = x1) (3.56)

with ∫
A
P̃ (X(t) = x|X(t1) = x1)dμ(x) = P (X(t) ∈ A|X(t1) = x1). (3.57)

Clearly, defining the transition probabilities for all points in time the dynamics of a memoryless

process are uniquely defined. For so-called homogeneous processes the transition probability

does not depend on two points in time, but only on the length of the time interval in between:

P (X(t) ∈ A|X(t1) = x1) = P (X(t− t1) ∈ A|X(0) = x1). (3.58)

3.4.4 Transition Rates

The idea of defining the dynamics of a memoryless process via its transition probabilities

P (X(t+ h) ∈ A|X(t) = a)

easily leads to enormous overhead as the transition probability needs to be defined not only

for all times, a-prior and a-posterior states, but also for all time-differences. As a result of the

Markov property and the Theorem or Total Probability (3.15)

P (X(t+ 2h) ∈ A|X(t) = x)

=

∫
Γ
P (X(t+ 2h) ∈ A|X(t+ h) = Y,X(t) = x)dP (Y |X(t) = x)

=

∫
Γ
P (X(t+ 2h) ∈ A|X(t+ h) = Y )dP (Y |X(t) = x) (3.59)

holds. Hence, transition probabilities for time-difference of 2h are uniquely defined by the

transition probabilities for time-difference h and consequently by infinitesimal time-differences

if this bisection process is repeated. Note, that equation (3.59) is called Equation of Chapman

and Kolmogorov. As a result memoryless processes can be defined via differential expressions

ω(t, x, A) := lim
h→0

P (X(t+ h) ∈ A|X(t) = x)− P (X(t) ∈ A|X(t) = x)

h
,

as they uniquely define the dynamics of the process in infinitesimal steps.
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To be precise:

Definition 4.7: Transition Rate

For fixed x ∈ Γ, t ∈ T and A ∈ Aσ(Γ) the limit (as long as it exists)

ω(t, x, A) := lim
t1→inf{t2∈T :t2>t}

P (X(t1) ∈ A|X(t) = x)− P (X(t) ∈ A|X(t) = x)

t1 − t
(3.60)

is called transition rate (from x to A).

The unusual choice of the limit was necessary to regard time-discrete processes as well. Phe-

nomenologically,

P (X(t) ∈ A|X(t) = x) = �A(x). (3.61)

Hence, for all x /∈ A transitions rates are always positive while x ∈ A leads to a negative

transition rate.

Remark 4.1:

There are also definitions of transition rates that exclude sets A, that contain element x
from their definition space to avoid irregularities (see later in the discussion about regular-

ity of processes). This is legitimate as it is for practical applications. It not necessary to

define the rate that a process remains in its state as it results from the rates that a process

leaves it.

For time-discrete processes the transition rates always compute to

ω(ti, x, A) =
P (X(ti+1) ∈ A|X(ti) = x)− �A(x)

ti+1 − ti
.

By rules of probability calculus ω(ti, x,
∑

i=1Bi) =
∑

i=1 ω(ti, x, Bi) can be shown for dis-

joint sets Bi which makes ω a signed measure. Moreover, ω(t, x, A) = −w(t, x, Ac) and hence∫
Γ
ω(ti, x, dy) = 0.

Spatially discrete processes with Γ = {x1, . . . , xm}, ω can be summarised in a matrix

W (t) = (ω(t, xi, xj))
m
i,j=1 .

This matrix is strongly related but not equivalent with the standard transition matrix, which

is only defined for spatially and temporally discrete Markov processes. According to the last

observation rows of matrix W (t) sum to 0 while rows and columns of the standard transition

matrix

V (tk) := (P (X(tk+1) = xi|X(tk) = xj))
m
i,j=1
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sum to 1.

As implicitly mentioned in the definition of the transition rates 4.7 it is not always guaranteed

that such a function mapping (to R) really exists as it might occur that ω(t, x, A) = ∞ for certain

processes. Consider a process X with transition probabilities

lim
h→0

P (X(t+ h) ∈ {1}|X(t) = 0) = 1, lim
h→0

P (X(t+ h) ∈ {0}|X(t) = 1) = 1.

Clearly, this process is memoryless and fully defined. Yet

ω(t, 0, {1}) = lim
h→0

P (X(t+ h) ∈ {1}|X(t) = 0)

h
= ∞.

Reason for this irregularity is the problem that the process makes an infinite number of unsteady

switches between 0 and 1 in any given finite time interval. Consequently, it is not a useful model

to depict any given real system.

To avoid problems like this, which occurs for continuous time processes only, two restric-

tions are convenient. Sloppily spoken:

Definition 4.8: Regular time-continuous Markov process

If, during finite time intervals, the process trajectory almost surely has a finite number of

unsteady state-transitions the process is denoted as regular.

This condition can be shown to be equivalent with

lim
h→0

P (X(t+ h) ∈ {1}|X(t) = 0)

h
= ω(t, s, A) <∞ (3.62)

for all compact A with s /∈ A and results in

P (X(t+ h) ∈ A|X(t) = s) = hω(t, s, A) +O(h2). (3.63)

We will henceforth call the latter Poisson property. For a proof of this statement the reader is

referred to standard literature for Markov processes.

The highlighted adverb “unsteady” indicates that there are regular processes that allow an

infinite number of transitions during a finite time interval as long as the transitions are continu-

ous, i.e. with h → 0 also ‖X(t+ h)−X(t)‖ → 0. According to this we distinguish between

three types of processes.
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Definition 4.9: Jump /Diffusion process

For a continuous metric space Γ with induced topology the following types of Markov

processes can be distinguished:

� In case ω(t, s, A) = 0 for all closed A with s /∈ A then the process is called (clean)

diffusion-process.

� In case ω(t, s, A) <∞ for all A with s /∈ A then the process is called (clean) jump

process.

� In case ω(t, s, A) < ∞ for all closed A and there is at least one A with s /∈ A for

which ω(t, s, A) = ∞, then the process is called jump-diffusion-process.

Classically above distinction is only defined for Γ = R, but an extension of this idea to arbi-

trary metric spaces does not pose a problem. We will henceforth only consider regular jump

processes in this work.

Finally, we want to introduce a term that poses for the density pendent of the transition rates.

Definition 4.10: Transition Kernel

Let X be a regular time-continuous Markov process and

{ω(t, x, A), A ∈ Aσ(Γ), x ∈ Γ}

be the family of all transition rates, then a function ω̃ that fulfils∫
A
ω̃(t, x, y)dy = ω(t, x, A) (3.64)

for all A is called transition kernel of the process. This concept is closely related to the

transition density P̃ (see (3.56)) as

ω̃(t, x, y) = lim
h→∞

P̃ (X(t+ h) = y|X(t) = x)

h
(3.65)

holds (as long as both exist). We write ω instead of ω̃ if it is clear by context, that a kernel

is used.



CHAPTER 4
Mean Field Analysis

In this chapter we want to introduce a method that can be applied to analyse a given and fully

formalised microscopic model by a much simpler macroscopic model - a so-called mean-field

model. This simplified model is usually found in form of ordinary or partial differential equa-

tions but may be found as difference equation as well. The concept of using this mean-field

model to get insights into the microscopic model is called mean-field analysis (MFA).

The most interesting feature of this process is that the mean-field model is not developed as a

model for the underlying real-system, but as a model for the microscopic model itself – a model

for a model. As a matter of transitivity, developing a (valid) model for a different (valid) model of

a real system also results in a (valid) model for the real system. As the microscopic model usually

involves much more details than the mean-field model cutbacks in form of simplifications and

approximations are necessary. This level of cutback finally decides about the success of the

MFA:

� If the level of cutback was too large, the resulting mean-field model is too much simplified.

Hence, (some) features of the mean-field model are not features of the microscopic model

anymore.

� If the level of cutback was too small, the resulting mean-field model might still be too

complex for formal investigation. Thus, a mean-field model is found, but cannot be used.

The so-called mean-field theory deals with the question of how to find a suitable mean-field

model for a given formalised microscopic model. It is a comparably young science, basically

arisen from the field of statistical mechanics, but its area of application has long grown to many

other scientific research fields like game-theory, economy, epidemiology and several other social

sciences. A couple of researchers that have strongly influenced this science in its early days

should be mentioned:

The first ones actually using mean-field models as a supplement for microscopic models

were Pierre Curie (1895) and Pierre Weiss (1907), both French physicists, who investigated the

average/aggregated spin of ferromagnetic particles. The underlying model, nowadays known

71
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under the term Ising-model formalised by Ernst Ising in 1924 [Ising, 1925], is now one of

the most rigorously researched models of statistical physics. Moreover, it is probably the most

prominent example for an application of mean-field theory as well. Based on the results of Curie

and Weiss many prominent physicists like Einstein, Ehrenfest and Van der Waals continued

working on this model and tried to develop answers for its phase-transition problem. Finally

Lew Dawidowitsch Landau was able to state a more-less generalised theory for it in 1937 that

summarised the ideas of his prominent colleagues [Landau, 1937]. His results can be denoted as

the first mean-field theory. For more information about the Ising problem and the related early

history of mean-field theory the reader is referred to [Kadanoff, 2013].

Since 1937 a lot of other physicists contributed to that theory. Also the work of N.G. Van

Kampen should be mentioned whose Diffusion Approximation for Markov processes published

in 1982 [Kampen, N. G. van, 1982, Kampen, 2007] posed motivation for several researchers

to apply mean-field methods in other fields of research too. Modern mean-field theory is a

very broad scientific field with a lot of different applications. In its heart a couple of generic

mathematical theorems can be found which can mostly be attributed to the work of Andrej N.

Kolmogorov. This Russian mathematician was one of the most important probabilist of the

20th century and is responsible for most of the probabilistic foundation of modern mean-field

theory. His research about Markov processes published in [Kolmogorov, A, 1931] and later in

his famous book “Grundbegriffe der Wahrscheinlichkeitsrechnung” [Kolmogorov, 1933] is the

basis of most of the mathematical statements about mean-field models.

In this work we aim to show and apply mathematical formulas, so-called mean-field the-

orems (MFTs), that do not only constitute for conditions under which a macroscopic model

poses for a valid mean-field model of a microscopic one, but can also be used to derive one out

of the other. We want to underline that these formulas work for formalised, conceptional mod-

els and do (basically) not consider the simulation of the model – i.e. we derive a conceptional

macroscopic model based on a microscopic ones without execution of any implemented model.

We will discuss later, how these methods can be applied vice versa as well.

Unfortunately mean-field theorems require the microscopic models to be mathematically

formalised. As mentioned in Chapter 2 this can be quite problematic as they are usually given in

a flow-chart or algorithmic notation. Hence, we first state a section that presents formalisation

ideas for microscopic models. After that we present a couple of MFTs which can be used to

find adequate mean-field models for given microscopic models in case their formalised repre-

sentation fulfils specific properties. We present two very general theorems and several applied

corollaries that can be deduced from them. To prevent confusion with the terminology the reader

is invited to take a look at table 4.1

4.1 Formalised Microscopic Model

As mentioned in Chapter 2 problems with theoretic analysis of microscopic models are often

caused by a missing formal basic definition. Consequently, we decided to establish a common

formal base which is suitable to depict almost all features of microscopic models. One can

imagine this base as a formal model for the microscopic model – a “model-model” which will

henceforth be denoted as formalised microscopic model. In order to obtain this very likely
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Term Meaning

mean-field (of a model) Term used for the aggregated numbers of a

model (compare with Definition 2.1)

mean-field theory A research field that deals with the question,

how (stochastic) microscopic models behave

on the aggregated (mean-field) level

mean-field analysis The analysis process how a microscopic

model behaves on the aggregate level

inverse mean-field analysis A term that will be used by us to describe the

analysis process of a macroscopic model us-

ing a correlated microscopic approach

mean-field theorem A theorem that states formal connections

between a microscopic and a macroscopic

model

mean-field equation The equation, usually a differential equation,

that lies in the heart of a mean-field theorem

and poses for the “un-parametrised hull” of

the resulting mean-field model.

Table 4.1: Glossary of some mean-field related terminology.

abstraction processes need to be done, as, already mentioned, microscopic models are usually

defined in a more algorithmical language based on transitions and flows than a formal language

e.g. based on probabilities. Cutback and approximations may be necessary as well, but are not

intended in the first place.

In this thesis the most important feature of mentioned formal basis is the idea that the for-

malised model is beneficial for mean-field analysis as is compatible for being used in mean-field

theorems. Unfortunately, most mean-field theorems have quite demanding technical require-

ments for the mechanisms of the formalised microscopic models. Thus, it might be necessary to

perform mentioned cutbacks and approximations to establish a second formalised microscopic

model that (a) fulfils the requirements of the mean-field theorem, and (b) is a good approxima-

tion to the initial formalised model and the original microscopic model.

Thus, in order to obtain a good macroscopic approximation for a given microscopic model,

the modeller needs to perform the following steps:

1. Formalise the given model in the sense of an formalised microscopic model.

2. Probably preform cutbacks and approximations and establish a simplified formalised model

that fulfils the prerequisites of a suitable mean-field theorem.

3. Apply the mean-field theorem to receive a mean-field model.

The last part is described in Section 4.6 in details. For the first two steps no general concept

can be given, but we will give several examples how this process might work in Chapter 5. The
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role of this interposed, additional abstraction process for the mean-field analysis is sketched in

Figure 4.1.

Real System
Microscopic

Model

Formalised
Microscopic

Model

Mean Field 
Model

abstraction
distinction

decomposition
cutback

abstraction aggregation, 
approximation

Formalised
Microscopic

Model 

(fulfils
requirements)

approximation, 
cutback

modellingg process formalisationn process cutbackk ofofo details meanan-n-fieldd theorem

Figure 4.1: Role of the formalised microscopic model for mean-field analysis.

4.1.1 Formalised Microscopic Model for Static Population Models

As classic mean-field theorems in literature are based on population static microscopic models

(see Definition 0.3), i.e. models in which the number of interacting sub-models is fixed from

the start, we will first state a definition for a formalised microscopic model for static population

models. Moreover, the distinction between static and dynamic in this matter makes sense as

this definition is a lot more intuitive than the corresponding definition for a dynamic population

model given in the next section.
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Definition 1.1: Formalised Microscopic Model (Static Population)

First, let T ⊂ R+ stand for a continuous or discrete compact time-set. Moreover, define

N ∈ N, N � 1 regular, separable stochastic processes (see Definitions 4.8 and 4.4)

Ii : (Ω, Ti) → Γ : (ω, t) �→ Ii(ω, t) =: Ii(t)(ω), i ∈ {1, . . . N}. (4.1)

The processes, henceforth called agents, share the same probability, time- and state- space.

Moreover, the random process

M(t) :=
N×
i=1

Ii(t) (4.2)

is called model state vector and is a vector-valued stochastic process with dimension N .

Each agent’s dynamics are uniquely defined by the transition probabilities

P (Ii(t) ∈ A|M(t1) = m1,M(t2) = m2, . . . ), (4.3)

for all sets A, model state vectors m1,m2, . . . and all points in time t > t1 > · · · > tm.

Finally the transition distributions may not depend on the agent’s index which is guaranteed

by

P (Ii(t) ∈ A|M(s1) = m1, . . . ) = P (Ij(t) ∈ A|M(s1) = mij
1 , . . . ), ∀i, j ∈ {1, . . . , N}

(4.4)

wherein mij
1 denotes m1 with switched coordinates i and j. Interchangeability needs to be

guaranteed for the initial condition as well

P (Ii(t) ∈ A) = P (Ij(t) ∈ A), ∀i, j. (4.5)

The summary of all these parts is called an formalised microscopic model with static

population.

On first inspection the definition above does not seem to omit the idea of heterogeneity among

the sub-models of a microscopic model as the last condition implies that all agents need to

be stochastically interchangeable. To solve this problem, heterogeneity must not be mapped as

some static property of the stochastic process but needs to be depicted as an additional dimension

to the state-space Γ. Hence, static properties of the individual sub-models need to be abstracted

as static states of the corresponding stochastic processes which the process can neither leave

nor enter (almost surely). Imagine an agent-based predator-prey model wherein the sub-models

are either predators or prey. The correctly modelled formalised microscopic model consists of

stochastically equivalent random processes on a state-space that includes the dimension

{0, 1} ∼= {predator, prey}.
The requirement that the transition probabilities of the agents may depend on an arbitrary

number of previous states of the total model and not only the state of the agent alone basically
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leads to a more general concept than classic stochastic processes. One could describe them as

single coordinates of the model state vector via

P (Ii(t) ∈ A|M(t1) = m1,M(t2) = m2, . . . )

= P (Mi(t) ∈ A|M(t1) = m1,M(t2) = m2, . . . ).

This point of view is yet unintuitive. Hence, we prefer the idea of defining the stochastic process

of each agent on an extended state-space. Nevertheless this augmentation is (usually) univer-

sal enough to cover any kind of defined communication between sub-models in a microscopic

model.

Finally neither regularity nor separability of the stochastic process pose for a large constraint

regarding generality. Both properties are required not only for the original microscopic model

in order to be executable with a computer, but are also observed in any real system: There is no

process in reality that changes its state unsteadily an infinite number of times during a finite time

interval, and there is no process that needs to remember every single point in its history in order

to make a decision how to proceed.

4.1.2 Formalised Microscopic Model for Dynamic Population Models

Clearly, Definition 1.1 is limited when it comes to population-dynamic microscopic models, i.e.

models in which the number of sub-models is not fixed from the beginning but may vary during

the simulation. In order to cover that we state a definition for an formalised microscopic model

for dynamic population. Also more advanced mean-field theorems need to be applied for models

defined this way.

Definition 1.2: Formalised Microscopic Model (Dynamic Population)

First, let T ⊂ R+ stand for a continuous or discrete compact time-set. Moreover, define

regular, separable stochastic processes (see definitions 4.8 and 4.4) via

Ii : (Ω, Ti) → Γ : (ω, t) �→ Ii(ω, t) =: Ii(t)(ω), i ∈ N. (4.6)

The processes, called agents, share the same probability and state-space but may differ in

time space. Each agent’s time space Ti is itself defined by two real valued random variables

τ start
i and τ

stop
i on Ω× T via

Ti(ω) := {t ∈ T : τ start
i (ω) ≤ t < τ

stop
i (ω)}

which we denote as starting and stopping time of Ii as they are representing its life span.

Moreover, we define the model state vector

M(t) := ×
i:t∈Ti

Ii(t) (4.7)



4.1. FORMALISED MICROSCOPIC MODEL 77

which is a vector-valued stochastic process with dynamic vector dimension. Each agent’s

dynamics are uniquely defined by the transition probabilities

P (Ii(t) ∈ A|M(t1) = m1,M(t2) = m2, . . . ), (4.8)

for all sets A, model state vectors m1,m2, . . . and all points in time t > t1 > · · · > tm.

We conventionally write

N(t) := |{i : t ≥ τ start
i }| (4.9)

as the total number of agents at a given point in time. The transition distributions may not

depend on the agent’s index which is guaranteed by

P (Ii(t) ∈ A|M(t1) = m1, . . . ) = P (Ij(t) ∈ A|M(t1) = mij
1 , . . . ), ∀i, j ∈ {1, . . . , N(t)}

(4.10)

wherein mij
1 denotes m1 with switched coordinates i and j. Interchangeability needs to be

guaranteed for the initial condition as well

P (Ii(t) ∈ A) = P (Ij(t) ∈ A), ∀i, j. (4.11)

Finally, the two sets

{t ∈ T : τ start
i ≤ t}, {t ∈ T : τ

stop
i ≤ t} (4.12)

need to be measurable with respect to the (natural filtration of the) model state vector

M(t).

The additional requirements that τ start
i < τ

stop
i almost surely and

P (τ start
i ≤ t) = 0

for almost all i are useful. This requirement might seem confusing but is necessary to avoid

infinite numbers of agents. SayP (τ start
i ≤ t) > 0 for an infinite number of indices also an infinite

number of starting times will fulfil τ start
i (t) ≤ t (independent on how small the probability is

chosen). Hence, an infinite number of processes starts in a finite time-span which is highly

unwanted.

Clearly, the population-dynamic formulation is the more general one and covers the defi-

nition of the population-static formalised microscopic model by setting P (τ start
i ≤ t) = 1 and

P (τ
stop
i < t) = 0 ∀i ≤ N and P (τ start

i ≤ t) = 0 ∀i > N .

It is not surprising that definition of the model regards generation of new agents using the

concept of a starting time is very inconvenient here because the generation of new sub-models

is a delicate problem in population dynamic microscopic models in general. While the removal

of sub-models is usually triggered by the sub-model itself (it dies, it gets eaten, it is not needed

anymore) the generation of a sub-model cannot be triggered this way as the sub-model does not

yet exist. Hence, it can either be triggered by a different sub-model (e.g. via a birth process) or

by some superordinate process. We will consider both in the mean-field theorems for dynamic

population models.
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Finally, the concept of finding a common base for microscopic models via presented for-

malised microscopic models not only poses the base for the application of mean-field theorems

(and comparison on the aggregate level), they moreover make it possible to compar different

microscopic models on the microscopic level as well: Stochastic processes can be analysed

with fundamental stochastic methods like conditional probabilities/expectations limit theorems

or other techniques presented in Chapter 3. We may investigate the influence of specific pa-

rameters, analyse difference between time-discrete and time-continuous models, investigate the

impact of different time-step sizes etc..

4.2 Introduction to Mean-Field Theorems

First, we discuss, which variables are the objectives of MFA.

4.2.1 Aggregated Numbers

As a direct application of the formalised microscopic model we introduce a formal definition for

an important output observable of microscopic models which was already discussed mentioned

in Chapter 2.

Definition 2.1: Aggregated Numbers / Mean-Field

Given a formalised microscopic model according to Defintion 1.1 or 1.2 withN (orN(t),
respectively) agents Ii at a given point in time t, then

X : Aσ(Γ)× T → N : (A, t) �→ X(A, t) =

N(or N(t))∑
i=1

�A(Ii(t)) (4.13)

is denoted as aggregation mapping of the model. For fixed A the resulting value is called

(time dependent) aggregated number of the model.

The aggregated number, also-called mean-field, basically counts all agents that share a specific

state. Clearly, X(Γ, t) = N or N(t) as all agents necessarily have a state in the state-space.

Remark 2.1:

For population-static models it is convenient to investigate the normed aggregated num-

bers

X0(A, t) :=
1

N
X(A, t) (4.14)

as they vary on [0, 1] instead of {0, . . . , N}. This feature simplifies analysis of limits

N → ∞ which is a highly interesting feature for the development of mean-field theorems,

see in the following chapter. Yet this definition cannot be extended to dynamic population

models. Hence, we do not use it as it lacks of generality.
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With the stated definition of the aggregation mapping via indicator functions it is clearly inter-

esting whether it is possible to find a aggregation density mapping X̃ : Γ × T → R so that

X(A, t) =

∫
A
X̃(x, t)dμ(x), ∀A ∈ Aσ(Γ). (4.15)

This feature, although highly wanted, cannot be guaranteed to maintain the universality of the

measure space and relates to the Theorem of Radon-Nikodym. For example considering a one-

dimensional real-valued state-spaces Ii we would clearly get

X̃(x, t) =

N(or N(t))∑
i=1

δ(x− Ii(t)) (4.16)

with the standard delta distribution. As the latter is, being precise, not a function, neither is X̃ .

We could only imagine it as a generalised function on R = R ∪ {−∞,∞}.

Finally, it is important to state that growing N will always lead to growing aggregated num-

bers. Hence

X(A, t) = O(N), X̃(x, t) = O(N) (4.17)

or

X(A, t) = O(N(0)), X̃(x, t) = O(N)(0), (4.18)

respectively for population dynamic models, as the doubled number of sub-models will lead to

doubled aggregated numbers and doubled aggregation density.

As all agents Ii : Ω × T → Γ are random numbers, the aggregation mapping, the aggrega-

tion density and the aggregated number for a specific set are trajectories of real valued random

processes on a common probability space Ω. Hence, it is possible to investigate expected values

and variances. This is the main focus of the following topics.

4.2.2 Concepts of Mean-Field Theorems

As stated in [Bicher et al., 2017a], the term mean-field theorem denotes any theorem dealing with

the macroscopic approximation of microscopic models. The basic concept of these theorems is

shown in Figure 4.2: The deterministic moments of the aggregated numbers (i.e. the mean-field)

of a microscopic model are depicted by a so-called mean-field model. This equation-based

model, i.e. the shape of the equations and their parametrisation, is directly derived from the

formalised microscopic model according to the statement of the mean-field theorem. If applied

correctly, a mean-field theorem ensures that the (usually numerically gained) results of the mean-

field model are proven to approximate (usually according to some asymptotic equivalence result)

the aggregated and statistically processed results of the microscopic model.

Most of these theorems deal with the prediction of the expected value and state asymptotic

equivalence to ordinary differential equations (ODEs) or systems of ODEs, respectively (see

[Aoki, 2002, de Aguiar et al., 2003, Fibich and Gibori, 2010, Tainaka, 1989, Webb et al., 2007,

Nirei, 2006]), but there are also versions using partial differential equations [Deffuant et al.,

2000] or even difference equations [Gast and Gaujal, 2011] as well. It depends on the structure

of the state-space Γ, the time-space T and whether the model is population-dynamic or -static
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which of the theorems can be applied or is most applicable with respect to approximation errors,

respectively.

Microscopic Model 
(Conceptual) 

Microscopic Model 
(Implemented) 

Mean-Field Model 
(Equation) 

Mean-Field Model 
(Implemented) 

Microscopic Model 
Results 

Mean-Field 
Theorem 
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Figure 4.2: General concept of the application of mean-field theorems. This image is originated

in [Bicher et al., 2017a]

4.3 General Mean-Field Theorem for Static Population Models

We will start with the most universal mean-field theorem. We hereby refer to the standard mean-

field theorem for static population which can also be found in standard literature (e.g. [Tokuzo

and Hiroshi, 1985]). Although the statement of the theorem itself is no new contribution to the

research field, a new version of the proof was developed by the author in [Bicher, 2016].

As the use of the theorem is quite restrictive we first give a section containing prerequisites

the formalised microscopic model has to fulfil to apply the theorem. If the model does not fulfil

these properties, either the theorem cannot be used at all, or a more simplified version of the

formalised microscopic model has to be established.

4.3.1 Prerequisites for MFTs for Static Population Models

Mean-Field Theorem 3.1 (and consequently all other mean-field theorems in this work that use

a static population size, i.e. Corollaries 5.3,5.1 and 5.5) can be applied if a given formalised

microscopic model according to Definition 1.2 has the following properties (we use the notation

from Definition 1.2 in this section).

� The time set T is a real interval [t0, tend]. Conventionally we assume t0 = 0.

� All agent processes are memoryless processes according to Definition 4.5 (it is already a

precondition of the formalised microscopic model that they are separable and regular).
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� Moreover, the probability of the state transitions of an agent may not depend on arbi-

trary state vectors of the model but only on, first, the agent’s own state and, second, the

aggregated density X = X̃ of the model

P (Ii(t) ∈ A|M(t1) = m1) = P (Ii(t) ∈ A|Ii(t1) = i1, X(·, t)). (4.19)

This is probably the greatest restriction to a model and implies that the transition of an

agent may not depend on specific states of other individual agents but only on a summary

of all of them. Even though it was already mentioned that the aggregated density does not

always exists as a real-valued function, it can yet be used as a formal concept to define

transition rates.

� The transition-rates

ω : T × Γ×Aσ(Γ)×Ψ → R :

t, x, A,X �→ ω(t, s, A,X) = lim
h→0

P (Ii(t+ h) ∈ A|Ii(t) = s,X(·, t))− �A(s)

h
(4.20)

uniquely describe the process. Herein Ψ denotes the path-space of the aggregation den-

sity (we don’t want to go into details regarding this space). In summary, agents need to

describe regular time-continuous processes.

We often decide to drop the notation for the dependency on the aggregated number for

space reasons

ω(t, s, A) := ω(t, s, A,X) := ω(t, s, A,X(·, t))
whenever the type of the used argument is clear by context. Note, that the transition kernel

mapping does not depend on the used agent’s index as all agents are interchangeable by

definition of the formalised microscopic model.

� There exists a transition-kernel ω̃ in form of a finite function (Compare (4.10)) so that∫
A
ω̃(t, s1, s,X)dμ(s) = ω(t, s1, A,X) (4.21)

for all A ∈ Aσ(Γ). As mentioned, we write short

ω(t, s1, s) := ω̃(t, s1, s) := ω̃(t, s1, s,X)

whenever the type of the used argument is clear by context.

� The kernel mapping is differentiable w.r. to its fourth input parameter with bounded first

derivative

∀t, s1, s,X :

∣∣∣∣ ∂∂Xω(t, s1, s,X)

∣∣∣∣ < C

N
(4.22)

in the sense of the underlying space.



82 CHAPTER 4. MEAN FIELD ANALYSIS

Remark 3.1:

Note, that the derivative needs to vanish linearly when N → ∞ as

O(1) = O(ω(t, s1, s,X)− ω(t, s1, s, Y ))

= O
(
∂

∂X
ω(t, s1, s,Ξ) · (X − Y )

)
= O

(
∂

∂X
ω(t, s1, s,Ξ)

)
O(N)

needs to be fulfilled for some sampling point Ξ according to the secant-equation.

� The initial states Ii(0) of the agent processes are a sequence of independent, identically

distributed (iid) random numbers on Γ. Their common initial distribution has a density

function f : Γ → R+.

Thus, for all A ∈ Aσ(Γ)

E (X(A, 0)) = E

(
N∑
i=1

�A(Ii(0))

)
=

N∑
i=1

E (�A(Ii(0)))

=

N∑
i=1

P (Ii(0) ∈ A) =

N∑
i=1

∫
A
f(s)dμ(s) =

∫
A
Nf(s)dμ(s)

is fulfilled. Hence, the initial expected value has a density representation.

These requirements seem very demanding at first and exclude broad classes of (population static)

formalised microscopic models for applications of mean-field theorems. Yet, we will show that

it is, first, possible to relax some of these prerequisites and, second, that it is possible to make

useful cutbacks with the given formalised microscopic model without cutting significant model

parts.
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4.3.2 Statement of the MFT for Static Population Models

Theorem 3.1: General MFT for Static Population

Let

ω = ω(t, s1, s,X(·, t))
be the transition-kernel of an formalised microscopic model that fulfils all prerequisites

from Section 4.3.1 and let f(s) denote the density function of the common initial distribu-

tion of Ii(0).
The solution ϕ(s, t) : Γ× T → R+ of the differential equation

d

dt
ϕ(s, t) =

∫
Γ
ϕ(s1, t)ω(t, s1, s, ϕ(·, t))− ϕ(s, t)ω(t, s, s1, ϕ(·, t))dμ(s1) (4.23)

with

ϕ(s, 0) = Nf(s) (4.24)

fulfils

∀A ∈ Aσ(Γ) : E(X(A, t)) =

∫
A
ϕ(s, t)dμ(s) +O(

√
N).

Moreover, for all A ∈ Aσ(Γ) and t ∈ T

|X(A, t)− E(X(A, t))| = O(
√
N). (4.25)

Theorem 3.1 implies that, under some circumstances, the expected value of the aggregated num-

bers of a formalised microscopic model follows a trajectory that is described by a system of

differential equations (coupled by an integral term) with an error that depends on
√
N . As

already mentioned that X(A, t) = O(N) also

E(X(A, t)) = O(N). (4.26)

Thus, the error vanishes asymptotically compared to the scale ofX and ϕ. The second statement

can be interpreted as a Law of Large Numbers for interacting stochastic processes. Hence, the

solution ϕ is not only an estimator for E(X) but also for X which makes it valuable for the

analysis of models.

The proof of this theorem is surprisingly troublesome and can, as mentioned, be found in

[Bicher, 2016]. It is freely available online. The stated Theorem above matches Theorem 0.4.2

of mentioned document in combination with Theorem 0.6.1 and the first part of Corollary 0.6.1.

A very similar Theorem has already been proved by Tokuzo in [Tokuzo and Hiroshi, 1985] but

the proof in [Bicher, 2016] uses more fundamental mathematics and does not apply the central-

limit theorem of Dynkin and Mandelbaum [Dynkin and Mandelbaum, 1983].

The tricky part of the proof is clearly the interaction condition

ω(t, s1, s) = ω(t, s1, s,X)
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which makes ω(t, Ii(t), s,X) a random number not only depending on Ii(t), but on the ag-

gregated number X as well. This problem is overcome using a Taylor expansion (in this case

sometimes called Kramers-Moyal expansion [Moyal, 1949]) w.r. to the normed arguments of ω
via

ω(t, Ii(t), s,X) ≈ ω(t, Ii(t), s,E(X)) +
X − E(X)

N

∂

∂X
ω(t, Ii(t), s,E(X))

As, moreover, the central limit condition |E(X(A, t)) − X(A, t)| = O
(√

N
)

is shown to

be fulfilled for agents with mean-field interactions, the error terms related to
X−E(X)

N vanish

asymptotically with speed
√
N . The central limit expression is proven by showing

V(X) = O(N)

which directly leads to

P (|E(X(A, t))−X(A, t)| ≥ Nα) ≤ V(X(A, t))

N2α
−→
N→∞

0

for any α > 1
2 using the standard Chebyshev inequality.

As mentioned in [Bicher, 2016], it is possible to state a mean-field theorem in form of an inte-

gral equation that describes the temporal development for the covariance Cov(X(A, t), X(B, t))
as well. Yet it is hardly applicable for any not solely discrete state-space Γ. Thus, we do not

state the general theorem for it in this section, but solely for a discrete state-space Γ in 4.5.1.

4.4 General MFT for Dynamic Population Models

Based on Theorem 3.1 we will establish an analogous mean-field theorem for a formalised dy-

namic population model according to Definition 1.2. As we could not find any similar ap-

proaches in literature the theorem presented in this section can be considered as new.

4.4.1 Prerequisites for MFTs for Dynamic Population Models

To apply the following mean-field theorem for dynamic population models (and all other more

applied corollaries for dynamic population models) the prerequisites for the static population

model (4.3.1) need to be fulfilled. Clearly, substitution of N by N(t) is required. In addition the

starting and stopping times τ start
i and τ

stop
i need to be defined by specific rates.

� There is a finite N(0) = N0 for which ∀{1, . . . , N0} : τ start
i = 0. All other τ starti , i ≥

N0 > 0 almost surely.

� The stopping times τ
stop
i of all processes need to be uniquely defined by one rate function

d : T × Γ → R+ : (t, s) �→ d(t, s) (4.27)

so that for every living agent i

lim
h→0

P (τ
stop
i = t+ h|Ii(t) = s)

h
= d(t, s). (4.28)

Thus, it is the rate that an agent with a state s dies and we will refer to it as death-rate.
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� The starting times τ start
i are defined by two rate functions. Hereby agents as well as the

underlying system may create other agents.

� First there needs to be a rate function

c : T × Γ×Aσ(Γ) → R+ : (t, s, A) �→ c(t, s, A) (4.29)

with

∀j : t ≥ τ start
j : lim

h→0

P (τ start
N(t)+1 = t+ h, IN(t)+1(t+ h) ∈ A|Ij(t) = s)

h
= c(t, s, A).

(4.30)

It defines the rate that an agent with state s creates a new agent with state inside A, hence

we will refer to it as local birth-rate.

� Analogously there needs to be a function

C : T ×Aσ(Γ) → R+ : (t, A) �→ C(t, A) (4.31)

with

lim
h→0

P (τ start
N(t)+1 = t+ h, IN(t)+1(t+ h) ∈ A)

h
N(0) = C(t, A), (4.32)

that describes the rate that the overall system creates an agent with state inside A. Mul-

tiplication with N(0) ensures that this global creation rate is normed to N(0) and scales

correctly, when the number of agents is increased.

We will refer to this rate as global birth rate

� Analogously to the transition-rates of the agents, also the two rate functions c, C have

kernel representations with, exemplary,∫
A
c̃(t, s1, s)dμ(s) = c(t, s1, A). (4.33)

Like in the static-population theorem we drop the ·̃ notation whenever it is clear by context

that the kernel is used. Note, that d is already defined as a in kernel.

� Moreover, also the three rate/kernel functions d, c, C and hence the correlated probabilities

for the starting and stopping times may additionally depend on the current state of the

aggregated density X := X̃ . Exemplary:

d(t, s1, s) = d(t, s1, s,X(·, t)). (4.34)

As in (4.22), they need to be steadily differentiable w.r. to their fourth parameter with

bounded first derivative.
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4.4.2 Statement of the MFT for Dynamic Population Models

Theorem 4.1: General MFT for Dynamic Population

Let ω, d, c, C be the transition-, death- and local and global birth-kernels of a formalised

microscopic model that fulfils all prerequisites from Section 4.4.1. Moreover, let f(s)
denote the density function of the common initial distribution of Ii(0), i ∈ {1, . . . , N(0)}.

The solution ϕ(s, t) : Γ× T → R+ of the differential equation

d

dt
ϕ(s, t) =

∫
Γ
ϕ(s1, t)ω(t, s1, s, ϕ(·, t))− ϕ(s, t)ω(t, s, s1, ϕ(·, t))dμ(s1)

+

∫
Γ
ϕ(s1, t)c(t, s1, s, ϕ(·, t))dμ(s1)− ϕ(s, t)d(t, s, ϕ(·, t)) + C(t, s) (4.35)

with

ϕ(s, 0) = N(0)f(s) (4.36)

fulfils

∀A ∈ Aσ(Γ) : E(X(A, t)) =

∫
A
ϕ(s, t)dμ(s) +O(

√
N(0)).

Moreover, for all A ∈ Aσ(Γ) and t ∈ T

|X(A, t)− E(X(A, t))| = O(
√
N(0)). (4.37)

The proof for this theorem is a novel contribution and found in the Appendix A. Analogously

to Theorem 3.1 it results with an ODE system that describes the temporal behaviour of the

mean-value of the aggregated numbers of a population-dynamic model. Although it seems as

if the error bounds for this equation are equivalent to those of the population static equation

experiments showed that the error constants C that fulfil |ϕ(A, t) − E(X(A, t))| ≤ CN(0)
have to be chosen much higher than for the static population case. The reason lies in the proof

of the theorem which is based on the comparison between a dynamic-population model and

a corresponding static-population model with an additional state idle and a larger (static) total

population of N ′ := N(t) + Ni(t). Hereby N ′ does not only include all N(t) agents in the

original dynamic model but also all Ni(t) idle agents. If only a small amount of agents are

initially not idle while a lot of agents are generated, i.e. switch from idle to a not-idle state,

during the simulation then Ni(0) is large and N ′ � N(0). Hence, |ϕ(A, t) − E(X(A, t))| ≤
CN ′ = C ′N(0) with C ′ � C.

It is a reasonable question why a microscopic model with dynamic population is not ab-

stracted (for mean-field analysis purposes) by a population static model with an idle state in the

first place. First, it is unnatural to keep microscopic sub-processes in the model that are in an

absorbing state like death or some state that is not regarded within the model boundaries. Sec-

ond, it is not possible to give a good estimate for initially required agents to cover all creation or

birth processes that will be required for the entire simulation – at least not with analytic means.
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In the following section we aim to rephrase the Mean-Field Theorems 5.1 and 5.2 for a

number of specific state-spaces Γ. A couple of corollaries result which are much more applicable

than the two general theorems.

4.5 Mean-Field Equations for Specific State Spaces

Given the two key theorems of this thesis we state some special cases for them that are useful

for specific applications.

4.5.1 Mean-Field Equations for Discrete State Space

For the first special case we consider Γ := {s1, s2, . . . , sd}. Clearly, all formulas in this section

also hold for infinite state-spaces like Γ = N or Γ = Z when applying the limit d→ ∞, as long

as this is possible w.r. to finiteness of the sums (i.e. integrability with respect to the counting

measure).

As the state-space is discrete it is possible to write the aggregated numbers X(A, t) as sums

of vector elements
⇀

X(t) with

⇀

Xj(t) :=

N or N(t)∑
i=1

�{sj}(Ii(t)), X(A, t) =
∑
si∈A

⇀

Xi(t). (4.38)

This vector matches the aggregated density of the model as the integral with respect to the

counting measure is equivalent to a sum. We refer to this as the aggregated vector or mean-

field vector of the model. Moreover, the transition kernel can be written as a matrix

ω(t, i, j,
⇀

X) := ω(t, si, {sj}, ⇀

X(t)) (4.39)

which may depend on elements of the aggregated vector. Note, that death- and birth- kernels

d, c, C for dynamic population models can be defined as matrices and vectors, as well.

Corollary 5.1: Discrete Space MFT for Static Population

Let ω(t, i, j,
⇀

X(t)) := ω(t, si, sj ,
⇀

X(t)) be the transition-kernel of a formalised micro-

scopic model that fulfils all prerequisites from Section 4.3.1 with Γ := {s1, . . . , sn} and

let
⇀

f ∈ Rn denote the probabilities of the common initial distribution of any Ij(0) via
⇀

f i = P (Ij(0) = si).
The solution vector ⇀ϕ(t) : T → (R+)n of the differential equation system

d

dt
⇀ϕi(t) =

n∑
j=1

⇀ϕj(t)ω(t, j, i,
⇀ϕ(t))− ⇀ϕi(t)ω(t, i, j,

⇀ϕ(t)) (4.40)

with
⇀ϕ = N

⇀

f (4.41)
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fulfils

E(
⇀

X(t)) = ⇀ϕ(t) +O(
√
N).

Above version of the theorem is probably the most prominent version of a mean-field theorem as

most microscopic models are designed on discrete state-spaces. In the easiest case of Γ = {0, 1}
the proof is very simple and can be found in [Aoki, 2002]. As a direct extension we state the

analogous theorem for the dynamic-population case.

Corollary 5.2: Discrete Space MFT for Dynamic Population

Let ω, d, c, C be the transition-, death- and local and global birth- kernels of a formalised

microscopic model that fulfils all prerequisites from Section 4.4.1 with Γ := {s1, . . . , sn}.

Moreover, let
⇀

f ∈ Rn denote the probabilities of the common initial distribution of any

Ij(0) via
⇀

f i = P (Ii(0) = si).
The solution vector ⇀ϕ(t) : T → (R+)n of the differential equation system

d

dt
⇀ϕi(t) =

n∑
j=1

⇀ϕj(t)ω(t, j, i,
⇀ϕ(t))− ⇀ϕi(t)ω(t, i, j,

⇀ϕ(t))

+
n∑

j=1

⇀ϕj(t)c(t, j, i,
⇀ϕ(t))− ⇀ϕi(t)d(t, i,

⇀ϕ(t)) + C(t, i,⇀ϕ(t)) (4.42)

with
⇀ϕ(0) = N(0)

⇀

f (4.43)

fulfils

E(
⇀

X(t)) = ⇀ϕ(t) +O(
√
N(0)).

Proof. Both theorems are proved when applying Theorem 3.1 and Theorem 4.1 for a discrete

state-space with n elements and the counting measure μ(A) = |A|. �

4.5.2 Mean-Field Equations for Continuous State Space

In this section we aim to apply the Mean-Field Theorems 3.1 and 4.1 to gain mean-field equa-

tions for continuous sets Γ ⊆ Rn with the Lebuesgue measure λ. We will write ⇀q instead of ⇀s1
in the mean-field theorems to avoid that ⇀s1 is confused with the first coordinate of ⇀s and not a

second state besides ⇀s .

As it would be redundant to state equations (4.23) and (4.35) simply replacing dμ(s) =
dλ(⇀s) we decided to go one step further:

It is a valid assumption in microscopic models with continuous states, that the solution of the

mean-field equation can at least be approximated by a density function ϕ(⇀s, t), s ∈ Rn which

is differentiable with respect to space. Thus, we may use Taylor expansion of ϕ(⇀q , t) w.r. to

space at ϕ(⇀s, t) in ∫
Γ
ϕ(⇀q , t)ω(t,⇀q ,⇀s)− ϕ(⇀s, t)ω(t,⇀s,⇀q )dμ(⇀q ).
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It is legit to cut this Taylor expansion after one or two elements in case ω(t,⇀s,⇀q ) vanishes with

large differences of |⇀s −⇀q |. As a result, the terms ϕ(⇀s, t) and its derivatives can be dragged out

of the integral terms and a partial differential equation (PDE) results.

Corollary 5.3: Continuous Space MFT for Static Population

Let ω(t,⇀s,⇀s ′, X(·, t)) be the transition-kernel of a formalised microscopic model that

fulfils all prerequisites from Section 4.3.1 with an open, convex Γ ⊂ Rn. We addi-

tionally require that ω(t,⇀s,⇀s ′, X(·, t)) vanishes for |⇀s − ⇀s ′| > L for some small posi-

tive L. Moreover, let f(⇀s) denote the density of the initial distribution of any Ij(0) via∫
A f(

⇀s)d⇀s = P (Ij(0) ∈ A).
The (probably weak) solution ϕ(⇀s, t) : Γ× T → R of the partial differential equation

∂ϕ

∂t
(⇀s, t) = ϕ(⇀s, t)F1(t,⇀s, ϕ) +

n∑
i=1

∂ϕ

∂⇀s i
(⇀s, t)F2i(t,

⇀s, ϕ)+

+

n∑
i,j=1

∂2ϕ

∂⇀s i
⇀s j

(⇀s, t)F3i,j(t,
⇀s, ϕ), (4.44)

with

F1(t,⇀s, ϕ) :=

∫
Rn

ω(t,⇀q ,⇀s, ϕ(·, t))− ω(t,⇀s,⇀q , ϕ(·, t))d⇀q ,

F2i(t,
⇀s, ϕ) :=

∫
Rn

ω(t,⇀q ,⇀s, ϕ(·, t))(⇀q i − ⇀s i)d
⇀q ,

F3i,j(t,
⇀s, ϕ) :=

1

2

∫
Rn

ω(t,⇀q ,⇀s, ϕ(·, t))(⇀q i − ⇀s i)(
⇀q j − ⇀s j)d

⇀q ,

and

ϕ(0,⇀s) = Nf(⇀s) (4.45)

fulfils

∀A ∈ Aσ(R
n) : E(X(A, t)) =

∫
A
ϕ(⇀s, t)d⇀s +O(

√
N) + E(ω) (4.46)

wherein E(ω) is an error term that depends on the condition of the rate function ω w.r. to

the size of possible jumps.
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Proof. As mentioned we use the Taylor expansion (which requires convexity of the area for the

remainder)

ϕ(⇀s ′, t) = ϕ(⇀s, t) +

d∑
i=1

(⇀s ′ − ⇀s)i
∂ϕ(⇀s, t)

∂⇀s i

+
1

2

n∑
i,j=1

(⇀s ′ − ⇀s)i(
⇀s ′ − ⇀s)j

∂2ϕ(⇀s, t)

∂⇀s i
⇀s j

+O (|⇀s ′ − ⇀s |3) .
While inserting the first Taylor parts into the general mean-field equation (4.23) leads to the

stated formula (4.44), the remainder leads to the integral∫
Rn

O (|⇀q − ⇀s |3)ω(t,⇀q ,⇀s, ϕ(·, t))d⇀q =: E(ω) (4.47)

which we assume to be small, as ω is defined to have limited support w.r. to |⇀q − ⇀s |. �

Analogously we receive the following corollary for the population-dynamic case.
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Corollary 5.4: Continuous Space MFT for Dynamic Population

Let ω, d, c, C be the transition-, death- and local and global birth- kernels of a formalised

microscopic model that fulfils all prerequisites from Section 4.4.1 with an open, convex

Γ ⊂ Rn. We additionally require that ω(t,⇀s,⇀s ′, X) and c(t,⇀s,⇀s ′, X) vanish for |⇀s −
⇀s ′| > L for some small positive L. Moreover, let f(⇀s) denote the density of the initial

distribution of any Ij(0) via
∫
A f(

⇀s)d⇀s = P (Ij(0) ∈ A).
The (probably weak) solution ϕ(⇀s, t) : Γ× T → R of the partial differential equation

∂ϕ

∂t
(⇀s, t) = C(t,⇀s) + ϕ(⇀s, t)F1(t,⇀s, ϕ)

+
n∑

i=1

∂ϕ

∂⇀s i
(⇀s, t)F2i(t,

⇀s, ϕ) +
n∑

i,j=1

∂2ϕ

∂⇀s i
⇀s j

(⇀s, t)F3i,j(t,
⇀s, ϕ), (4.48)

with

F1(t,⇀s, ϕ) :=

∫
Rn

ω(t,⇀q ,⇀s,⇀u) + c(t,⇀q ,⇀s, ϕ)− ω(t,⇀s,⇀q , ϕ)d⇀q − ⇀

d(t,⇀s, ϕ),

F2i(t,
⇀s, ϕ) :=

∫
Rn

(ω(t,⇀q ,⇀s, ϕ) + c(t,⇀q ,⇀s, ϕ)) (⇀q i − ⇀s i)d
⇀q ,

F3i,j(t,
⇀s, ϕ) :=

1

2

∫
Rn

(ω(t,⇀q ,⇀s, ϕ) + c(t,⇀q ,⇀s, ϕ)) (⇀q i − ⇀s i)(
⇀q j − ⇀s j)d

⇀q ,

and

ϕ(0,⇀s) = N(0)f(⇀s) (4.49)

fulfils

∀A ∈ Aσ(R
n) : E(X(A, t)) =

∫
A
ϕ(⇀s, t)d⇀s +O(

√
N) + E(ω, c) (4.50)

wherein E(ω, c) is an error term that depends on the condition of the rate functions ω and

c w.r. to the size of possible jumps.

Proof. The corollary is proven analogously to 5.3. Surprisingly only c, but not d and C, con-

tributes to the error due to the Taylor expansion. �

It is not surprising that the aggregated numbers of microscopic continuous models can be de-

scribed with a Fokker-Planck-like equation, yet it is important to note that these equations might

be non-linear ones as F1, F2 and F3 (may) depend on ϕ as well. It is not clear in the first

place if these model equations have a strong or weak solution at all, but we could not find an

application for which these equations could not be solved at least numerically. Deeper analysis

of these equations would definitely be necessary to underline this statement, but this is not focus

of this work.
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4.5.3 Mean-Field Theorems for Hybrid State Space

The last version of the classic Mean-Field Theorem we rephrase Theorem 3.1 for population

static microscopic models with agents on a hybrid state-space. Hereby we denote the product

space of a continuous and a discrete space. That means, in specific,

Γ := U × V, U ⊆ Rn, V := {s′1, s′2, . . . , s′n′} (4.51)

for two positive d, d′ ∈ N and U open and convex. Consequently, we adjust Γ with the product

measure of the standard Lebesgue measure λn and the counting measure. With this measure

integrals calculate as follows. With A ∈ U and B ∈ V we get∫
A×B

f(x)dμ(x) =
∑
s′i∈B

∫
A
f(⇀s, s′i)d

⇀s, (4.52)

wherein x = (⇀s, s′) denotes a vector of the product space U × V . Moreover, any function

f(x) = f((⇀s, s′)) on Γ can be expressed as a vector
⇀

f (⇀s) of functions on U with
⇀

f i(
⇀s) =

f((⇀s, s′i)). We make use of this observation applied on the aggregated numbers/density and

state a mean-field theorem.
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Corollary 5.5: Hybrid Space MFT for Static Population

Let

ω(t, (⇀s, s′i), (
⇀q , s′j),

⇀

X), i, j ∈ {1, . . . , n′}, ⇀s,⇀q ∈ U ⊆ Rn

be the transition-kernel of an formalised microscopic model that fulfils all prerequisites

from Section 4.3.1 with additional requirement that ω(t, (⇀s, s′i), (
⇀q , s′j),

⇀

X(·, t)) vanishes

for |⇀s − ⇀q | > L for some small positive L. Moreover, let
⇀

f (⇀s) denote a vector valued

function describing the initial distribution any Ij(0) via∫
A

⇀

f i(
⇀s)d⇀s = P (Ij(0) ∈ A× {s′i}) , A ⊆ U, s′i ⊆ V.

The (possibly weak) solution ⇀ϕ(⇀s, t) : U × T → Rn′
of the partial differential equation

system

∂⇀ϕi

∂t
(⇀s, t) =

n′∑
j=1

⇀ϕj(
⇀s, t)F1ji(⇀s,⇀ϕ, t)− ⇀ϕi(

⇀s, t)F1ji(⇀s,⇀ϕ, t)+

n′∑
j=1

⎛
⎝ n∑

k=1

∂⇀ϕj

∂⇀sk
(⇀s, t)Gji

k (
⇀s,⇀ϕ, t) +

n∑
k,l=1

∂2⇀ϕj

∂⇀sk
⇀s l

(⇀s, t)Hji
kl(

⇀s,⇀ϕ, t)

⎞
⎠ , (4.53)

with

F1ji(⇀s,⇀ϕ, t) :=

∫
U
ω(t, (⇀q , s′j), (

⇀s, s′i),
⇀ϕ)d⇀q

F2ji(⇀s,⇀ϕ, t) :=

∫
U
ω(t, (⇀s, s′i), (

⇀q , s′j),
⇀ϕ)d⇀q

Gji
l (

⇀s,⇀ϕ, t) :=

∫
U
ω(t, (⇀q , s′j), (

⇀s, s′i),
⇀ϕ)(⇀q l − ⇀s l)d

⇀q

Hji
lk(

⇀s,⇀ϕ, t) :=
1

2

∫
U
ω(t, (⇀q , s′j), (

⇀s, s′i),
⇀ϕ)(⇀q l − ⇀s l)(

⇀q k − ⇀sk)d
⇀q ,

and
⇀ϕi(0,

⇀s) = N
⇀

f i(
⇀s) (4.54)

fulfils

∀A ∈ Aσ(R
n), ∀i ∈ {0, . . . , n′} : E(X((A, {s′i}), t)) =

∫
A

⇀ϕi(
⇀s, t)d⇀s+O(

√
N)+E(ω)

(4.55)

wherein E(ω) is an error term that depends on the condition of the rate function ω w.r. to

the size of possible jumps.

Proof. First writing the integral in the general Mean-Field Theorem 3.1 as sum of integrals
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according to (4.52) leads the corresponding integral formulation of (4.53). Afterwards, applying

a Taylor approximation analogously to the proof of Corollary 5.3 leads the stated PDE system.

�

Surprisingly the hybrid formulation of the Mean-Field Theorem is more useful than the solely

continuous one. Reason for that might be that there is hardly any microscopic model that has no

discrete state. Note, that any kind of heterogeneity among population has to be mapped onto the

state-space according to the definition of the formalised microscopic model. Simple examples

which cause those kind of discrete states based on heterogeneity are male/female, predator/prey

or healthy/infected.

Corollary 5.6: Hybrid Space MFT for Dynamic Population

Let ω, d, c, C be the transition-, death- and local and global birth- kernels of a formalised

microscopic model that fulfils all prerequisites from Section 4.4.1 with additional require-

ment that

ω(t, (⇀s, s′i), (
⇀q , s′j),

⇀

X)

and

c(t, (⇀s, s′i), (
⇀q , s′j),

⇀

X)

vanish for |⇀s − ⇀q | > L for some small positive L. Moreover, let
⇀

f (⇀s) denote a vector

valued function describing the initial distribution of any Ij(0) via∫
A

⇀

f i(
⇀s)d⇀s = P (Ij(0) ∈ A× {s′i}) , A ⊆ U, s′i ⊆ V.

We will not state the resulting PDE system, as already the population-static version of

the hybrid space MFTs resulted in unhandy, long equations. It is a direct mixture of the

population-dynamic mean-field equation for continuous space (4.48) and the population-

static mean-field equation for hybrid space (4.53). One may imagine the resulting PDE

system as system (4.48) wherein each line contains an additional sum with respect to the

discrete part of the state-space.

4.5.4 Variance Theorem for Discrete State Space

As final mean-field theorem of this section we will state and proof a theorem that can be used

to supplement the Discrete Space MFT for Static Population 5.1. In contrast to the mean-field

theorems presented before this theorem cannot be applied to find a mean-field model for the

expected value, but it can be used to find a measure, how well the mean-field model given

by the Discrete Space MFT for Static Population represents the mean-field trajectories of the

microscopic model.
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Theorem 5.1: Discrete Space Variance Theorem for Static Population

Assuming that the prerequisites and the notation of the Discrete Space MFT for Static

Population 5.1 hold with the additional requirement that ω(t, i, j,
⇀

X) has finite second

derivatives w.r. to
⇀

X , then the solution vector (ξi,j(t))i,j∈{1,...,n} of

d

dt
ξi,j(t) = −⇀ϕi(t)ω(t, i, j,

⇀ϕ(t))− ⇀ϕj(t)ω(t, j, i,
⇀ϕ(t))

+ �i(j)

n∑
k=1

⇀ϕk(t)ω(t, k, i,
⇀ϕ(t)) + ⇀ϕi(t)ω(t, i, k,

⇀ϕ(t))

+

n∑
k=1

ξi,k(t)ω(t, k, j,
⇀ϕ(t))− ξi,j(t)ω(t, j, k,

⇀ϕ(t))

+

n∑
k=1

ξj,k(t)ω(t, k, i,
⇀ϕ(t))− ξj,i(t)ω(t, i, k,

⇀ϕ(t))

+

n∑
m=1

ξi,m(t)

n∑
k=1

(
⇀ϕk(t)

∂ω(t, k, j,⇀ϕ(t))

∂
⇀

Xm

− ⇀ϕj(t)
∂ω(t, j, k,⇀ϕ(t))

∂
⇀

Xm

)

+
n∑

m=1

ξj,m(t)
n∑

k=1

(
⇀ϕk(t)

∂ω(t, k, i,⇀ϕ(t))

∂
⇀

Xm

− ⇀ϕi(t)
∂ω(t, i, k,⇀ϕ(t))

∂
⇀

Xm

)
(4.56)

wherein ⇀ϕ(t) stands for the solution vector of (4.40) and

ξi,j(0) = Cov(
⇀

Xi(0),
⇀

Xj(0)) = N
(
�i(j)

⇀

f i − ⇀

f i
⇀

f j

)
(4.57)

fulfils

|ξi,j(t)− Cov(
⇀

Xi(t),
⇀

Xj(t))| = O(
√
N). (4.58)

The proof for this theorem can be found in the appendix via A.0.2 where it is directly proven

for the given state-space and is based on Corollary 5.1. In [Bicher, 2016] a more simplified

Theorem can be found for a general state-space. Yet, the proof there is long, complicated and is

only valid for small first derivatives ∇ω.

The variance theorem does not seem to be practicable from the point of application, yet it is

very interesting when analysing the resulting system of differential equation. We state, without

showing the proof here, a few facts about the ODE system. All of them can be verified with

simple, yet time-consuming, calculations.

� The initial values clearly fulfil

ξi,i(0) = V(
⇀

Xi(0)) > 0, i �= j : ξi,j(0) = Cov(
⇀

Xi(0),
⇀

Xj(0)) < 0. (4.59)

This can be reasoned as the sum of all agents needs to be equal toN . Hence, the higher one

of the aggregated numbers, the more likely are the others to be lower – they are negatively
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correlated. Surprisingly there is no condition in the equation (for n > 2) that this remains

fulfilled for any t > 0. Hence, it might be possible that one of the aggregated numbers in

the model actually correlates positively with a second one although the sum of all needs

to be N all the time.

� The solution of the variance equation fulfils a lot of properties that hold for covariances of

random numbers in general. We list a few:

1. Symmetry: Cov(
⇀

Xi(t),
⇀

Xj(t)) = Cov(
⇀

Xj(t),
⇀

Xi(t)) holds as

ξi,j(0) = ξj,i(0) and
dξi,j
dt

(t) =
dξj,i
dt

(t). (4.60)

2. Summing to zero I: 0 = V(N) = V
(∑n

i=1

⇀

Xi(t)
)
=
∑n

i,j=1 Cov(
⇀

Xi(t),
⇀

Xj(t))
is fulfilled as

n∑
i,j=1

ξi,j(0) = 0 and

n∑
i,j=1

dξi,j
dt

(t) = 0. (4.61)

3. Summing to zero II: More generally for any two index-sets I, J with I ∪ J =
{1, . . . , n} the identity

∑
i,j∈I

Cov(
⇀

Xi(t),
⇀

Xj(t)) = V

(∑
i∈I

⇀

Xi(t)

)

= V

(
N −

∑
i∈J

⇀

Xi(t)

)
= V

(∑
i∈J

⇀

Xi(t)

)
=
∑
i,j∈J

Cov(
⇀

Xi(t),
⇀

Xj(t))

is fulfilled by

n∑
i,j∈I

ξi,j(0) =

n∑
i,j∈J

ξi,j(0) and

n∑
i,j∈I

dξi,j
dt

(t) =

n∑
i,j∈J

dξi,j
dt

(t). (4.62)

� These three formulas can now help to reduce the order of the system as not all equations

are really necessary. For Γ = {s1, . . . , sn} the original system would suggest that n2

coupled differential equations need to be solved to find a solution of the system. Note,

that we could imagine the solutions of the system as a matrix⎛
⎜⎜⎜⎝
ξ1,1 ξ1,2 . . . ξ1,n
ξ2,1 ξ2,2 . . . ξ2,n

...
...

. . .
...

ξn,1 ξn,2 . . . ξn,n

⎞
⎟⎟⎟⎠ .

First, the symmetry makes it possible to reduce this matrix to upper (or lower) triangular

form as ξi,j = ξj,i ⎛
⎜⎜⎜⎝
ξ1,1 ξ1,2 . . . ξ1,n
0 ξ2,2 . . . ξ2,n
...

...
. . .

...

0 0 . . . ξn,n

⎞
⎟⎟⎟⎠ .
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This way, the system is fully described by
n(n+1)

2 equations. Clearly, the second identity

can be seen as a special case of the third one with I being the empty set, hence we will

not regard it any longer. Regarding the third identity it seems as if a large number of

constraints make it possible to reduce the system heavily – there are 2n−1 constraints

defined by the third identity ∑
i,j∈I

ξi,j =
∑
i,j∈J

ξi,j .

Unfortunately, it turns out that all equations of this shape linearly depend on the n equa-

tions ∑
i,j∈{1,...,k−1,k+1,...,n}

ξi,j = ξk,k.

Thus, only n of possible 2n−1 equations can be reduced without loss of information.

It finally results that the n2 equations of (4.56) can be reduced to
n(n+1)

2 − d = n(n−1)
2

equations.

� While the covariances ξi,j(t), i �= j are, in general, of minor concern for the analysis of

a microscopic model, the variances ξi,i(t) are much more valuable. We could use them

to establish confidence intervals for the spread of the simulation results. Hence, it might

be interesting to know if it is possible to derive an ODE system that only solves for the

variance curves and does not require any covariances.

Based on previous calculations the system may be reduced to n(n−1)/2 equations which

suits to the sequence n(n− 1)/2 = 1, 3, 6, 10, . . . for n = 2, 3, 4, 5 . . . . As a state-space

with n elements leads to n-dimensional aggregated number vector and n variance curves,

only for n = 2 and n = 3 a system of equations that only consists of variances but not of

covariances can be found, as n ≥ n(n − 1)/2. We state the resulting systems for n = 2
and n = 3:

For Γ := {s1, s2} we get

d

dt
ξ1,1(t) =

⇀ϕ2(t)ω(t, 2, 1,
⇀ϕ)+⇀ϕ1(t)ω(t, 1, 2,

⇀ϕ)−2ξ1,1(t)(ω(t, 1, 2,
⇀ϕ)+ω(t, 2, 1,⇀ϕ))

+ξ1,1(t) (
⇀ϕ1 (∂2ω(t, 1, 2,

⇀ϕ)− ∂1ω(t, 1, 2,
⇀ϕ)) + ⇀ϕ2 (∂1ω(t, 2, 1,

⇀ϕ)− ∂2ω(t, 2, 1,
⇀ϕ)))
(4.63)

Only one equation is needed as n(n− 1)/2 = 1. Note, that ξ1,1(t) = ξ2,2(t) based on the

third stated identity.

For Γ := {s1, s2, s3} we get

∀i �= j �= k : ξi,j =
ξk,k − ξi,i − ξj,j

2
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and therefore the three differential equations are

d

dt
ξj,j(t) =

3∑
i=1,i �=j

(
⇀ϕi(t)ω(t, i, j,

⇀

φ) + ⇀ϕj(t)ω(t, j, i,
⇀

φ)
)

+

3∑
i=1,i �=j,k/∈{i,j}

(ξk,k(t)− ξi,i(t)− ξj,j(t))ω(t, i, j,
⇀

φ)− 2ξj,j(t)

3∑
i=1,i �=j

ω(t, j, i,
⇀

φ)

+

3∑
i=1,i �=j,k/∈{i,j}

(ξk,k(t)− ξi,i(t)− ξj,j(t))

3∑
l=1

(
⇀ϕl(t)∂iω(t, l, j,

⇀

φ)− ⇀ϕj(t)∂iω(t, j, l,
⇀

φ)
)

+ 2ξj,j(t)

3∑
k=1

(
⇀ϕk(t)∂jω(t, k, j,

⇀

φ)− ⇀ϕj(t)∂jω(t, j, k,
⇀

φ)
)

(4.64)

with j ∈ {1, 2, 3}.

4.6 Usage of Mean-Field Theorems

4.6.1 General Applicability of Mean-Field Theorems

With exception of the variance theorem, all mean-field theorems presented in the last section are

developed to establish a “valid” mean-field model for a given microscopic system. Here “valid”

means, that the results of the mean-field model (can be proven to) approximate the results of the

microscopic model for a sufficiently large number of individual sub-models. Yet, the methods

do not state any kind of interpretation of the newly generated model, as the model structure

and the model parameters are solely gained by formal transformations and calculations and, in

principle, not by a modelling process.

From this point of view it is worthy to discuss whether the gained ODE/PDE system is a

“model” or not. Based on the definitions of Stachowiak [Stachowiak, 1973], a model needs to

be a simplified image of a natural or artificial system, which is not given in the first place. Yet

we might find reasonable explanations for the validity of the mean-field model as a model for

the real system afterwards, by identifying relations and causalities. For this process we cannot

give any formulas and methods.

The stated mean-field theorems are, in principle, developed to derive a macroscopic model

from a given microscopic model by proving their equivalence on the asymptotic level. Hence,

the theorems also state that the results of a microscopic model match the results of a given

macroscopic one, if the transition rates are chosen according to the parameters of the mean-field

equation. Thus, we can clearly derive microscopic models from given macroscopic ones as well

if the macroscopic models can be matched with one of the mean-field equations. We denote this

process as inverse mean-field analysis.

Summarising, the following purposes for application of mean-field theorems can be de-

tected:
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1. Find a supplemental, probably simplified, macroscopic model that can be used to

replace the microscopic one. Evaluation times or unwanted stochasticity might for ex-

ample motivate these intentions. Hereby we need to care about relationships between

reality and the mean-field model and we need to identify how and why specific parts of

the real-system lead to which parts of the mean-field model. Any necessary approxima-

tion and abstraction that was required to fulfil the properties of the mean-field theorems

need to be done with the real-system in mind as it might result in terrible modelling errors

in the macroscopic model otherwise.

2. Find equations that describe the aggregated behaviour of a given microscopic model

for analysis of the microscopic model. Hereby we do not care about whether or not the

derived equations can be seen as a model for the real system and we do not attempt to

supplement the microscopic model by the mean-field model. We are solely interested in

understanding the qualitative/quantitative behaviour of the microscopic model based on

the macroscopic one which might be easier to investigate.

3. Compare two given models, a microscopic and a macroscopic one. In case a macro-

scopic model can be transformed to fulfil a mean-field equation then the corresponding

microscopic model can be compared with the given one. Vice versa, if a microscopic

model is capable of applying a mean-field theorem, we could compare the resulting mean-

field model with a given macroscopic one. The latter is probably easier as a macroscopic

simulation usually executes faster and is easier to analyse.

4. Find a microscopic description of a given macroscopic model for analysis purposes.

Hereby we could think of validation of the macroscopic model: Do the defined processes

in the macroscopic description make sense if analysed on the microscopic level? Probably

also difficult numerical properties of the macroscopic system, e.g. in case of highly sensi-

tive and stiff ODEs or PDEs, could motivate this idea, when trying to find a microscopic

“solver” of the macroscopic equation.

5. Find a supplemental, probably simplified, microscopic model that can be used to

replace the macroscopic one. This process is usually motivated when given macroscopic

models need to be extended by microscopic rules which are unhandy or, in some cases,

even impossible to be modelled in a macroscopic way.

Although the purposes in 1/2 and 4/5 seem very similar at first the differences are fundamental.

Quick mean-field analysis as done for purposes 2 and 4 can be used for verification of either of

the models (compared to the other) while only when done with care, as for 1 and 5, the newly

derived model can be used for validation purposes.

4.6.2 Step By Step from Microscopic to Macroscopic

Especially for finding a macroscopic analogue for microscopic model sometimes tricky abstrac-

tion and approximation processes are necessary to fulfil the prerequisites of a mean-field theo-

rem. Hereby it is necessary to carefully decide which parts of the model cannot be neglected as
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they are relevant for the system behaviour and which parts can. Note, that it is not always possi-

ble to find a suitable mean-field model (using a mean-field theorem) that represents the system

behaviour of the microscopic model.

As there is hardly any microscopic simulation model that is defined on a fully formalised

basis it turns out that the key to find a good mean-field model lies within asking the right

questions in correct order. Thus, we established step-by-step instructions, one for the standard

mean-field approximation and one for the inverse mean-field approximation, that guide through

the process by asking questions about the microscopic/macroscopic model. Each question will

lead to the next question and will result in a valid mean-field model if answered and computed

properly. At some stages we can only give hints on how to continue as the process can only be

generalised up to some extent. In order to inspire the reader examples on how the process is

used will be presented in the next chapter.

Question 2.1:

Identify the individual sub-models of your microscopic model and note their total number

N(0) after the initialisation phase of the model. We will henceforth denote them as agents.

How many agents N(0) can be identified?

< 50 Very likely the model is not suited for mean-field analysis. Con-

tinue with Question 2.2 only with care.

≥ 50 Continue with Question 2.2.

Question 2.2:

Investigate the behaviour of the agents and summarise all possible states - i.e. find a

space Γ that contains (an abstraction) of all possible states of all agents. Note, that any

heterogeneity and memory of all agents needs to be mapped onto the state-space to make

mean-field analysis possible via the proposed theorems. Moreover, make a “list” of all pos-

sible transitions from one state to another that are possible. Add to this list all possibilities

that agents in specific states are created or die.

To make sure, that the state-space is chosen large enough:

Think of exchaning the states of any two agents Ii, Ij in your model at any given

time: Does this have an influence on the model?

Yes Heterogeneity among the agents needs to be mapped onto the

state-space. Probably a new state-space dimension is needed.

Continue with Question 2.2.

No Continue with Question 2.3
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Question 2.3:

To make sure, that the state-space is chosen large enough:

Does any model action that leads to creation/destruction of sub-models or transi-

tion between states depend/rely on any agent property, that is not (yet) included

in the state-space?

Yes In case this property cannot be neglected as it has too much in-

fluence on the microscopic model dynamics it is necessary to add

this feature as an additional dimension to the state-space. Con-

tinue with Question 2.2.

No Continue with Question 2.4

Question 2.4:

To make sure, that the state-space is chosen large enough:

For each element in the list: is the state-transition or birth-, death-process influ-

enced by any states of the model that lie in the past?

Yes, the transi-

tion is influenced

by the previous k
states of the model

Any memory has to be mapped onto the state-space. In case a

state s has a memory of k states it is split into k-states with mem-

ory 1 (compare with the ideas below Definition 4.5). Continue

with Question 2.2.

Yes, the transition

is influenced an

unknown number

of previous states

Any memory has to be mapped onto the state-space. If this is not

possible (compare with the ideas below Definition 4.5) then the

model is probably not suited for our mean-field analysis.

No Continue with Question 2.5
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Question 2.5:

Finally, distinguish between different state-space types.

How does the common state-space Γ look like?

It is finite. Identify Γ = {s1, . . . , sn}. Continue with Question 2.6.

It is a product

space and has at

least one dimen-

sion that is part of

the real-axis.

Identify sets U ∈ Rn and V = {s′1, . . . , s′n′} so that Γ = U × V
and each element s ∈ Γ = (⇀s, s′i). We will refer to the two

vector entries as “continuous-” and “discrete- state” of the agent.

Continue with Question 2.6.

It is infinite but

discrete.

Identify Γ = limn→∞{s1, . . . , sn}. Either cut this set after some

sufficiently large n (probably some states cannot be reached) or

let n run to infinity after the mean-field analysis. For the remain-

der this analysis process, fix n < ∞. Continue with Question

2.6.

None of the above Either the model is not suited for mean-field analysis or some

more abstraction is required. Continue with Question 2.2.

Question 2.6:

Investigate the way, how the individual agents change their states and how the model is

updated. Note, tend as the designated end-time of the model.

When are the states of the sub-models updated?

Simultaneously

at equidistant

discrete time

steps.

Note, T = (0, t1, . . . , tend) as the vector of time-steps and Δt as

the length of the time interval. Continue with Question 2.7

Simultaneously

at fixed non-

equidistant

discrete time

steps.

Note, T = (0, t1, . . . , tend) as the vector of time-steps and Δti
as the length of each time interval. Whenever Δt is addressed in

the following steps, replace it with the corresponding Δti for the

regarded time-step accordingly. Continue with Question 2.7.

Individually with

events that take

place with specific

rates.

Note, T = [0, tend] and Δt as a small positive real number (com-

pared to tend). Henceforth let Δt → 0 whenever this is possible

to transform a difference quotient to a differential quotient. Con-

tinue with Question 2.7.
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Question 2.7:

We start establishing the corresponding mean-field equation by step-by-step noting equa-

tions from left to right. Herein we implicitly apply the stated mean-field theorems, wherein

we relax a couple of requirements which will be justified in Section 4.6.3.

What is the state-space?

{s1, . . . , sn}. Start by noting d left hand sides of differential equations: For all

i ∈ {1, . . . , n} write:

dϕi

dt
(t) = . . .

It is sometimes helpful to use symbols instead of 1, . . . , n as it is

more intuitive. In this instruction we will address them as “equa-

tion number i”. Continue with Question 2.8.

U × {s′1, . . . , s′n′}. Start by noting n′ left hand sides of partial differential equations:

For all i ∈ {1, . . . , n′} write:

∂ϕi

∂t
(⇀s, t) = . . .

It is sometimes helpful to use symbols instead of 1, . . . , n′ as it is

more intuitive. In this instruction we will address them as “equa-

tion number i”. Continue with Question 2.17.

Question 2.8:

Consider each element of the state-space as an iterative process starting by s1. Each time

this question is reached a fictional counter i should be enhanced. As soon as i = d + 1 is

reached: Continue with Question 2.16.

Investigate state-space element si and look through the list of transitions:

Is it possible that an agent directly switches from state si to a different state

during the simulation?

Yes Search your transition list for any sj for which a transition si →
sj is possible. Continue with Question 2.9.

No Continue with Question 2.10.
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Question 2.9:

For each j for which the transition si → sj is possible at some time during the simulation

perform the following steps:

For t ∈ T calculate the corresponding transition probabilities P (I(t+Δt) = sj |I(t) =
si).

Is it possible to find an approximation so that

P (I(t+Δt) = sj |I(t) = si) = f(t, i, j,
⇀

X)

wherein
⇀

X stands for the vector of aggregated numbers of the model (see 2.1),

without changing the system behaviour?

Yes Calculate

ω(t, i, j,
⇀

X) :=
f(t, i, j,

⇀

X)

Δt

as a function of t and
⇀

X . Search in the notes for equation number

i and add

−ϕi(t)ω(t, i, j,
⇀ϕ(t))

to the right hand side. Search in the notes for equation number j
and add

+ϕi(t)ω(t, i, j,
⇀ϕ(t))

to the right hand side. In case all j with transitions si → sj are

dealt with: Continue with Question 2.10.

No Either the state-space was chosen too small or the model is not

suitable for application of any of the mean-field theorems pre-

sented earlier. Anyway, specific steps have to be reconsidered.

Question 2.10:

Now consider possible creation processes of agents with state si.

Is it possible that agents with state si can be created during the simulation?

Yes Continue with Question 2.11.

No Continue with Question 2.14.
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Question 2.11:

Now we need to think about how agents with state si are created in the microscopic

model. Reconsider all states sj :

Is it possible that an agent with state sj creates (gives birth) to an agent with

state si?

Yes Search for all states sj so that an agent in state sj may create an

si agent. Continue with Question 2.12.

No Continue with Question 2.13.

Question 2.12:

For each j for which an agent with state sj may create one in si perform the following

steps:

For t ∈ T calculate the probability P (New agent in si after Δt|I(t) = sj).

Is it possible to find an approximation so that

P (New model in si after Δt|I(t) = sj) = f(t, j, i,
⇀

X),

wherein
⇀

X stands for the vector of aggregated numbers of the model (see 2.1),

without changing the system behaviour?

Yes Calculate

c(t, j, i,
⇀

X) :=
f(t, j, i,

⇀

X)

Δt

as a function of t and
⇀

X . Search in the notes for equation number

i and add

+ϕj(t)c(t, i, j,
⇀ϕ(t))

to the right hand side. In case all processes that an agent creates

a new agent are processed, continue below.

No Either the state-space was chosen too small or the model is not

suitable for application of any of the mean-field theorems pre-

sented earlier. Anyway, specific steps have to be reconsidered.

Are there any causes for a creation of agents in state si which have not been

considered yet?

Yes Continue with Question 2.13

No Continue with Question 2.14
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Question 2.13:

For t ∈ T calculate the probability P (New agent in si after Δt|t) that an agent is created

by some other reason than a birth process of a different agent.

Is it possible to find an approximation so that

P (New agent in si after Δt|time = t) = f(i, t,
⇀

X)

wherein
⇀

X stands for the vector of aggregated numbers of the model (see 2.1),

without changing the system behaviour?

Yes Calculate

C(i, t,
⇀

X) :=
f(i, t,

⇀

X)

Δt

as a function of t and
⇀

X . Search in the notes for equation number

i and add

+C(i, t,⇀ϕ(t))

to the right hand side. Continue with Question 2.14.

No Either the state-space was chosen too small or the model is not

suitable for application of any of the mean-field theorems pre-

sented earlier. Anyway, specific steps have to be reconsidered.

Question 2.14:

Finally, consider death processes.

Is it possible that an agent with state si dies?

Yes Continue with Question 2.15.

No Continue with Question 2.8.
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Question 2.15:

For t ∈ T calculate the probability P (dead after Δt, I(t) = si) that an agent dies.

Is it possible to find an approximation so that

P (dead after Δt, I(t) = si) = f(i, t,
⇀

X)

wherein
⇀

X stands for the vector of aggregated numbers of the model (see 2.1),

without changing the system behaviour?

Yes Calculate

d(i, t,
⇀

X) :=
f(i, t,

⇀

X)

Δt

as a function of t and
⇀

X . Search in the notes for equation number

i and add

−ϕi(t)d(i, t,
⇀ϕ(t))

to the right hand side. Continue with Question 2.8.

No Either the state-space was chosen too small or the model is not

suitable for application of any of the mean-field theorems pre-

sented earlier. Anyway, specific steps have to be reconsidered.

Question 2.16:

The mean-field equation should now be finally ready to use. It remains to find a suitable

initial condition. For each i with state si ∈ Γ:

Is the total number
⇀

Xi(0) of agents initially in state si deterministic?

Yes Set ϕi(0) :=
⇀

Xi(0)

No Calculate the expected value μi := E(
⇀

Xi(0)) and set ϕi(0) :=
μi.

The process is finished. The noted system of differential equations is a valid mean-field

approximation for the given microscopic model if all simplifications have been done with

care.
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Question 2.17:

Now, consider all elements s′i of the discrete part V of the state-space as an iterative

process starting by s′1. Each time this question is reached, a fictional counter i is enhanced.

As soon as i = n′ + 1 is reached: Continue with Question 2.25.

Look through the list of possible transitions:

Is it possible that an agent directly switches from (⇀s, s′i) to a different state?

Yes Search your transition list for all (⇀s2, s
′
j) for which a transition

(⇀s, s′i) → (⇀s2, s
′
j) is possible. Continue with Question 2.18.

No Continue with Question 2.19.

Question 2.18:

For each j (including j = i) for which the transition (⇀s, s′i) → (⇀q , s′j) is possible,

perform the following steps:

For t ∈ T calculate a transition density function

P̃ : (⇀q , t) �→ P̃ (I(t+Δt) = (⇀q , s′j)|I(t) = (⇀s, s′i))

based on the probabilities

P (I(t+Δt) ∈ (A, {s′j})|I(t) = (⇀s, s′i)).

This calculation might require the use of the delta distribution.
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Is it possible to find an approximation so that

P̃ (I(t+Δt) = (⇀q , s′j)|I(t) = (⇀s, s′i)) = f((i,⇀s), (j,⇀q ), t,X)

wherein X stands for the aggregated density of the model (see 2.1), without

changing the system behaviour?

Yes Calculate

ω((i,⇀s), (j,⇀q ), t,X) :=
f((i,⇀s), (j,⇀q ), t,X)

Δt

as a function of t and X . Search in the notes for equation number

i and add

−
∫
U
ϕi(

⇀s, t)ω((i,⇀s), (j,⇀q ), t, ϕ)d⇀q

to the right hand side. Search in the notes for equation number j
and add

+

∫
U
ϕi(

⇀q , t)ω((i,⇀q ), (j,⇀s), t, ϕ)d⇀q

to the right hand side. As soon as all possible states with transi-

tions from (⇀s, s′i) are dealt with: Continue with Question 2.19.

No Either the state-space was chosen too small or the model is not

suitable for application of any of the mean-field theorems pre-

sented earlier. Anyway, specific steps have to be reconsidered.

Question 2.19:

Now consider possible creation processes of agents with discrete state s′i.

Is it possible that agents with state (⇀s, s′i, ) can be created during the simula-

tion?

Yes Continue with Question 2.20.

No Continue with Question 2.23.
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Question 2.20:

Now we need to think about how agents with state (⇀s, s′i) are created in the microscopic

model.

Is it possible that an agent creates (gives birth) to an agent with state (⇀s, s′i)?
Yes Make a list of all discrete states s′j for which an agent with dis-

crete state s′j may create an (⇀s, s′i) agent. Continue with Ques-

tion 2.21.

No Continue with Question 2.22.

Question 2.21:

For each j (including i) for which an agent with discrete state (⇀s ′, s′j) may create one in

(⇀s, s′i) perform the following steps:

For t ∈ T calculate the transition density function

P̃ : (⇀s, t) �→ P̃ (New agent in (⇀s, s′i) after Δt|I(t) = (⇀q , s′j))

based on the probabilities

P (New agent in (A, {s′j}) after Δt|I(t) = (⇀q , s′j)).

This calculation might require the use of the delta distribution.
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Is it possible to find an approximation so that

P̃ (New agent in (⇀q , s′j) after Δt|I(t) = (⇀q , s′j)) = f((⇀s, i), (⇀q , j), t,X)

wherein X stands for the aggregated density of the model (see 2.1), without

changing the system behaviour?

Yes Calculate

c((⇀q , j), (⇀s, i), t,X) :=
f((⇀q , j), (⇀s, i), t,X)

Δt

as a function of t and X . Search in the notes for equation number

i and add

+

∫
U
ϕ(⇀q , t)c((⇀q , j), (⇀s, i), t, ϕ)d⇀q

to the right hand side. As soon as all processes that an agent

creates a new agent are dealt with, continue below.

No Either the state-space was chosen too small or the model is not

suitable for application of any of the mean-field theorems pre-

sented earlier. Anyway, specific steps have to be reconsidered.

Are there any causes for a creation of agents with discrete state si which have

not been considered yet?

Yes Continue with Question 2.22

No Continue with Question 2.23

Question 2.22:

For t ∈ T calculate the transition density function

(⇀s, t) �→ P̃ (New agent in (⇀s, s′i) after Δt)

based on the probabilities

P (New agent in (A, {s′i}) after Δt|t)

that an agent is created by some other reason than a birth process of a different agent. This

calculation might require the use of the delta distribution.
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Is it possible to find an approximation so that

P̃ (New agent in (⇀s, s′i) after Δt) = f((⇀s, i), t,X)

wherein X stands for the aggregated density of the model (see 2.1), without

changing the system behaviour?

Yes Calculate

C((⇀s, i), t,X) :=
f((⇀s, i), t,X)

Δt

as a function of t and X . Search in the notes for equation number

i and add

+C((⇀s, i), t,⇀ϕ)

to the right hand side. Continue with Question 2.23.

No Either the state-space was chosen too small or the model is not

suitable for application of any of the mean-field theorems pre-

sented earlier. Anyway, specific steps have to be reconsidered.

Question 2.23:

Finally, consider death processes.

Is it possible that an agent with state (⇀s, s′i) dies?

Yes Continue with Question 2.24.

No Continue with Question 2.8.

Question 2.24:

For t ∈ T calculate the probability density

P̃ : (⇀s, t) �→ P̃ (dead after Δt, I(t) = (⇀s, s′i))

based on the probabilities

P (dead after Δt, I(t) ∈ (A, {s′i}))

that an agent dies.
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Is it possible to find an approximation so that

P̃ (dead after Δt, I(t) = (⇀s, s′i)| . . . ) = f((⇀s, i), t,X)

wherein X stands for the aggregated density of the model (see 2.1), without

changing the system behaviour?

Yes Calculate

d((⇀s, i), t,X) :=
f((⇀s, i), t,X)

Δt

as a function of t and X . Search in the notes for equation number

i and add

−ϕ(⇀s, t)d((⇀s, i), t, ϕ)
to the right hand side. Continue with Question 2.17.

No Either the state-space was chosen too small or the model is not

suitable for application of any of the mean-field theorems pre-

sented earlier. Anyway, specific steps have to be reconsidered.

Question 2.25:

A n′-dimensional mean-field equation was derived in an integral form.

Is the integral representation sufficient?

Yes Continue below

No For all terms ϕ(⇀q , t) on the right hand side of the equation, apply

a Taylor decomposition at ϕ(⇀s, t) via

ϕ(⇀q , t) = ϕ(⇀s, t) + (⇀q − ⇀s)∇ϕ(⇀s, t) + . . .

This way, these terms can be dragged out of the integrals and a

partial-differential system is achieved.

It remains to find a suitable initial condition. Therefore, calculate the initial density

P̃ (I(0) = (⇀s, s′i))

based on the probabilities

P (I(0) ∈ (A, {s′i})).
Set

ϕi(
⇀s, 0) := N(0) · P̃ (I(0) = (⇀s, s′i)).

A mean-field model was derived that, in case all simplifications have been done with care,

approximates the mean-field behaviour of the microscopic model.
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4.6.3 Scientific Background of the Micro-to-Macro Instruction

Before we state the inverse mean-field analysis instruction, i.e. a step-by-step instruction how

macroscopic models can be approximated by microscopic models based on the stated mean-

field theorems, we give some scientific explanation and justification for the process described

in Section 4.6.2. Hereby we focus on describing how the mean-field theorems stated in the

sections before are implicitly used and which elements have been relaxed in order to fulfil their

requirements.

The basic structure of the process is gained from rough analysis of the shape of the mean-

field equations that result from any of the stated mean-field theorems. The easiest way to see

this is analysing the structure of the discrete mean-field equation (4.40): Any transition of the

microscopic model from one state to an other results in a multiplication of the corresponding

mean-value trajectory of the a-priori state multiplied with the corresponding transition kernel.

This term is subtracted from the equation of the a-prior state and added to the equation of the

a-posterior state. Even though the mean-field theorems for continuous and hybrid state-spaces

have a slightly different shape, this basic idea holds. Similar ideas can be applied to death and

creation processes too.

We focus on specific relaxations compared to the theorems. The most obvious relaxation

between the described mean-field analysis process and the requirements of the mean-field the-

orems is found in Question 2.6 the difference regarding the simulation time update. While the

mean-field theorems require formalised microscopic models which are evaluated with specific

transition rates on the continuous time-set T = [0, tend], the process is defined for discrete-time

models as well – in fact, as mentioned, these models are the most common type of microscopic

models. Hereby we make use of the idea that a continuous-time microscopic model with spe-

cific transition/death/creation rates can be approximated by a discrete-time model with specific

transition/death/creation probabilities. Let Y be a time-discrete Markov-process with transition

probabilities P and time-steps of length Δt. Define the transition rates ω of a time-continuous

process Y ′ via

∀s ∈ [t,Δt) : ω2(s, Y0, Y1, . . . ) :=
P (Y (t+Δt) = Y1|Y (t) = Y0, . . . )

Δt

then the time-continuous process Y ′ will approximate the time-discrete process. As the switch

of two states within a time-step is impossible for the time-discrete process, the approximation

is good if the probability that the time-continuous process has two state-changes in the time

interval Δt is as small. As the probability for two state-changes in a time-continuous Markov

chain qualitatively depends on the probability of one state-change squared (compare with the

Poisson property 3.63), the approximation is good if the quotient

P (two state-changes)

P (one state-change)
≈ P 2

P
= P

has small values, which is guaranteed if the transition probabilities of the time-discrete model are

small. This again is influenced by the time-step length, as reducing the latter, also the transition

probabilities become smaller. We will discuss this in more detail in Section 5.1 and the reader is

referred to this case study for deeper insights.
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Consequently, the approximation of a time-discrete microscopic model by a time-continuous

model with transformed transition rates via ω = P/Δt is legit, if the transition probabilities for

the single sub-models are comparably small which directly correlates with the idea of choosing a

small step-size Δt. In case the model uses non-equidistant time-steps, of course, the maximum

time-step needs to be investigated. Experiments showed that transition probabilities are very

rarely too large for application of the mean-field analysis and that the influence of too large

transition probabilities is quite small, compared to too little numbers of sub-models N or N(0),
respectively.

In the questions concerning the spatially continuous transition/death and creation rates, we

completely neglected the condition that the transition kernel needs to be finite and differentiable

functions w.r. to the aggregated density. We even mentioned that we might be required to use the

delta distribution to find a transition probability: Clearly, infinite transition kernels pose a direct

violation of the prerequisites of any mean-field theorem, but as the real-valued delta distribution

can be written as a limit of differentiable finite functions, we may apply the mean-field theorem

for any of those discretisations. As the delta distributions which might be required in the defi-

nition of the rates during the process never lead to an irregular process as this would violate in

principle a proper definition of a microscopic model, the discretised microscopic model would

clearly converge towards the given one in probability. Hence, the mean-field approximation is

legit for the original model as well.

4.6.4 Step By Step from Macroscopic to Microscopic

In this section we want to give a step-by-step instruction of the inverse mean-field analysis

process - i.e. finding a microscopic model, that, observed on the mean-field level, behaves like

a given macroscopic model. As for the classic process, we will guide through this process by

asking the correct questions in correct order. It will soon turn out that we are able to use much

more mathematical arguments than in the classic direction.

The process will result in transition rates and birth/death processes for the microscopic sub-

models. Though a microscopic approach in form of a formalised microscopic model is uniquely

given, it is clear that, given a set of transition rates ω (birth/death rates) for the individuals, there

are various ways how to finally set up a conceptual and finally executable microscopic model.

They could e.g. be implemented in a time-discrete agent-based model with time-steps Δt using

P = ω · Δt as transition probabilities or they could be used directly in a microscopic discrete

event model. Moreover, there are no restrictions on how the derived probabilities/rates result

from the dynamics of the microscopic model. They could result from contact processes or from

directly implemented algebraic formulas. Hence, there are hardly limits for creative ideas.

We will restrict this process to macroscopic models that consist of, or can be approximated

by, systems of ordinary differential equations. These models result in microscopic represen-

tations with discrete states. The process is difficult to be generalised for partial differential

equations which would lead to spatially continuous models. We will only add a few comments

for them afterwards.
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Question 4.26:

First, consider the basic shape of the given system.

Is it possible to find a representation

⇀x

dt
=

⇀

F (t,⇀x), ⇀x(0) = ⇀x0.

of the given model as an explicit system of first order (Note, that any ODE system

with higher order can be written as system of first order)?

Yes Fix
⇀

F as the focus of investigation and note n as the total number

of equations (the length of
⇀

F ). Moreover, define

Γ := {s1, . . . , sn}.

Continue with Question 4.27

No The given ODE system is probably not suited for our mean-field

analysis as it is implicit.

Question 4.27:

Translation: As a mean-field of a microscopic model is always a positive number it is

required to determine lower bound for the system vector.

Can we find a finite real number 0 ≥ α > −∞ and, if necessary, an end-time

tend ≤ ∞, so that

∀t ∈ [0, tend] : min(⇀x(t)) ≥ α?

Yes Define T = [0, tend] and set ⇀y := ⇀x + (1, . . . , 1)Tα. Conse-

quently, the system translates to

d

dt
⇀y(t) =

⇀

F (t,⇀y − α)

with ⇀y(0) := ⇀y0 :=
⇀x0 + (1, . . . , 1)Tα. Continue with Question

4.28

No The given ODE system is probably not suited for our mean-field

analysis as it is unstable.
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Question 4.28:

Scaling: Now, choose a scaling factor β ∈ R+ so that

N(0) = β ‖⇀y0‖1
is a reasonable large number if used as number of initial sub-models. We recommend

N(0) ≥ 100 as
√
N(0) poses for a measure of fluctuation of the microscopic model. Fix

⇀

f :=
1

‖⇀y0‖1
⇀y0

as vector-valued initial distribution of the sub-model states Γ via

P (I(0) = si) =
⇀

f i.

Moreover, set ⇀z := ⇀yβ and calculate

d

dt
⇀z (t) = β

⇀

F

(
t,

⇀y − α

β

)
:=

⇀

H(t,⇀z )

with ⇀z 0 := β(⇀x0 + (1, . . . , 1)Tα). Continue with Question 4.29.

Question 4.29:

Next, write each row of
⇀

H in the form

⇀

H i(t,
⇀z ) =:

qi∑
j=1

hij(t,
⇀z )

and study the summands. First of all, we need to sort them w.r. to their sign. For all

i ∈ {1, . . . n} and j ∈ {1, . . . , qi}:
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Consider ⇀z as a vector of positive numbers and t ∈ [0, tend]. What is the sign of

(t,⇀z ) �→ hi,j(t,
⇀z )?

Always positive Leave hi,j(t,
⇀z ) unchanged. Continue with Question 4.30.

Always negative Set hi,j(t,
⇀z ) := −hi,j(t,⇀z ) and change its sign in the sum above

to −. Continue with Question 4.30.

Depends on ⇀z or t Split the summand into a positive and a negative part hereby in-

creasing qi by one. Set

hi,k+1 := hi,k

for all k > j,

hi,j(t,
⇀z ) := max(hi,j(t,

⇀z ), 0)

and

hi,j+1(t,
⇀z ) := max(−hi,j(t,⇀z ), 0)

and change the sign of the second summand in the sum above to

−. Continue with Question 4.30.

Question 4.30:

As a result of the last question each row of the right-hand-side function should have the

form
⇀

H i(t,
⇀z ) =:

qi∑
j=1

±hij(t,⇀z )

wherein all hij(t,
⇀z ) are positive functions. We recommend to note these on a sheet.

We finally aim to detect specific summands that match with transition, death and cre-

ation processes. Especially the detection of transition processes is of prior interest, while

birth and death processes usually result from the remaining parts of the system. Therefore,

it might sometimes be required/useful to transform specific elements of the equation sys-

tem, but caution is required when dividing by system variables ⇀z i as these might potentially

become zero in the microscopic model.

For all i ∈ {1, . . . n} and j ∈ {1, . . . , qi} for which hi,j(t,
⇀z ) has a negative sign:

Is there a second summand hi′,j′ with positive sign left in the right hand side

vector with

hi′,j′(t,
⇀z ) = hi,j(t,

⇀z )

and i �= i′?
Yes Continue below

No If all summands have been investigated: Continue with Question

4.31.
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Can ⇀z i be dragged out of hi,j(t,
⇀z ) without leading to irregularities (like dividing

through zero)?

Yes In case ω(t, i, i′,⇀z ) has not been set, set ω(t, i, i′,⇀z ) := hi,j(t,
⇀z)

⇀zi
.

Otherwise add the stated quotient to the existing rate. Strike both

summands hi,j(t,
⇀z ) and hi′,j′(t,

⇀z ) from the right-hand side, as

they are already dealt with.

No If all summands have been investigated: Continue with Question

4.31.

Question 4.31:

Now, we aim to find possible creation-processes in the equation system. For all remaining

summands hi,j(t,
⇀z ) with a positive sign:

Is there an index i′ ∈ {1, . . . , n} so that ⇀z i′ can be dragged out of hi,j(t,
⇀z )

without leading to irregularities (like dividing through zero)?

Yes In case c(t, i′, i,⇀z ) has not been set, set c(t, i′, i,⇀z ) :=
hi,j(t,

⇀z)
⇀zi′

.

Otherwise add the stated quotient to the existing rate. Strike the

summand hi,j(t,
⇀z ) from the right-hand side, as it is already dealt

with.

If all summands have been investigated: Continue with Question

4.32.

No In case C(t, i,⇀z ) has not been set, set C(t, i,⇀z ) := hi,j(t,
⇀z ).

Otherwise add the stated number to the existing rate. Remove the

summand hi,j(t,
⇀z ) from the right-hand side, as it is already dealt

with.

If all summands have been investigated: Continue with Question

4.32.
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Question 4.32:

Now we aim to find possible death-processes in the equation system. For all remaining

summands hi,j(t,
⇀z ) (they all need to have a negative sign now!):

Can ⇀z i be dragged out of hi,j(t,
⇀z ) without leading to irregularities (like dividing

through zero)?

Yes In case d(t, i,⇀z ) has not been set, set d(t, i,⇀z ) :=
hi,j(t,

⇀z)
⇀zi

. Oth-

erwise add the stated quotient to the existing rate. Strike the sum-

mand hi,j(t,
⇀z ) from the right-hand side, as it is already dealt

with.

If all summands have been investigated: Continue with Question

4.33.

No This unfortunately leads to a problem. The system indicates a

death rate that does not consider if enough sub-systems are avail-

able for removal. One may attempt to assign a universal death rate

D(i, t,⇀z ) := hi,j(t,
⇀z ) that a sub-system in state si is removed

by the overall system, but we cannot give any guarantee about

the fit of the microscopic model with respect to the macroscopic

differential equation system. In case a solution is found, remove

the summand hi,j(t,
⇀z ) from the right-hand side, as it is already

dealt with. If all summands have been investigated: Continue

with Question 4.33.

Question 4.33:

If successful, the right-hand side of
⇀

h should be empty and all summands have been used

as specific rates. The mean-field vector
⇀

X(t) of the microscopic model defined by these

rate functions approximates the solution ⇀z (t) of

⇀z ′ =
⇀

H(t,⇀z ) = β
⇀

F

(
t,

⇀y − α

β

)
.

Consequently, the transformed mean-field vector

⇀

X(t)− α

β

is an approximation of the solution ⇀x of the given ODE model

⇀x′ =
⇀

f (t,⇀x).
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4.6.5 Scientific Background of the Macro-to-Micro Instruction

In this section we explain the scientific background of the step-by-step instruction defined in

the last section 4.6.5. We will conclude this by some thoughts about how this process can be

generalised to partial differential equation models, i.e. microscopic models with, at least, one

continuous state dimension.

Clearly, the key idea behind the process is to modify the given ODE system, so that it can

be identified with the mean-field equation stated in the dynamic population mean-field theo-

rem for discrete state-space Corollary 5.2. Hereby a few observations make the situation more

complicated:

� Any mean-field equation according to Corollary 5.2 is solved by a positive function vector
⇀ϕ(t) ≥ 0. This can be seen investigating C ≡ 0. The constant solution ⇀ϕ(t) ≡ 0 can be

easily seen to pose for a steady state of the mean-field equation. Hence, a solution with

positive initial values cannot become negative. Adding a C ≥ 0 can only shift the solution

towards the positive direction.

� The initial values of ⇀ϕ of (4.42) in Corollary 5.2 are O(N(0)). If N(0) is small, the

mean-field theorem cannot lead to satisfactory results.

� Any rate coefficient that appears on the right hand side of (4.42) in Corollary 5.2 is a

function greater than zero, as it results from probabilities.

These three problems are overcome as follows: First the equation is translated, so that the solu-

tion vector of the given ODE system is always positive. Keep in mind that for a finite timespan

[0, tend] this is always possible, but not always useful. In case such a shift via α was necessary to

obtain positive solution functions, it follows that the given ODE system itself is not capable for

being a mean-field model of a microscopic model, yet a shifted (translated) version of it might

be.

The second parameter β can be reasoned by considering the initial values of the model.

While the fist transformation guarantees positivity of the solutions, the second one, a scaling

factor, guarantees a sufficiently large N(0) to keep the differences between the microscopic

model and the mean-field model results small. Again, consider that in case such scaling is

necessary, the ODE model itself is basically not capable for inverse mean-field analysis.

To obtain positive rate functions, the summands of the shifted ODE system need to be in-

vestigated for positivity. Clean negative contributions to the right-hand-side of the ODE can be

identified with death rates or transition rates to different states, clean positive contributions can

be identified with birth and transition rates from different states. Contributions which cannot

be decided for positive or negative, need to be split into positive- and negative- parts to make

an identification possible. The choice to investigate the right-hand-side for transitions before

considering death and birth processes is not random. If done in a different order, every transition

term would be attributed to a birth and a death process instead. A model without transitions

would occur, which is, though correct, not useful.
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Finally a few ideas are summarised to extend these ideas to the continuous case. Based on

experience so-called transport terms, i.e. terms in the shape

a(t, x,
⇀

ϕ(t, x))
∂

⇀

ϕ(t, x)

∂x

results from processes wherein the continuous state of a sub-model (on the average) increases

with velocity a. E.g. for a time-discrete model with step-size Δt a transition probability (den-

sity) like

P̃ (I(t+Δt) = x+ y|I(t) = x) =
1√
2π
e−

(y−aΔt)2

2

would result in the transport term described earlier. One of the best examples for a process that

results only in a transport term is ageing. Hereby the continuous variable (age) steadily increases

with speed a = 1 and is completely deterministic, i.e.

P̃ (I(t+Δt) = x+ y|I(t) = x) = δ(y −Δt).

On the contrary, diffusion terms like

b(t, x,
⇀

ϕ(t, x))
∂2

⇀

ϕ(t, x)

∂x2

are caused by stochastic uncertainty of such a movement. The more uncertain the deterministic

variable increases/decreases, the larger the diffusion coefficient is. While the ageing example

would lead to a vanishing diffusion, the Gaussian distribution in the first example would result

in a constant diffusion parameter (b = 1/2). Finally, any terms with higher order would then

depict the stochastic uncertainty of the previous order. As stochastically fluctuating diffusion

process, e.g. a random walk that uses another random walk as variance, would result in terms of

third order etcetera.



CHAPTER 5
Application of Mean-Field Theorems –

Case Studies

Equipped with the Theorems for mean-field analysis and the stochastic basics introduced in the

last two chapters we are given a powerful tool for aggregated analysis of almost any microscopic

model. Especially the presented decision trees in Sections 4.6.4 and 4.6.2 can straight forwardly

be used to determine suitable mean-field models for microscopic models and vice versa.

Yet, the devil is in the details when applying the step-by-step recipes. Instructions like

“Investigate the behaviour of the agents and summarise all possible states”, “Make a list of
all possible transitions from one state to another”, or “For t ∈ T calculate the corresponding
transition probabilities P (I(t+Δt) = sj |I(t) = si, . . . )”, might seem straight forward at first,

but may be very hard and confusing to apply. Occurring problems usually have nothing to do

with the application of a mean-field theorem, as it is essentially applying a formula. Yet, the

process how the microscopic model is best formalised quickly turns out to be almost an art-form

as it requires a lot of creativity, instinct, experience and deep knowledge about the stochastic

methods in Chapter 3. If important parts of the model are left out or probabilities are calculated

falsely, the mean-field approximation will not be a suitable approximation for the microscopic

model. Vice versa, if calculated probabilities are used wrongly in the set-up, a microscopic

model will not suit to the macroscopic model as well.

Thus, we aim to state a couple of case studies in this chapter where the theorems and the

step-by-step instructions are applied on a variety of examples. Hereby we

a) want to give the reader an idea how specific probabilistic concepts can be applied to find

valid mean-field models, receiving as little approximation-error as possible,

b) want to underline different aspects of microscopic models with respect to their mean-field

behaviour,

c) want to give examples how mean-field analysis can be used for answering modelling and

simulation questions, and finally

123
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d) want to motivate the final classification in the last chapter of this thesis.

Some of these aspects focus on the difference between continuous and discrete, some of them

should give an example how different time-update influences the model outcome. Some others

will show the limits of mean-field analysis and that some models simply cannot be analysed on

the macroscopic level using this technique.

5.1 Different Time Concepts in Microscopic Models

Before actually performing mean-field analysis we investigate the differences between different

time-update methods in microscopic models in detail to validate the ideas mentioned in Section

4.6.3. As mentioned several times before there are in principle two possibilities how time is

updated in microscopic models:

� the model is updated in (equidistant) discrete time-steps, or

� the model is updated by state-events.

We will occasionally denote the latter as time-continuous update of the model, as the underlying

time-space is a continuous one.

It is obvious, that both concepts have advantages and disadvantages: Discrete-time update,

on the one hand, classically makes the model easier to parametrise. Also, communication be-

tween model parts (e.g. via contacts) can be implemented more straight forward. Moreover,

it can sometimes be easier to verify as one may directly compare the model before and after a

time step to check if the model did what it was supposed to. On the other hand, time-continuous

update makes it easier to maintain the correct causal chronology of events in the model. This be-

comes clear thinking of discretely updated models with longer time-steps: Suppose a sub-model

is scheduled to experience two or more state changes in one time-step, the modeller needs to take

care which of them should be executed first. Hereby rather artificial rules must be “invented”

which have usually nothing to do with modelling.

To benefit from the advantages of both concepts, it is necessary to understand the link that

exists between them. The key idea to this link was already mentioned in Section 4.6.3. Un-

derstanding the link not only makes it possible to understand why specific things cannot be

depicted by either of the two approaches, it is also possible to remodel some existing models

that are developed with either of the two concepts.

5.1.1 Time Scaling of Stochastic Models

As it is easier, we will first discuss, what it means to compare two time-discrete models with

different step-sizes.

Let us investigate a fictional microscopic model M1 that is updated in discrete time-steps of

length one and suppose that any sub-model (e.g. I1) with state s is always planned to switch to

state s′ during the next time-step with a certain probability p1. I.e.

P (I1(t+ 1) = s′|I1(t) = s) = p1, ∀t ∈ {0, 1, 2, . . . , tend}. (5.1)
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Now let us consider a second model M0.5 that updates in equidistant time-steps of length 0.5
and investigate the same problem, now considering sub-model I0.5 and its probability to switch

to s′ in one of the time steps with length 0.5:

P

(
I0.5

(
t+

1

2

)
= s′|I0.5(t) = s

)
= p0.5, ∀t ∈ {0, 0.5, 1, 1.5, . . . , tend}. (5.2)

Say, we developed M1 and M0.5 for the same purpose or we simply want to rescale M1 to

smaller time-steps, we surely expect the two models to behave alike. Hence, we raise the ques-

tion:

How do we have to choose p0.5 so that M0.5 behaves like M1?

To answer this question, we have to specify what “behaves like” means, in this sense.

Clearly, we might be interested in the probability that I0.5(t+1) = s′ is equivalent to I1(t+1) =
s′. Any two models that fulfil the mentioned property for all agents will be said to fulfil the

Scaled Transition-Probability (STP) condition henceforth. By the laws of conditional proba-

bility, we get

P (I0.5(t+ 1) = s′|I0.5(t) = s)

= P (I0.5(t+ 1) = s′|I0.5(t+ 0.5) = s ∧ I0.5(t) = s)P (I0.5(t+ 0.5) = s|I0.5(t) = s)

+ P (I0.5(t+ 1) = s′|I0.5(t+ 0.5) = s′ ∧ I0.5(t) = s)P (I0.5(t+ 0.5) = s′|I0.5(t) = s)

= P (I0.5(t+ 0.5) = s′|I0.5(t) = s)P (I0.5(t+ 0.5) = s|I0.5(t) = s)

+ P (I0.5(t+ 0.5) = s′|I0.5(t) = s′)P (I0.5(t+ 0.5) = s′|I0.5(t) = s)

= p0.5(1− p0.5) + (1− p′0.5)p0.5,

defining P (I0.5(t+ 0.5) = s′|I0.5(t) = s′) =: (1− p′0.5). Thus, we need to solve

p0.5(1− p0.5) + (1− p′0.5)p0.5 = p1 (5.3)

in order to find a probability for p0.5 so that the STP condition is fulfilled. Easily seen, (5.3)

cannot be solved without additional information about other state-changes of the model as p′0.5
can be interpreted as the probability that the agent re-switched to a different state in the second

time interval, after reaching s′ in the first time interval. That means that within two time-steps,

model M0.5 may switch to a state that might not even reachable with M1 in the same amount

of time. Consequently, it is in general impossible to perfectly rescale a stochastic model to a

different time-step size, without adding additional rules or restrictions e.g. via a memory.

Nevertheless it is possible to find good approximations in certain special cases. Say the

probability that the sub-model leaves state s′ within (t, t + 0.5] is quite small, we may assume

(1− p′0.5) ≈ 1 and find

p0.5(1− p0.5) + (1− p′0.5)p0.5 ≈ p0.5(1− p0.5) + p0.5 = 2p0.5 − p20.5 = p1

which has the only feasible (in the sense of probabilities) solution

p0.5 = 1−
√
1− p1 = 1− (1− p1)

0.5. (5.4)
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This formula can easily be extended to any other time-step size δ leading to

pδ = 1−
√
1− p1 = 1− (1− p1)

δ. (5.5)

This formula is one of the two formulas in this section which may be used to validly rescale

probabilities to different time-steps. Although this concept really works well to satisfy the STP

condition, a completely different measure of quality heavily fails: The Expected Time to State-

change (ETS) from s to s′

E(i : I(t+ i) = s′ ∧ ∀1 < j < i : I(t+ j) = s|I(t) = s). (5.6)

Clearly, we expect both models to result in equivalent time expectations and we will state that

two models fulfil the ETS condition if the expected state-change time instant is equal in both

models. For model M1 the expected time to state-change is geometrically distributed: For any

positive integer i, the probability that i is the first time-step for which a sub-model I1 switches

to s′ can be calculated via

P (switched in time-step i− 1 → i)

i−1∏
j=1

P (did not switch in time-step j − 1 → j)

= p1

i−1∏
j=1

(1− p1) = p1(1− p1)
i−1.

Consequently, the ETS is given by

E(i : I1(t+ i) = s′ ∧ ∀1 < j < i : I1(t+ j) = s|I1(t) = s) =
1

p1
. (5.7)

For hints how the expected value of the geometric distribution can be calculated to the expres-

sion above, the reader is referred to standard literature about probability theory. For M0.5 the

situation is slightly different. Here it is appropriate to first investigate the expected amount of

time-steps to state-change

E(i : I0.5(t+ 0.5i) = s′ ∧ ∀1 < j < i : I0.5(t+ 0.5j) = s|I0.5(t) = s). (5.8)

Here we again find a geometric distribution and E(. . . ) = 1
p0.5

results. As time to state-change
is equivalent to number of time-steps until state-change multiplied by 0.5 also

E(i : I0.5(t+ i) = s′ ∧ ∀1 < j < i : I0.5(t+ j) = s|I0.5(t) = s) = 0.5
1

p0.5
. (5.9)

Consequently, p0.5 needs to be calculated according to formula

p0.5 = p1 · 0.5 , or, generalised to steps of length δ, pδ = p1 · δ (5.10)

to guarantee thatM2 fulfils the ETS condition. This is the second derived formula in this section

which can be used to rescale probabilities. Easily seen, both formulas lead to different results.
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Concluding, both scaling formulas (5.5) and (5.10) can be used to create a model M δ that

behaves similar to M1. As the one fulfils the ETS condition while it fails to fulfil the STP

condition and the other vice versa, neither of them are precisely correct and a scaled model M δ

can never be expected to produce stochastically equivalent results.

Yet, interestingly, both formulas lead to similar results when probability p1 is small. This

can be seen in Figure 5.1 and can be reasoned by Taylor approximation

1−
√
1− p1 = 1− (1− 1

2
p1 +O(p21)) =

1

2
p1 +O(p21).

Clearly, this idea can be generalised to arbitrary step-size δ as well

1− (1− p1)
δ = 1− (1− δp1 +O(p21)) = δp1 +O(p21). (5.11)

Hence, the smaller the original probability p1, the smaller the difference between the two ver-

sions of scaled probabilities p0.5 (or pδ) and, correspondingly, the smaller the difference between

STP and ETS. Although these two measures for quality of the scaling are not sufficient to achieve

stochastic equivalence of the two models, their conservation is yet crucial for the success of the

scaling. Summarising

Time scaling from time-step length 1 to δ < 1 works well if the involved probability p1 is

sufficiently small. Hereby both formulas (5.5) and (5.10) can be applied as they lead to

similar results.

As (5.10) is clearly the simpler one, we will use this henceforth. Figure 5.1 shows a direct

comparison of a model with transition probability p1 and update with time-step size 1 and a

corresponding model with p0.5 := 0.5p1 and time-step size 0.5. A total of 10000 sub-models

were simulated starting in state s. They were observed until they finally reached state s′. The

figure shows histograms of the simulation results. The upper left plot showing model M1 with

p1 = 1, clearly indicates that all 10000 sub-models switched to state s′ instantaneously after

the first step. The corresponding plot with model M0.5 and probability p0.5 = 0.5 is found

directly below. Here only about 7500 of 10000 sub-models switched in model M0.5 until t = 1
(i.e. during the first two steps of the model) which results in an empirically calculated STP of

about 0.75. Hence, the resulting STPs differ by a large margin (almost 0.25). Nevertheless, the

empirical ETS, equivalent with the mean of the observed transition times, is almost equivalent

due to the choice of the scaling formula (Note, that many sub-models already switched to s′

during the first time-step of length 0.5, which are not visible in the histogram due to the choice

of the bins). The equivalence of the empiric ETS can be seen in the other two comparisons

as well, all displaying the results for M1 on top and the corresponding results for M0.5 below.

Choosing a smaller value for p1, also the empiric STPs of both models are getting closer. Finally,

for p1 = 0.2 both models already generate almost undistinguishable histogram curves.

5.1.2 Discrete to Continuous Time

Besides proving that time-scaling from 1 to time-steps δ < 1 works well only for small transition

probabilities p1, Section 5.1.1 also indicated that the important measure Time to State-change
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Figure 5.1: Comparison of the two possible formulas for scaling a model from time-step length

1 to time-step length 0.5.

Figure 5.2: Histogram plots of different time-scaling scenarios. The model with step-size 1
is shown in the top three plots, the corresponding model with step-size 0.5 is shown below.

Formula (5.10) was used to calculate p0.5 from p1.
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(TS) does not only have mean 1
pδ

, but is geometrically distributed – independent of how small

the step-size δ is chosen. Hence, we may ask: what happens with the limit δ → 0? To answer

this question, we can make use of an important relationship between two distributions:

Corollary 1.1: Convergence of Geometric to Exponential Distribution

In case a random variable Xn is distributed geometrically with parameter pn = p1
n , then

limn→∞ 1
nXn exists and is exponentially distributed with parameter p1.

Proof. For any a ∈ R we calculate

P

(
1

n
Xn > a

)
= P (Xn > na) = (1− pn)

�an� =
(
1− p1

n

)�an�
=
(
1− p1

n

)an (
1− p1

n

)�an�−an

The second factor clearly converges to 1 as �an� − an is bounded. The first factor converges

towards exp(−p1)a = exp(−ap1). Hence

P

(
1

n
X > a

)
−→
n→∞ exp(−ap1), (5.12)

which can be identified as the probability law of the exponential distribution. �

Hence, when we scale time to infinitesimal small time-units – we may call this model M0 – the

TS follows an exponential distribution with parameter p1. Clearly, we are not able to simulate

any model with infinitesimal small time-steps, but the clever feature of this concept is that we

don’t have to.

Knowing that a state-change appears in an exponentially distributed time-instant in the fu-

ture, we may simply sample an exponentially distributed random variable with parameter p1 –

here, usually called rate-parameter – and jump to this point in time. We changed the paradigm:

� Positive step-size Mδ, δ > 0: Probability that an event happens in a given time-span.

↓
� Infinitesimal small step-size M0: Distribution of the time when the event happens.

Hereby we notice the concept of event-driven simulation as stated in 2.1.5 and the idea of (sim-

ulation of) time-continuous stochastic processes explained in 3.4.4. Figure 5.3 shows a direct

comparison of M1 and M0 for p1 = 0.2. Hereby the first model was simulated tracking 10000
sub-models for as many time-steps as needed until a state-change occurred and the second model

was executed simply generating random samples from an exponential distribution. The resulting

histograms are almost equivalent.

In this and the preceding sections we presented a concept that makes it possible to a) rescale

microscopic models to different (smaller) time-steps and b) switch from a time-step-driven to an
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Figure 5.3: Histogram plots comparing discrete-time model M1 and continuous-time model

M0. Transition probability of p1 = 0.2 was used for the discrete-time model, which was used

as rate-parameter in the exponential distribution for the continuous-time model.

event-driven model. In case the involved transition probabilities are sufficiently small the model

outcomes of the scaled model and the event-driven model will behave like the unscaled model.

Based on experiments, we deem 0.2 for a rule-of-thumb bound for the transition probability,

above which scaling cannot be applied without additional thoughts.
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5.1.3 Scaling Case Study: Microscopic Population Model

To validate the partly theoretical, partly experimental findings of the last section we chose to

apply the scaling concepts on a simplified, academical model for the population of Austria.

Hereby I’d like to offer my personal thanks to my colleague Melanie Zechmeister who is heavily

responsible for the success of this case study [Zechmeister, 2017].

Although it might also be interpreted as an agent-based model, we prefer to treat it as mi-

crosimulation model for its simplicity.

Model 1.1: Microsimulation Model for Austria - Discrete Time

The investigated discrete-time microsimulation population model for predictive simula-

tion of the population of Austria is organised as follows:

Initial Setup:

� A total number of N ≈ 8000000 individuals, henceforth denoted as agents are gen-

erated, each assigned a unique ID.

The model is updated in discrete time-steps of length dt years.

Dynamics:

� Each time step, each agent is addressed once. Hereby the following decisions are

made:

� The agent dies with probability dt · 1
80 . This number was chosen to ensure a life

expectancy of about 80 years.

� In case it did not die, the agent creates an offspring with probability dt ·0.0096. This

number was derived from the average number of children per 1000 inhabitants in

Austria per year according to the Austrian Bureau of Statistics.

� Now, an agent that did not die before, may emigrate with probability dt · 0.0115.

Also, this number was determined to be as realistic as possible using freely available

datasets from to the Austrian Bureau of Statistics. As emigrated agents cannot be

considered after their emigration date, they are treated like dead agents.

� Finally, at the end of each time-step, the population is additionally increased by 2%
in order to model immigrants. Hence, dt · population size · 0.02 new agents are

created from scratch and added to the agent population.

The present model would in general allow rescaling, but slight errors need to be expected. A

reason for this is the process of immigration ( probabilities for death, birth and emigration are

sufficiently small for almost all dt < 1). This process is deterministic and has a huge influence

on the model outcome. Here a different rescaling-mechanism is required

The following event-based model was derived based on the ideas presented in the last sec-

tion.
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Model 1.2: Microsimulation Model for Austria - Event-Based

The investigated event-based microsimulation population model for predictive simulation

of the population of Austria is organised as follows.

Initial Setup:

� A total number of N ≈ 8000000 individuals, henceforth denoted as agents are gen-

erated, each assigned a unique ID.

� For each agent, the following numbers are sampled: An exponentially distributed

random death-dateD ∼ Exp(1/80), an exponentially distributed random emigration-

date E ∼ Exp(0.0115) and an exponentially distributed random offspring-date

O ∼ Exp(0.0096). The larger of the emigration and death dates is removed. If

the offspring date is larger than the smaller of the emigration or death date, it is

removed as well. Remaining dates are added to a so-called event-list.

The model is updated, jumping to the next recent event in the event list. Dynamics:

� In case of a death- or emigration-date of an agent, the agent is removed. In case it

was an offspring-date, a new agent is created. In this case, new death, emigration

and offspring dates need to be sampled for the new-born agent analogously to the

initialisation of the model.

� Additionally, the formula (tnew−told)population size·0.02 is used to create a number

of immigrants that entered the model during the time between the last and the current

event. For each of those, new death-, emigration- and offspring-dates need to be

sampled analogously to the initialisation of the model.

The results of the comparison were astonishing and surprising. First of all, the discrete-time

model was run for different time-step widths from dt = 0.02 (i.e. almost weekly steps) up

to dt = 10 years. Hereby apart from the expected differences between the mean-value curve,

mainly two observations could be made:

� The higher the step-width (i.e. the less steps required to reach the end-time) the higher

fluctuations could be seen comparing the simulation results. Hence, using a higher number

of steps has a smoothing effect on the simulation outcome. This seems to be unintuitive

at first: One would probably assume, that any additional source for randomness (as given

when increasing the number or model steps) would increase the fluctuations, but it is

complementary due to ergodic effects.

� The computational efforts required for the simulation do not grow/decay linearly when

decreasing/increasing the step-size. I.e. if the step-size is halved the computational error

is not increasing by factor 2 but by a smaller one. This might, again, seem unintuitive as

halving the step-size leads to the doubled number of time-steps to deal with. Yet one must

keep in mind, that also the probabilities are halved making it less likely that state-changes
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really take place. Hence, though the number of loop iterations is doubled, time-consuming

agent state-changes are a lot less frequent than before.

Finally, comparing the discrete time approaches with the event-driven one leads to the following

observations:

� The event-driven model is hardly fluctuating. The fluctuations can be compared with the

discrete-time model run with dt = 0.1.

� Agent-based discrete event simulation is not (at least not always) a massive overhead,

neither with respect to the model definition – in this case it was even shorter than the

time-discrete one – nor with respect to computation time. The run-time of the event-

driven model can be compared with the run-time of the discrete-time model with steps of

about 0.2 years – i.e. about two months. Any larger step-size results in a faster executing

discrete-time model, any smaller, in a slower one.

Figure 5.4 shows a comparison of the event-driven with the time-discrete model for different

time-step widths. For dt = 2 and dt = 0.5 the resulting sample standard deviations of the

time-discrete models are a lot higher than for the event-driven case. Also, the mean value curve

slightly differs from the results of the event-driven model. For dt = 0.1 and 0.02 the sample

mean levels are almost equal, yet the standard deviation can still be seen to shrink for the smaller

step-size.

Clearly, the model is not validated as the population development has hardly anything to do

with the real population development in Austria. Yet, the case study underlines that it might be

worth thinking about rephrasing a microscopic model in a discrete event sense. The event-graph

formalism introduced in Section 2.1.5 gives an additional opportunity to uniquely describe the

model in a graphical way (see Figure 5.5). The population model is specifically well suited

for this process as state events of the agents are very rare (the correspondent probabilities are

quite small). In case agents change their state more frequently the computational overhead will

surely grow. If, moreover, transition probabilities depend not only on the state of the agent

alone, but also on states of other agents or, even worse, on time, it becomes a lot more difficult

to rephrase the model in a discrete event sense. I.e. if the death rates would change every year,

the event-driven approach would result in a more complex model. For some additional ideas

about comparison of discrete-time vs. event-driven (agent-based) models the reader is referred

to [Buss and Al Rowaei, 2010].

5.2 Case Studies for the Step-By-Step Processes

Before getting into more details about system-theoretic analysis of the features and difficulties

of the link between micro and macro via mean-field analysis, we state two simple case studies

that should show how the two step-by-step introductions can be applied in general.
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Figure 5.4: The pictures show a comparison between the described event-driven (blue) and

discrete time-step (red) population model with different step-sizes dt from 0.02 to 2. The broad,

solid lines mark the sample mean of 100 simulation-runs. The dashed lines mark curves which

are, each, one sample standard deviation away from the mean. The thin solid lines, finally, show

some sample paths of the model.
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Give
Birth

Run Init Emigr. 

Death 

Figure 5.5: Alternative representation possibility of the event-driven population model via the

Event Graph. The three event-nodes at the right hand side are initialised with the index parameter

i. Hence, they only cancel and reschedule themselves according to this parameter.

5.2.1 Micro-to-Macro Process Case Study: SIR Lattice Model

The first model to apply the step-by-step introduction to is a microscopic Susceptible-Infectious-

Recovered (SIR) model. Mentioned SIR model has a long history at TU Vienna and the AR-

GESIM (ARbeitsGEmeinschaft SIMulation) of Prof. Felix Breitenecker, as it plays a key role in

the ARGESIM Benchmark C17 [Breitenecker et al., 2004]. In 2004 it was already subject to a

scientific comparison between microscopic and macroscopic models. In 2013 mean-field anal-

ysis was applied to this model and published in [Bicher and Popper, 2013] and [Bicher, 2013].

Hence, the following mean-field approximation study for this model should not be considered

as anything particularly new. Preferably, it should be seen as a perfect first test for the presented

step-by-step instruction in Section 4.6.2.

Model 2.1: SIR Lattice Model

This microscopic SIR model, presented in [Bicher and Popper, 2013] or [Breitenecker

et al., 2004], is defined as an agent-based model (ABM) wherein each agent inhabits a site

on a lattice. In order to understand the described processes the reader might take a look on

Figure 5.6.

Initial Setup:

� First of all let Ω be a discrete, rectangular grid with M :=Mx ·My sites cij .
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� Each site cij , i ∈ {1, . . . ,Mx}, j ∈ {1, . . . ,My} itself is partitioned into four site-

fractions {ci,j,1,1, ci,j,2,1, ci,j,1,2, ci,j,2,2}.

� Let N ≤ 4 ·M be a fixed number of agents.

� At each point t in time each agent In, n = 1, . . . , N has a certain state In(t)1 ∈
{1, 2, 3} (≡ {susceptible, infectious, recovered}) and a certain position on the grid

In(t)2 ∈ {(i, j, k, l) : i ∈ {1, . . . ,Mx}, j ∈ {1, . . . ,My}, k, l ∈ {1, 2}}.

To simplify the speech, the state of the agent is usually called as a prefix of the word

agent: e.g. “infected agent”.

� Initially a number of N1, N2, N3 with N1 +N2 +N3 = N agents with states 1, 2, 3
are randomly distributed on the fractioned grid. I.e. their position is unique (and

remains unique).

The simulation is time-discrete with a finite number of time-steps {1, . . . , tend}.

Dynamics:

� Each of these steps consists of two phases: an infection-phase and a movement-

phase. During each phase each agent is addressed once.

� If, during infection-phase, an infected agent shares the site with a susceptible agent,

the susceptible agent’s state has a certain probability λ to become infected by its

site-mate. Hence, each susceptible agent may get infected by each site-mate that is

infectious.

� Moreover, each infectious agent has a certain probability μ to overcome the disease

and become immune.

� If all agents are addressed once, movement-phase, necessary for propagation of the

disease and inspired by so-called lattice-gas cellular automata, starts. All agents up-

date their position following certain movement rules. Agents with position (x, y, 1, 1)
are moved to (x − 1, y − 1, 1, 1), agents with position (x, y, 2, 1) are moved to

(x−1, y+1, 2, 1) etcetera. If movement is not possible due to borders, agents switch

their position inside the site-fraction. For more detailed information the reader is re-

ferred to [Bicher and Popper, 2013] or [Breitenecker et al., 2004].

� After movement-phase, the next time-step starts with infection-phase again.

We aim to perform a mean-field analysis and apply the microscopic to macroscopic instruction

from Section 4.6.2. Our target is a mean-field model described by ordinary differential equations

(ODEs).

2.1 We start by identifying the microscopic sub-models of our model. Though this seems

trivial, we already need to make a first decision: should we consider the site-fraction as
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Figure 5.6: Diagram of the time evolution in the microscopic SIR model. This diagram has

already been published in [Bicher and Popper, 2013].

sub-models (as it might be the most convenient case in cellular automata) or should we

consider the described agents? In fact, both choices would be capable for the mean-field

analysis, though clearly the second option is the more obvious and easier one in this case.

Hence, N is already the correct name for the variable. As epidemiological models with

N < 50 hardly make sense, we may continue with 2.2.

2.2-2.5 Here we have to make the next decision. To be precise each agent’s state-space basically

consists of the tuple

(s, i, j, k, l), s ∈ {1, 2, 3}, i ∈ {1, . . . ,Mx}, j ∈ {1, . . . ,My}, k, l ∈ {1, 2}.

Hence, clearly the state-space is discrete and would be larger than the total number of

agents. As the size of a discrete state-space corresponds to the number of resulting differ-

ential equations, this might lead to enormous, unnecessary overhead. For this reason, we

define

Γ := {1, 2, 3} (5.13)

and try to ignore the position of the agent at first. It will turn out when calculating the

transition probabilities if this simplification was legit or not. Alternatively, one could

also try to approximate the space coordinates by a continuous variable in the Mx ×My

rectangle and continue with the continuous version of the Theorem.
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Based on the defined state-space we investigate the possible state-changes of an agent.

We observe that a change between states 1 and 2 and between 2 and 3 are possible as

susceptible agents might get infectious which themselves might recover. Birth and death

processes are not present as the model is population-static. Our state-transition list {1 →
2, 2 → 3} results and we continue with 2.6.

2.6 Clearly, the model is updated in equidistant time-steps with length 1 which makes the

remainder of the process considerably easier. We continue with 2.7.

2.7 As Γ = {1, 2, 3} we note three left-hand sides of differential equations

d

dt
φi(t) = . . . , i ∈ {1, 2, 3}

and continue with 2.8.

2.8 For state 1 the transition 1 → 2 can be found in the transition list. Hence, we investigate

the probability that an agent switches from 1 to 2 in one time-step. Therefore, we look in

the microscopic model definition for the causes for the regarded state-transition 1 to 2 and

continue with question in 2.9.

2.9 Clearly, a susceptible agent may only switch to the infectious state if it shares a site with

at least one infectious agent. Suppose the agents are approximately uniformly distributed

on the grid, then the probability for finding one of the infectious agents on one of the

neighboured sites can be calculated with Laplace-space arguments. Note, that this might

be the crucial cause for a failure of the mean-field analysis due to ignoring the space-

dimension of the model earlier. With φ2 denoting the total numbers of infectious agents at

the regarded time instant, then φ2

4M describes the probability of finding an infectious agent

in a specific site-fraction. As there are 3 neighboured site-fractions the susceptible agent

may become infectious by each of them. Enumerating the three neighboured fractions

from 1 to 3, let A1, A2, A3 describe the events that the susceptible site became infected by

the corresponding site-fraction. As mentioned

P (Ai) = λ
φ2(t)

4M
, i ∈ {1, 2, 3}

for all three of them. By the Laws of De Morgan we obtain

P (A1 ∨A2 ∨A3) = 1− P ((A1 ∨A2 ∨A3)
c) = 1− P ((Ac

1 ∧Ac
2 ∧Ac

3))

= 1− P (Ac
1)P (A

c
2)P (A

c
3) = 1−

(
1− λφ2(t)

4M

)3

.

Hence,

ω(t, 1, 2,
⇀

φ) := 1−
(
1− λφ2(t)

4M

)3

(5.14)

can be determined. We moreover subtract φ1(t)ω(t, 1, 2,
⇀

φ) from the first equation and

add it to the second one.
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2.10 For state 2 we observe that the transition 2 → 3 is in the transition list.

2.11 Clearly, an agent in state 2 switches to state 3 with probability μ. Hence

ω(t, 2, 3,
⇀

φ) := μ. (5.15)

Analogously to the first transition we subtract it, multiplied by φ2(t), from the second

equation and add it to the third one. As no other state transitions are possible we continue

with 2.16.

2.16 The total numbers of agents in either of the states is deterministic and can be set directly:

φ1(0) := N1, φ2(0) := N2, φ3(0) := N3. (5.16)

The mean-field model is fully defined and should match the microscopic model, in case

the assumption done in the first 2.8. question was correct.

Finally the non-linear differential equation model

d

dt
φ1 = −φ1

(
1−

(
1− λφ2

4M

)3
)

(5.17)

d

dt
φ2 = φ1

(
1−

(
1− λφ2

4M

)3
)

− μφ2 (5.18)

d

dt
φ3 = μφ2 (5.19)

is derived which we will henceforth denote as cubic SIR ODE model for its cubic terms. Con-

sidering the asymptotic equivalence

1−
(
1− λφ2

4M

)3

= 1−
(
1− 3

λφ2
4M

+O
((

λφ2
4M

)2
))

= 3
λφ2
4M

+O
((

λφ2
4M

)2
)
,

we may write 3λ
4M φ1φ2 instead of the inelegant cubic terms in the first and second equation

as long as the density of the infectious agents is small. As mentioned in [Bicher and Popper,

2013] the classic SIR differential equation model by Kermack and McKendrick [Kermack and

McKendrick, 1927] results in this case.
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Model 2.2: SIR ODE Model [Kermack and McKendrick, 1927]

The classic SIR model by Kermack and McKendrick is given by the following system of

three coupled differential equations

d

dt
φ1 = − 3λ

4M
φ1φ2, (5.20)

d

dt
φ2 =

3λ

4M
φ1φ2 − μφ2, (5.21)

d

dt
φ3 = μφ2. (5.22)

If the fraction λφ2/(4M) reaches a level close to 1 during the simulation, the cubic ODE model

needs to be used as mean-field approximation, otherwise the classic SIR differential equation

model is a good mean-field model as well.

Figure 5.7 shows a direct comparison of solutions of the ABM and (numerically calculated)

solutions of the two ODE models. The ABM uses the parameters λ = 0.2 and μ = 0.1 with

N = 4000 agents spread on a 40×50 grid. As the plots suggest, the fraction λφ2

4M < λN
4M = 1

10 is

small enough that the asymptotic term can be neglected and the classic SIR equations can hardly

be seen to differ from the cubic model. The situation is different for λ = 0.8 and N = 7000
agents as seen in Figure 5.8. While both macroscopic models have problems correctly depicting

the behaviour of the microscopic model (the probability λ is quite high which is a problem

for the link between continuous and discrete time), the cubic model seems to be closer to the

microscopic one than the classic SIR model. The fact that in contrast to the cubic ODE model,

the classic SIR model depicts the amplitude of the microscopic infectious population seems to

be rather a coincidence than a real feature.

Clearly, the most important factor to guarantee the similarity of the microscopic and the

derived microscopic models is the movement phase. It guarantees the assumption that the spread

of individuals among the grid is approximately uniformly distributed holds and makes it possible

to macroscopically model the system without regarding the spatial coordinate. Figure 5.9 shows

what happens if the movement phase was skipped using the same parameters as for Figure 5.7.

At the beginning of the simulation, the uniform distribution condition is still fulfilled due to the

uniformly distributed initial condition of the model, yet, very soon, local effects become visible

which lead to incomparably different results.

5.2.2 Variance Theorem Case Study: SIR Lattice Model

Equipped with the transition rates ω(t, 1, 2,
⇀

φ), ω(t, 2, 3,
⇀

φ) derived in the course of the last

section (all others are ≡ 0) we can directly put the discrete variance theorem 5.1 to a test. We

will use the simplified version

ω(t, 1, 2,
⇀

φ) =
3λ

4M
φ2, ω(t, 2, 3,

⇀

φ) = μ,

as we assume that λ is small enough. Clearly, only the first transition rate depends on the

aggregated number. Thus, the nabla operators of the transition rates in the variance theorem
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Figure 5.7: Comparison of sample runs of the described SIR ABM and the two derived mean-

field models. The left part of the figure shows 10 sample runs of the ABM and their sample

mean. The right part shows a comparison of the sample mean with the solution of the classic

and the cubic SIR model.

evaluate to

∇ω(t, 1, 2,⇀φ) =
(

0
3λ
4M

)
, ∇ω(t, 2, 3,⇀φ) =

(
0
0

)
. (5.23)

As we are interested in the temporal behaviour of the variance and |Γ| = 3 we may apply formula

(4.64) which is the specifically modified version of the variance theorem for the variances in a

three state model. The following ordinary differential equation system results (with λ := 3λ
4M

and ξi := ξi,i)

d

dt
ξ1 =(φ1 − 2ξ1)φ2λ− (ξ3 − ξ1 − ξ2)φ1λ (5.24)

d

dt
ξ2 =(φ1 + ξ3 − ξ1 − ξ2)φ2λ+ 2ξ2φ1λ+ (φ2 − 2ξ2)μ (5.25)

d

dt
ξ3 =(φ2 + ξ1 − ξ2 − ξ3)μ (5.26)

Herein φi(t), i ∈ {1, 2, 3} are the solutions of (5.96)-(5.98). It is practicable to solve (5.96)-

(5.98) and (5.24)-(5.26) simultaneously with a numeric ODE solver.
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Figure 5.8: Comparison of sample runs of the described SIR ABM and the two derived mean-

field models with higher density and infection parameter λ than in Figure 5.7.

One of the most interesting parts of this case study is the choice of the initial conditions of

this differential equation system. As stated in the Variance Theorem for Discrete State Space,

the initial conditions are given by the initial variances of the initial aggregated numbers. In case

the agents are independently and identically distributed random samples according to P (I(0) =
i) = fi as stated in the Theorem, this would result in

ξi(0) = V(Xi(0)) =
N∑
k=1

V(�i(Ik(0))) =
N∑
k=1

E(�i(Ik(0))
2)− E(�i(Ik(0)))

2

=

N∑
k=1

(E(�i(Ik(0)))− E(�i(Ik(0)))
2) = E(Xi(0))− E(Xi(0))

2 = N(fi − f2i ),

as �i(·)2 = �i(·). As the SIR model uses a “deterministic sampling” at the beginning – i.e. the

initial total numbers of X1, X2, X3 are deterministically given by N1, N2, N3 – the initial con-

dition needs to be different. Hence, ξi(0) = 0 is the correct initial condition for the differential

equation system as there are no fluctuations in the initial aggregated numbers. Note, that this is

no issue for the correctness of the actual mean-field approximation, as for N → ∞ the initial

standard deviation of the aggregated numbers vanishes anyway.
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Figure 5.9: Comparison of sample runs of the described SIR ABM and the two derived mean-

field models with the same parameters as for Figure 5.7. Yet the movement phase was skipped.

Figure 5.10 shows a comparison of the sample variance of the SIR model and the numeric

solution of the stated system of differential equations. It can be seen nicely that the qualitative

behaviour is well depicted, yet shortcomings with respect to the quantitative match can be seen.

First, these are due to the problem, that the sample variance is a very sensitive measure and a

lot of samples had to be drawn to achieve a more-less smooth curve. Secondly, the mentioned

issues with initial conditions lead to the slight overestimation of the variance by the solution of

the differential equation.

Interpretation of the result curves, in this case, is not particularly interesting. The peak of the

variance curve at about t = 15 indicates that this particular time is the most sensitive time of the

model and that the resulting aggregated values at this point in time should be treated with much

more care. Moreover, it is an interesting feature of this model that it loses its fluctuations when

time goes to infinity. This feature seems unintuitive at first as the chaos in a model is nothing

you would (from a physical interpretation) expect to become smaller with time. Yet, it is clear

in this case as the target values converge towards steady states.

5.2.3 Macro-to-Micro Process Case Study: Modified Levins Model

To demonstrate the step-by-step instruction for the inverse mean-field analysis, i.e. how to apply

mean-field analysis to obtain a microscopic model out of a given macroscopic one, we decided
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Figure 5.10: Comparison of sample variance of 500 runs of the Lattice SIR model with 100×100
sites (left) and the numerically generated curves of the differential equation system (5.24)-(5.26)

(right).

to use a very simple, yet interesting population model given by a scalar, first order differential

equation.

Model 2.3: Modified Levins Model (with Immigration)

dφ

dt
(t) = αφ(t)(M − φ(t))− βφ(t) + γ, φ(0) = X0 > 0. (5.27)

with parameters M � 0, α > 0, β > 0, γ > 0. The latter three may be functions of time,

but will be assumed as constant here as it does not make any difference for the step-by-step

process.

The main part of the model – i.e. anything apart from the additional constant γ – is com-

monly known as Levins model, named after its first publisher Richard Levins in 1969 [Levins,

1969]. It can be interpreted as a combination of a logistic growth term that positively influences

the growth of a population and a linear mortality term that has a negative impact. The additional

constant parameter γ was added to model immigration from outside the model boundaries.

The fact, that Levins formerly established this model to investigate, in his own words, het-
erogeneity and extinction seems unusual nowadays: neither can solutions of such differential
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equations reach their steady-state 0 (extinction) nor are differential equations particularly well

suited for analysis of heterogeneity. Clearly, this is a matter of a different terminology and a

different focus. Nevertheless, we might, now, be interested in developing a model that is capable

of real extinction and real heterogeneity. Therefore, we want to bring the ideas of the differential

equation to the microscopic scope.

We follow the step-by-step instruction from Section 4.6.4:

4.1 The ODE is already given in explicit form and is seen to be of first order. We define

Γ := {s1}.

4.2 As the right hand side of (5.27) fulfils a Lipschitz condition a unique solution of the

ODE exists and is steadily differentiable (according to the Theorem of Picard-Lindelöf).

Moreover, φ ≡ 0 is a steady state and X0 is positive. Therefore, φ(t) is always greater

than zero and a shift is not necessary.

4.3 As the Levins model models a population, we assume thatX0 is large enough to be capable

to be an initial aggregated number of a microscopic model.

4.4 For positive φ we write

dφ

dt
(t) = h1(t, φ)− h2(t, φ)− h3(t, φ) + h4(t, φ),

h1(t, φ) :=max(0, αφ(M − φ)),

h2(t, φ) :=max(0, αφ(φ−M)),

h3(t, φ) :=βφ, and

h4(t, φ) :=γ.

Note, that a second index is not necessary as our problem is scalar.

4.5 We deal with the possible state-transitions and observe that h2 and h3 have negative signs.

As our problem is scalar we don’t find them in any other equation.

4.6 Regards birth processes we observe that h1 and h4 are positive. For h1 we may easily

drag φ out of the equation leading to

c(t, s1, s1, X) :=
max(0, αX(M −X))

X
= max(0, α(M −X)). (5.28)

For h4, dividing byX would be somewhat artificial. Hence, it is probably the more elegant

way to set

C(t, s1, X) := γ (5.29)

and use it as global birth rate.
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4.7 We finally consider the death processes. As mentioned, h2 and h3 have negative signs.

For both also x can be divided easily. Clearly, h2 leads to

max(0, αX(X −M))

X
= max(0, α(X −M))

which adds up with
βX

X
= β

leading to

d(t, s1, X) := max(0, α(X −M)) + β. (5.30)

The microscopic model is in principle defined by its transition rates. Finally creating a specific

microscopic model based on the transition/creation/death rates requires some creativity.

Say, we aim to develop an agent-based model that updates in equidistant time-steps. There-

fore, we first need to define a small time-step size dt so that

c · dt	 1, C · dt	 1, d · dt	 1.

Then we may set

P (system creates new agent) := dt · C := dt · γ, (5.31)

P (agent creates new agent) := dt · c := dt ·max(0, α(M −X)), and (5.32)

P (agent dies) := dt · d := dt · β + dt ·max(0, α(X −M)). (5.33)

Though the agent-based model that updates with step-size dt is fully defined by these creation

and death probabilities, it is neither a very elegant nor a very picturesque way to define a mi-

croscopic model. E.g. the appearance of X in the creation basically implies: To decide if an

agent “gives birth” to a new agent, the agent needs to know about the size of the total popu-

lation X (i.e. the microscopic rule requires the use of macroscopic numbers). To avoid this,

we need to find a mechanism, that the macroscopic parameter implicitly occurs. One option

is presented here: Each agent is assigned a unique integer-valued “position” chosen from the

set {0, 1, . . . ,M}. Moreover, pick a uniformly distributed random spot s ∈ {0, 1, . . . ,M} and

assume that X agents are currently alive in the model. Clearly, the probability that the randomly

chosen spot is still available is linearly linked to the number of agents that are alive. By the laws

of Laplace-Space, it can be calculated by

P (s is available) =
M −X

M
.

Thus, we establish the following mechanism: To decide about, if an agent generates a new agent,

pick a random integer between 1 and M . If the chosen spot is still available, create a new agent

with probability dt·Mα. Moreover, assign the newly generated agent to the chosen spot. Hereby

P (agent creates new agent) = P (spot available) · dt ·Mα = dt · α(M −X)

Similarly, the second part of the death probability can be implemented: Whenever (by im-

migration with probability dt · γ) the maximum number of agents overshoots the maximum
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capacity of M – i.e. X > M – each of the agents that cannot be assigned a number between 1
and M is added to a overshoot basin. Increasing the dying probability of all agents in the basin

to dt · (αM +β) also increases the average probability that a random model agent dies: Picking

a random agent, we get by the laws of the conditional probability that

P (die) = P (no overshoot) · dt · β + P (overshoot) · dt · (αM + β)

=
M

X
· dt · β +

X −M

X
dt · (αM + β) = dt · β + dt ·

(
αM

X −M

X

)
≈ dt · β + dt · (α(X −M)) (5.34)

in case the population is not too overcrowded (i.e. M/X is close to 1).

Summarising, we establish the following model:

Model 2.4: Microscopic Levins Model with Immigration

The microscopic model (agent-based model) is defined by the following processes.

Initial Setup:

� Initially, generate a total of X0 agents and for each of them, if possible, randomly

assign a spot on the discrete line {1, . . . ,M}. If more than M agents are generated

hereby, all agents which cannot be assigned a spot on the line are assigned the “over-

shoot” state. As long as there are agents with overshoot state in the model they are

immediately assigned a regular spot on the line as soon as one becomes available

during simulation.

The model is updated in discrete steps of length dt. All agent updates are done simultane-

ously.

Dynamics:

� Each step addresses each agent once. For each agent, pick a random spot on the

discrete line {1, . . . ,M}. If the spot is not yet taken, the agent may give birth to a

new agent with probability dt ·Mα. The “newborn agent” is moreover located at

this spot.

� Moreover, the addressed agent dies with probability dt ·β if it is a regular inhabitant

and with probability dt·(β+αM) if it is in the overshoot state. Hereby it is removed

and its spot is freed.

� At the end of each time-step one additional agent may immigrate with probability

dt · γ. If no free spot is available for this agent, it is assigned the overshoot state.

The model processes are sketched in Figure 5.11.

Though the microscopic model definition seems strange, it can be interpreted from the modelling

perspective quite nicely. The concept, that overpopulation has a negative influence on the sur-

vival of those who do not have access to all necessary resources is quite rational. This process is
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Population within
resource bounds

Overpopulation

Figure 5.11: Sketch of the established microscopic Levins Model. While the population is within

its resource-bounds (upper sketch), birth processes are possible. If the population is too large,

the overshoot agents have an increased death probability.

present, but quite difficult to notice when only taking the macroscopic model into account. It is

yet questionable if the death probability of the overcrowded population should have something

to do with the birth probability of the population in bounds. In order to make the model more

realistic, this point definitely leaves space for improvement.

Figure 5.12 shows a comparison of results of a single microscopic model run and the so-

lutions of 5.27 for different parameters. The asymptotic equivalence between the two model

results is obvious.

The stated model is one case study for finding a microscopic analogue for a macroscopic,

equation-based model. One can, in general, distinguish two key issues, that motivate this inverse

mean-field process.

The first one is the need for a microscopic representation for the sake of the model as a

representation of the real system. I.e. for specific reasons, a microscopic representation is better

suited for depicting the real system that is depicted by the macroscopic model. This issue often

occurs in the course of a model extension or modification for which the inclusion of microscopic

parameters or processes is necessary or, at least, beneficial. For example, if one wants to model

heterogeneity within the population, the stated microscopic Levins model is definitely more

flexible than the macroscopic one. Also, the high picturesqueness of microscopic models might

be a reason why one wants to switch from a macroscopic to a microscopic approach. Hereby
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Figure 5.12: Levins ODE Model with immigration (5.27) in comparison with the defined agent-

based model, Model 2.4, using different parameter settings. The upper-left picture shows that

the simplification done in (5.34) disturbs the similarity of the two approaches if the population

is too much overcrowded. Here, the microscopic model result drift off slightly.
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probably a higher level of credibility can be achieved.

The second reason, why a microscopic representation might be superior to a macroscopic

one relates to the technical issues with the simulation. Microscopic approaches are executed

straight forwardly with simple loops and if-cases. Though they usually require comparably

long computation times, their implementation is not related to any numerical difficulties which

makes them a reasonable alternative to numerically challenging ODE or, especially, PDE mod-

els. The most famous examples are found in Physics. We like to mention the HPP [Hardy et al.,

1976], FHP [Frisch et al., 1986] or Lattice-Boltzmann method [Chen and Doolen, 1998] which

are proven to be microscopic alternatives to the famous Navier-Stokes equations for fluid flow

(probably first published in 1845 by Stokes [Stokes, 1845]). While the simulation of the related

PDE system is numerically challenging if the observed geometries, i.e. the shapes of obstacles

and boundaries for the fluid, are complex, they do not pose any problems for the microscopic

(particle-based) approaches.

5.3 Mean-Field Analysis for Lattice Models

As seen in the SIR model in Section 5.2.1 the key problem of performing a mean-field analysis

(directly, by applying a mean-field theorem, or passively, by applying a step-by-step instruction)

lies within identifying correct transition-rates or transition-probabilities as we usually have to

find parts of the model that can be neglected.

In the mean-field analysis process of the SIR model presented in the last chapter, we were

forced to neglect the agents’ position on the grid to find a transition probability for the switch

from the susceptible state to the infectious state. Hereby we assumed that the states among the

agents are uniformly distributed. The last part of the case study (Figure 5.9) clearly underlines

that this is not the case if there is no movement among the agents.

This section is dedicated to the analysis of this problem on more general lattice-models.

With this term we denote any kind of microscopic model wherein a lattice is used as a spatial

dimension. Essentially, cellular automata (Section 2.1.2) and agent-based models, wherein each

agent is located on one of a finite number of grid-points, belong to this type.

5.3.1 Neighbourhood Concepts in Lattice Models

Though it was mentioned in Section 2.1.2 that a lattice or grid can be anything that can be

indexed with whole numbers, we want to focus on finite, two-dimensional rectangular grids in

this section – i.e.

Ix : {1, . . . ,m} × {1, . . . , n} → C : (i, j) �→ Ix(i, j) = ci,j .

Thinking of C as a spatial dimension, clearly some kind of distance metric would be useful.

Hereby given two sites ci,j and ck,l, intuitively three different metrics make sense:

d1(ci,j , ck,l) := ‖ci,j − ck,l‖1 := |i− k|+ |j − l|, (5.35)

d2(ci,j , ck,l) := ‖ci,j − ck,l‖2 :=
√

(i− k)2 + (j − l)2, and (5.36)

d∞(ci,j , ck,l) := ‖ci,j − ck,l‖∞ := max(|i− k|, |j − l|). (5.37)
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These three norm-induced distance metrics are slightly more interesting on a lattice than on the

classic R2 plane. This becomes clear when investigating the ε-spheres

Uε(ci,j) := {ck,l : dx(ci,j , ck,l) ≤ ε} (5.38)

as shown in Figure 5.13. Here ε-spheres with radius ε = 1 and ε = 4 are shown for all three

mentioned distance metrics. For radius 1 the metrics only contain sites directly attached to the

site in the middle. Thus, they are commonly denoted as (classic) neighbourhood. The first

two of them result in the same neighbourhood, which is named Von Neumann neighbourhood

after computer engineering pioneer John Von Neumann. He first used this metric in his famous

28-state cellular automaton (slightly more about this was given in Section 2.1.2). The third

neighbourhood induced by the ∞-norm (which can also be called Chebyshev-distance) is named

Moore neighbourhood after Edward F. Moore. He was, like Von Neumann, one of the founding

fathers of cellular automata theory.

Circles with radii ≥ 2 contain sites that are not directly attached to the centre-site. They are

often called indirect neighbours or, in case of the d1(·) and d∞(·) metric, neighbours of higher

order. Their neighbourhood order is usually defined slightly different: it results from finding

chains of sites, so that the regarded site in the neighbourhood is in the neighbourhood of another

site which is in the neighbourhood of another site, . . . , which is in the neighbourhood of the

centre-site. The minimal length of all possible chains is called order of the site’s neighbourhood.

The sites in the outermost rows or columns of {ck,l : d1 or ∞(ci,j , ck,l) ≤ k}, k ∈ N are

neighbours of order k of ci,j with respect to the order Von Neumann/ Moore neighbourhood.

Hence, for any k ∈ N

{ck,l : d1(or ∞)(ci,j , ck,l) ≤ k} (5.39)

is called the kth order Von Neumann/ Moore neighbourhood of ci,j .
Equipped with distance-metrics, it is a commonly used strategy in lattice models that the

range of influence of a site or of an agent that is located at a site is limited by an ε-sphere – e.g. a

neighbourhood or a higher order neighbourhood. Clearly, this concept may lead to local effects

which cannot be ignored in a mean-field analysis process, as done by the “homogeneity assump-

tion” in the microscopic SIR model. Is it even possible to perform mean-field approximations

for these cases? We analyse this problem by a case study.
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Figure 5.13: Circles with specific radius for all three specified lattice-metrics, with ci,j being

the centred site. For radius 1, the d1(·) metric and the d2(·) metric lead to the Von Neumann

neighbourhood, the last one d∞(·) results in the Moore neighbourhood.

5.3.2 Neighbourhood Case Study: Logistic Growth Lattice Model

In Section 4.6.5 we investigated a modified version of the so-called Levins model, a simplified

macroscopic population model that includes a logistic growth of the population, linear death

rates and an additional immigration term. In this section we will not care about immigration and

death, but focus on the logistic growth. Note, that the lattice structure has no influence on death

and immigration.

On the contrary to Section 4.6.5, a microscopic model will be the basis for the case study.

Model 3.1: Microscopic Growth Model

We define the following cellular automaton model, furthermore denoted as microscopic

growth model, via its initial setup and the involved dynamics.

Initial Setup:

� First, a rectangular N1×N2 (N1N2 =: N ) grid C of sites ci,j , i ∈ {1, . . . , N1}, j ∈
{1, . . . , N2} is defined. A total number of N ≥ X0 randomly chosen sites are

assigned state 1 (inhabited), to all others, state 0 (empty) is assigned.

� We pick a time-step size dt so that λ · dt, whereas λ donates a birth parameter, is

	 1. If λ	 1 we usually choose dt = 1.

The model-time is enhanced with discrete time-steps of length dt. In each step the follow-

ing dynamics are executed.
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Dynamics:

� Each site is addressed once.

� In case the addressed site ci,j is empty (0), a second site is picked randomly (uni-

formly) from a set site-specific set of sites S(ci,j). In case the picked site is inhabited

(1), the addressed site becomes inhabited with probability λ · dt. Hereby the inhab-

ited site “gave birth to an offspring”.

Aim of the following analysis is to investigate different choices of S(ci,j). We will start with the

rather unnatural idea that an individual may reproduce anywhere on the total grid S(ci,j) := C,

but we aim to analyse more realistic measures, e.g.

S(ci,j) := {ck,l : d1(or ∞)(ci,j , ck,l) ≤ k}
for some k or even more sophisticated “picking concepts”.

� Scenario base: S assigns a random site in the whole site-space:

S(ci,j) = C,

� Scenario a: S assigns all sites within Euclidean distance: for k ≥ 2:

S(ci,j) := {ck,l : d2(ci,j , ck,l) ≤ r},

� Scenario b: S assigns all sites in Moore neighbourhood:

S(ci,j) := {ck,l : d∞(ci,j , ck,l) ≤ 1},

� Scenario c: S assigns all sites in Von Neumann neighbourhood:

S(ci,j) := {ck,l : d1(ci,j , ck,l) ≤ 1},

� Scenario d: S only assigns the site directly to the right:

S(ci,j) := {ci+1,j}
, and

� Scenario e: S assigns both, the site directly to the right and to the left:

S(ci,j) := {ci+1,j , ci−1,j}.

Hereby all metrics are extended toroidally beyond the borders of the grid – that means, e.g.

d1(cN1,j , c1,j) = 1. Analogously, for Scenario d and e, the rules c1,j+1 ∈ S(cN1,j) and c1,1 ∈
S(cN1,N2) are defined. Thus, for those two scenarios, the cellular automaton can be imagined

as a one-dimensional line connected at its ends – i.e. a ring. We will also call Scenario d and

e as one- and two- sided 1-dimensional neighbourhood. For Scenario a we usually refer to

parameter r as neighbourhood-radius for its similarity with circles.

Using the step-by-step instruction in Section 4.6.4 it is a simple task to prove that the classic

Logistic equation
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Model 3.2: Logistic Growth ODE

d

dt
ϕ(t) = λϕ

N − ϕ

N
, ϕ(0) = X0 (5.40)

poses for a good mean-field approximation for the total number of inhabited sites

X1(t) :=

N1∑
i=1

N2∑
j=1

�1ci,j(t)

in the base scenario. We need to consider the probability that a site with state 0 changes its

status to 1 in a time-step: As a random contact partner is drawn from the total site-space, it

is an inhabited one with probability
X1(t)
N . Moreover, the contact results in an offspring with

probability dt · λ. Hence

P (Ii(t+ dt) = 1|Ii(t) = 0)

dt
=

1

dt

X(t)

N
dt · λ =

λX(t)

N
.

Let indexing by 1 and 0 denote the total number of inhabited and empty sites, the corresponding

mean-field equation is given as follows

d

dt

(
ϕ1(t)
ϕ0(t)

)
=

(
ϕ0(t)

P (Ii(t+dt)=1|Ii(t)=0)
dt

−ϕ0(t)
P (Ii(t+dt)=1|Ii(t)=0)

dt

)
=

(
λϕ0(t)

ϕ1(t)
N

−λϕ0(t)
ϕ1(t)
N

)
.

As ϕ0 = N−ϕ1 for balance reasons, the second equation is redundant and the first one becomes

equivalent to the stated logistic model.

The derived mean-field model is well known and does not surprise anyone who has read

Section 5.2.3. Yet things tend to become more delicate when more local picking scenarios

are used. Taking a closer more analytic look at the defined model scenarios, the experienced

modeller may get some first ideas about the expected model outcome without even simulating

the model:

For all model scenarios the population size is almost surely growing until all sites are occu-

pied. Nevertheless, it is a question of the used neighbourhood, how fast it grows. As a smaller

neighbourhood size reduces the connectivity of the sites in the automaton, it is logical to sug-

gest, that the smaller the number of regarded sites, the slower is the growth of the population.

This suggestion can be seen to hold when comparing results of the model for the different sce-

narios. These can be seen in Figure 5.14. Hereby the sample mean of 100 simulation-runs per

Scenario are plotted against each other. For Scenario a, two different neighbourhood radii r = 7
and r = 3 were chosen for comparison. Obviously the growth of the population is slower, the

smaller the number of neighboured sites. For neighbourhood radius r = 7, i.e. 148 sites in the

ε-sphere, the results are almost equivalent to the results of the base scenario. The results of the

logistic ODE (5.40) can be seen to be a good fit to these two scenarios. Surprisingly the results

from Scenario e can hardly be distinguished from Scenario d. This result is unexpected and

unintuitive: the population in the model with two neighbours spreads as fast as the population

with only one neighbour. We try to find the reason for the latter phenomenon using mean-field

analysis.
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Figure 5.14: Sample result of the microscopic growth model 3.1 for different neighbourhood

concepts. A grid with N1 = N2 = 100 sites was used. Hence, the fluctuations of these curves

are expected to have asymptotic size of O(
√
10000) = O(100) and can be neglected.

5.3.3 1D-Neighbourhood Case Study: Logistic Growth Lattice Model

We will start with a mean-field analysis of Scenario d and regard Scenario e afterwards.

As mentioned before, it is clear, that the position of the site inside the grid can only be

neglected for the case S(ci,j) = C or if the number of neighbours is large enough to pose for

a snipped of the grid that is somehow representative with respect to distribution of 0-s and 1-

s. In that case we are able to use the concept of Laplace space in the mean-field analysis and

receive the standard Logistic Growth ODE. Especially in the case of the one- and two- sided

1d-neighbourhoods, this is not possible as the effects are simply too local. Yet, based on the

techniques stated in [Fibich and Gibori, 2010] we found a method to determine a correct mean-

field curve for it.

First, we write

ĉi := cj,k, i = j + k(N1 − 1)
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to reorder the sites so that they are useful for 1-dimensional analysis. Hereby the notation be-

comes considerably easier. Note, that the site to the right of ĉN is ĉ1.

Moreover, we already noticed, that the state-space Γ = {0, 1} is not sufficient to depict the

behaviour of the automaton. Hence, we decided to enlarge not only the state-space, but change

the view on the sub-models of the model:

We do not only consider all sites in C but regard the set of all possible aligned tuples

C ′ := {[ĉi, . . . , ĉi+j ], j ∈ {0, . . . , N}}

as the microscopic parts of the models. Clearly, the minimal state-space Γ′ that covers all states

of all tuples can be characterised as the set of all possible 0 − 1 combinations with any length

smaller than N :

Γ′ := {[x1, . . . , xj ] : ∀k : xk ∈ {0, 1}, j ∈ {0, . . . , N}}.

As usual, we write (exemplary for the tuple [1011])

X[1011] :=
∑

[ĉi,...,ĉi+j ]∈C′

�[1011]([ĉi(t), . . . , ĉi+j(t)])

for the aggregated numbers of the model with respect to the newly defined state-space. Hence,

X[1011](t) counts the total number of (aligned) quadruples of sites, that have the state-combination

[1, 0, 1, 1] at time t.
Clearly, the huge state-space Γ′ is much too large to be analysed fully. Yet, regarding the

target value, namely the total number of sites in state 1, this is not necessary. For finding a

closed formulation of a mean-field model for it (only) the following aggregated numbers need

to be analysed:

� X[1](t) :=
∑N

i=1 �1(ĉi(t)).

Hence, X[1](t) denotes the total number of states 1 in the automaton. It is important to

understand, that this is our target value.

� X[0](t) :=
∑N

i=1 �0(ĉi(t)) (= N − [1]).

Hence, X[0](t) denotes the total number of states 0 in the automaton. As each site can

either be 0 or 1 this fraction is complementary to X[1].

� X[0k](t) := X[ 0...0︸︷︷︸
k×

](t) :=
∑

[ĉi,...,ĉi+k−1]∈C′ �[0,...,0]([ĉi(t), . . . , ĉi+k−1(t)]).

Hence, X[0k] denotes the total number of sequences of states 0 with length k in the lined

up automaton. It counts the number of k consecutive 0-s.

� X[0k1](t) := X[ 0...0︸︷︷︸
k×

1](t) :=
∑

[ĉi,...,ĉi+k]∈C′ �[0,...,0,1]([ĉi(t), . . . , ĉi+k(t)]).

Hence, X[0k1] counts the fraction of k consecutive 0-s followed by a 1 in the automaton.
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For space reasons we furthermore drop the dependence of t in our notations. We take a look at

the resulting equations in the Discrete Space Mean-Field Theorem (MFT) with Static Population

and get the following two mean-field differential equations for the expected values of X[1] and

X[0]:

ϕ′
[1] = ϕ[0]

P (0 → 1)

dt
, ϕ′

[0] = −ϕ[0]
P (0 → 1)

dt
.

Note, that there is no transition that leads from 1 back to 0. Clearly, the probability can be split

into two parts: The probability that the next site is in state 1 and the probability for a state-switch

(multiplied by dt as we need to approximate a rate and not a probability):

P (0 → 1) = P (the site is followed by a site with state 1)λ · dt.
Thus, the target site with state 0 needs to be part of a tuple [01]. By the laws of conditional

probabilities, the likelihood that a randomly picked site with state 0 is the first part of one of

these tuples is given by the total amount of tuples [01], i.e. X[01] divided by the total amount of

sites with state 0, i.e. X[0]. It follows that

P (0 → 1)

dt
=
X[01]

X[0]

λ · dt
dt

=
X[01]

X[0]
λ,

which leads to

ϕ′
[1] = λϕ[0]

ϕ[01]

ϕ[0]
= λϕ[01], ϕ′

[0] = −λϕ[0]

ϕ[01]

ϕ[0]
= −λϕ[01]. (5.41)

In order to create a relationship between [01] and [0k] we calculate

X[0] = X[00] +X[01].

This is true as any 0 that contributed to X[0] is either followed by another 0 which contributes to

X[00], or by a 1, contributing to X[01]. Consequently, ϕ[0] = ϕ[00] + ϕ[01] needs to be fulfilled

for the expected values in the mean-field model as well. We can generalise this idea by

X[0k] = X[0k1] +X[0(k+1)] ⇒ ϕ[0k] = ϕ[0k1] + ϕ[0(k+1)]. (5.42)

We furthermore use the Discrete Space MFT with Static Population to derive differential equa-

tions for the states X[0k]. As before, the probability that a tuple [0k] transforms into [0(k − 1)1]
in a time-step is given by the product of λ · dt and the probability of the [0k] tuple to be part of

a [0k1] tuple. The latter is given by the total number of [0k1] tuples divided by the total number

of [0k] tuples. Hence,

ϕ′
[0k] = −ϕ[0k]

P ([0k] → [0(k − 1)1])

dt
= −ϕ[0k]λ

ϕ[0k1]

ϕ[0k]
= −λϕ[0k1]. (5.43)

As the initial setting is uniformly distributed we get ϕ[0k](0) =
(N−X0)k

Nk−1 . Combining equations

(5.42) and (5.43) we finally derive the following (basically finite) set of differential equations:{
ϕ′
[0k] = −λϕ[0k] + λϕ[0(k+1)], ϕ[0k](0) =

(N −X0)
k

Nk−1

}N−X0

k=1

(5.44)
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It is obvious that ∀k > N −X0 : ϕ[0(k)](t) = 0, as already the initial number of [0]-s, namely

N −X0, is smaller than the zeros in the regarded state-combination.

AsN is usually a large number it is not useful to solve this huge system of coupled equations

directly. It is surprisingly more useful to approximate the finite system with an infinite one:{
ϕ′
[0k] = −λϕ[0k] + λϕ[0(k+1)], ϕ[0k](0) =

(N −X0)
k

Nk−1

}∞

k=1

(5.45)

The error clearly converges to zero, when N goes to infinity. By induction we claim a solution

for the infinite system by

ϕ[0k](t) := λ
(N −X0)

k−1

Nk−1
ϕ[0](t), (5.46)

for k > 1, if ϕ[0] solves

ϕ′
[<0] = −λϕ[0] + λϕ[00] = −λϕ[0] +

λ(N −X0)

N
ϕ[0] = −λX0

N
ϕ[0], ϕ[0](0) = (N −X0)

(5.47)

So, the set of functions

ϕ[0k](t) = e−
X0λt
N

(N −X0)
k

Nk−1
, k ∈ N \ {0}

solves (5.45).

This is one of the very rare applications for infinite systems of ODEs and theory about

the uniqueness of solutions is not trivial. Hence, we decided to exclude possible alternative

solutions. We think of a second solution ϕ̂[0k] and calculate:

(ϕ[0k] − ϕ̂[0k])
′ =: a′k := −λak + λak+1, ak(0) = 0.

A substitution bk := eλtak leads to

b′k = λeλtak + eλta′k = λeλtak − λeλtak + λeλtak+1 = λbk+1

and furthermore

b
(n)
k = λn−kbn+1.

So for any positive k and n we receive b
(n)
k (0) = λn−kbn+1(0) = 0 which leads to the Taylor

series decomposition:

bk(t) = bk(0) + tb
(1)
k (0) +

t2

2
tb

(2)
k (0) + · · · = 0.

We receive bk ≡ 0, eλtak ≡ 0, ak ≡ 0 and hence ϕ̂[0k] ≡ ϕ[0k] for all k. Thus, the solution must

be unique.

As

ϕ′
[0] = −λX0

N
ϕ[0] ⇒ ϕ′

[1] =
λX0

N
(N − ϕ[1])
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we found that the target aggregated number X[1] is solved by a linear ordinary differential equa-

tion.

We will now regard Scenario d. To finally compare the one-sided with the two-sided

neighbourhood to find the reason, why the model curves are almost identical, we perform a

similar calculation for the two-sided case. Using the same notation as before we get

ϕ′
[0] = −ϕ[0]

(λλ
2ϕ[100] + ϕ[101] +

λ
2ϕ[001])

ϕ[0]
.

As there are always the same amount of [001] as [100] combinations in the model, we get

ϕ′
[0] = −λ(ϕ[101] + ϕ[001]).

As X[101] +X[001] = X[01] and therefore ϕ[101] + ϕ[001] = ϕ[01],

ϕ′
[0] = −λϕ[01] (5.48)

results. Analogously

ϕ′
[0k] = −ϕ[0]

(λϕ[10k1] +
λ
2ϕ[10k0] +

λ
2ϕ[00k1])

ϕ[0]
= −λ(ϕ[10k1] + ϕ[00k1]) = −λϕ[0k1] (5.49)

follows. Altogether (5.48) and (5.49) result in the same system of differential equations as in the

one-sided case via (5.41) and (5.43). As also the initial conditions are equivalent, both systems

are solved by the same solution curves.

Finally, mean-field analysis proves, that Scenario d and e behave alike on the mean-field

level. Hence,

Model 3.3: Linear Growth ODE

d

dt
ϕ(t) = λX0

N − ϕ

N
, ϕ(0) = X0 (5.50)

is a valid mean-field approximation for Scenarios d and e. This can be seen to hold in Figure

5.15, which is in principle a copy of Figure 5.14 with the additional solution curve of the Linear

Growth ODE model. Note, that the linear growth model 3.3 must not be confused with an

exponential growth model, as it is a bounded growth to a steady-state. Figure 5.16 shows a

direct comparison of the higher order quantities [0k] in the one-sided 1-d model: left, counted

quantities in the microscopic model are shown, right, solutions of the ODE system (5.45).

5.3.4 Pair Approximation Case Study: Logistic Growth Lattice Model

Results gained from the previously performed mean-field approximations showed two limiting

curves for all applied neighbourhood scenarios. The first one, the logistic equation (5.40), de-

scribes the behaviour of the fully random contact model. It is a pretty simple task to show that

for any more-restricted neighbourhood the speed of the growth process is slowed down. We will
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Figure 5.15: Sample plot as Figure 5.14 included the .

not go into details, but refer to [Fibich and Gibori, 2010] for a proof. Hence, the logistic equation

is somehow an upper bound for all mean-field curves of all other neighbourhoods. Analogously

the linear ODE (5.50) gained from the 1-d neighbourhood poses for a lower bound for all other

mean-field curves.

As a result candidates for a mean-field model for Scenarios a,b and c necessarily have to

qualitatively lie somewhere in the middle between the linear and the non-linear model, i.e. in

the middle between
d

dt
ϕ(t) = λX0

N − ϕ

N
, ϕ(0) = X0

and
d

dt
ϕ(t) = λϕ

N − ϕ

N
, ϕ(0) = X0.
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Figure 5.16: Comparison of the results of the one-sided 1-d neighbourhood growth model

(Model 3.1, Scenario e) and the results of the derived ODE recursion (5.45). The counted quan-

tities of [0k] combinations for k from 1 to 20 in the microscopic model are shown to the left, the

corresponding ODE solution curve is shown to the right.

The fact that a turning point in the solution curves of Scenarios b and c is well visible indicates,

that any mean-field approximation of these two scenarios is either non-linear or, in case it is

linear, has at least order 2.

On the one hand, like the 1-d neighbourhood concepts, it is obvious that it is not possible to

perform a mean-field analysis by investigating the sites without considering their local environ-

ment. On the other hand, performing a similar concept to the 1-d neighbourhood, i.e. essentially

enlarging the common state-space from Γ = {0, 1} to some (large) subset of ΓC leads to an

un-treatable overhead. As a compromise, we introduce the technique of pair approximation

(PA) applied to this specific example.

Pair Approximation or, to distinguish it from newer extensions, uncorrelated pair approxi-

mation (UPA), is a mean-field description technique that arose in the early 1990 for ecological

models. It is commonly stated that the technique was first described in [Matsuda et al., 1992]

wherein the method was applied to validly describe the mean-field behaviour of a microscopic

predator-prey model on a lattice. The concept became quite successful and was applied to sev-

eral different models. Even similar models as the automaton stated above have already been
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analysed using pair approximation (e.g. [Ellner, 2001]).

The key idea can be imagined as follows: In principle, classical mean-field analysis as pre-

sented in Chapter 4 is applied to a set of sub-models each having a time-dependent state in

a common state-space. In contrast PA does not apply the mean-field analysis on the obvious

sub-model set

{Ii : i ∈ {1, . . . , N}} (5.51)

with common state-space Γ, but on the sub-model set

{(Ii, Ij) : Ii ∼ Ij , i, j ∈ {1 . . . , N}}, (5.52)

with some relation ∼, and a common state-space

Γ′ := Γ2. (5.53)

Classically, mentioned relation is given by a neighbourhood or neighbourhood-metric. For ex-

ample, Ii ∼ Ij ⇔ d1(Ii, Ij) ≤ k for some k. By convention, we will refer to the first member

of the tuple as the “focused” sub-model, while the second one is one of its possible contact

partners.

Moreover, instead of calculating the transition probabilities

P (si → sj),

as done in standard mean-field analysis, PA requires calculation of the transition probabilities of

the pairs

P ((si, sj) → (sk, sl)).

To apply the pair approximation on Scenarios a,b and c we, first, define z as the total number

of sites in any site’s neighbourhood. I.e. z = 8 for scenario b (Moore neighbourhood), z = 4 for

Scenario c (Von Neumann neighbourhood) and, exemplary, z = 148 for Scenario a with r = 7.

Moreover, the following terms are fixed to simplify the formulas

c′i,j,k,l(t) := (ci,j(t), ck,l(t)) ∈ {0, 1}2, ∀i, j, and ∀k, l : ck,l ∈ S(ci,j) (5.54)

X11(t) :=

N1,N2∑
i,j=1

∑
(k,l): ck,l∈S(ci,j)

�(1,1)c
′
i,j,k,l(t) (5.55)

X10(t) :=

N1,N2∑
i,j=1

∑
(k,l): ck,l∈S(ci,j)

�(1,0)c
′
i,j,k,l(t) (5.56)

X01(t) :=

N1,N2∑
i,j=1

∑
(k,l): ck,l∈S(ci,j)

�(0,1)c
′
i,j,k,l(t) (5.57)

X00(t) :=

N1,N2∑
i,j=1

∑
(k,l): ck,l∈S(ci,j)

�(0,0)c
′
i,j,k,l(t) (5.58)
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Consequently, the four aggregated numbers Xm,n, m, n ∈ {0, 1} denote the total number of

pairs so that the first site, the focused one, currently has state m and the second one has state n
at time t. As before, we will drop the dependency of t to save space. Note, that by |S(ci,j)| = z
for all i, j we hereby investigate a model with zN individual pairs.

Before going into details about how the defined aggregated numbers can be approximated,

we discuss, how our target valued X1(t) =
∑N1,N2

i,j=1 �1(cij(t)) can be derived from knowing the

values of X11, X10, X01 and X00. We get

X11 +X10 =

N1,N2∑
i,j=1

∑
(k,l): ck,l∈S(ci,j)

�(1,1)c
′
i,j,k,l +

N1,N2∑
i,j=1

∑
(k,l) :ck,l∈S(ci,j)

�(1,0)c
′
i,j,k,l

=

N1,N2∑
i,j=1

∑
(k,l): ck,l∈S(ci,j)

�1(ci,j)�1(ck,l) +

N1,N2∑
i,j=1

∑
(k,l): ck,l∈S(ci,j)

�1(ci,j)�0(ck,l)

=

N1,N2∑
i,j=1

�1(ci,j)
∑

(k,l): ck,l∈S(ci,j)
(�1(ck,l) + �0(ck,l))

=

N1,N2∑
i,j=1

�1(ci,j)
∑

(k,l): ck,l∈S(ci,j)
1 =

N1,N2∑
i,j=1

�1(ci,j)z = zX1.

The analogous result can be gained for X0. Summarising,

X1 =
1

z
(X11 +X10), X0 =

1

z
(X01 +X00). (5.59)

Thus, the sum of the first two aggregated numbers results in X1 scaled with the size z of the

neighbourhood.

Moreover, as the used neighbourhood in Scenarios a, b and c are symmetric,

X10 = X01 (5.60)

holds which may help to derive the mean-field equations. We do that by first identifying all pos-

sible transitions. Based on the model definition only the following four transitions are possible:

P ((0, 0) → (0, 1)), P ((0, 0) → (1, 0)), P ((0, 1) → (1, 1)), P ((1, 0) → (1, 1)).

Hence, a pair with state (0, 0) can only switch to (0, 1) or (1, 0) and a pair with state (0, 1) or

(1, 0), respectively, can only switch to (1, 1). We derive the probabilities for these switches.

Key to do that – and most important feature of the PA – is the fact, that the state of one of the

neighbours of a site is already known, which has a positive or negative influence on the transition

probability. As the pick among the neighbours is uniformly, the chance of picking the known

neighbour is 1/z while there is the probability of (z − 1)/z to pick one of the other, unknown
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neighbours. Hence, laws for conditional probabilities can be exploited.

P ((0, 0) → (1, 0)) = P

(
the site switches to 1

∣∣∣ the site has state 0,

a neighbour has state 0

)

= P (switch)P

(
the picked neighbour

has state 1

∣∣∣ the site has state 0,

a neighbour has state 0

)
= P (switch)

z − 1

z
P (the picked, unknown, neighbour has state 1| the site has state 0)

= λ · dtz − 1

z
P (the picked, unknown, neighbour has state 1| the site has state 0).

The second equality holds as randomly picking the known neighbour with state 0 does not allow

the site to switch. Hence, only picking one of the z − 1 known neighbours makes a switch

possible. The remaining probability can be calculated considering the Laplacian formula: the

probability to find a 1 as a neighbour of a 0 site is equivalent with the fraction of (0, 1) tuples

(i.e. tuples with an empty site in the first coordinate and an inhabited neighbour site) divided by

the total numbers of tuples with 0 on the first coordinate – i.e. X01 +X00.

P ((0, 0) → (1, 0)) = λ · dtz − 1

z

X01

X00 +X01
. (5.61)

This equality also assumes that the 01 and 00 combinations are somehow uniformly spread on

the grid – we will see later, that this is not perfectly the case. Analogously,

P ((0, 1) → (1, 1)) = P

(
the site switches to 1

∣∣∣ the site has state 0,

a neighbour has state 1

)

= P (switch)P

(
the picked neighbour

has state 1

∣∣∣ the site has state 0,

a neighbour has state 1

)

= P (switch)
z − 1

z
P

(
the picked,unknown

neighbour has state 1

∣∣∣ the site has state 0

)
+ P (switch)

1

z
· 1

can be calculated which leads to

P ((0, 1) → (1, 1)) = λ · dtz − 1

z

X01

X00 +X01
+ λ · dt1

z
. (5.62)

Hereby the chance to pick the known neighbour with state 1 has a positive influence. As X10 =
X01 also

P ((1, 0) → (1, 1)) = P ((0, 1) → (1, 1)), P ((0, 0) → (0, 1)) = P ((0, 0) → (1, 0)), (5.63)

which concludes the calculation of the transition probabilities. We finally apply the mean-field

theorem Corollary 5.1 and get⎛
⎜⎜⎝
ϕ00

ϕ01

ϕ10

ϕ11

⎞
⎟⎟⎠

′

=

⎛
⎜⎜⎝
−ϕ00 (P ((0, 0) → (0, 1)) + P ((0, 0) → (1, 0)))
ϕ00P ((0, 0) → (1, 0))− ϕ10P ((1, 0) → (1, 1))
ϕ00P ((0, 0) → (0, 1))− ϕ01P ((0, 1) → (1, 1))
ϕ01P ((0, 1) → (1, 1)) + ϕ10P ((1, 0) → (1, 1))

⎞
⎟⎟⎠ .
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Clearly, the third differential equation is redundant as ϕ10 = ϕ01. We will only use ϕ10 hence-

forth. Furthermore, inserting (5.61) and (5.62), formula manipulations lead to the closed ODE

system ⎛
⎝ϕ00

ϕ10

ϕ11

⎞
⎠′

=

⎛
⎜⎝−2λ · dtϕ00

z−1
z

ϕ10

ϕ00+ϕ10

λ · dtϕ10
zϕ00−zϕ10−2ϕ00

z(ϕ00+ϕ10)

2λ · dtϕ10
zϕ10+ϕ00

z(ϕ10+ϕ00)

⎞
⎟⎠ .

Also the third equation for ϕ00 is redundant, as ϕ11+2ϕ10+ϕ00 = zN . It will not be considered

henceforth. As ϕ1 = 1
z (ϕ11 + ϕ10), ϕ

′
1 = 1

z (ϕ
′
11 + ϕ′

10) we may add the first two differential

equations to gain a differential equation for ϕ1. This is used to replace the differential equation

for ϕ11. A lot of terms vanish after formula manipulation. We gain

(
ϕ1

ϕ10

)′
=

(
λ · dtϕ10

z

λ · dtϕ10

(
z−1
z

(
1− 2 ϕ10

z(N−ϕ1)

)
− 1

z

)) . (5.64)

Hereby the initial conditions

ϕ1(0) = X0, ϕ10(0) = zX0
N −X0

N
(5.65)

hold due to uniformity of the initial distribution.

Unfortunately the gained differential equation system is numerically awfully stated. As X1

approaches N when the population grows, the divisor in the second equation approaches 0 with

similar speed causing heavy problems for any numerical ODE solver. Hence, we substitute:

ϕ := ϕ1, ψ :=
X10

z(N −X1)

and receive the much more comfortable system(
ϕ
ψ

)′
=

(
λ · dtψ(N − ϕ)
λ · dtψ(1− ψ) z−2

z

)
, ϕ(0) = ψ(0) = X0. (5.66)

Also the choice of ψ can be interpreted. Its behaviour depicts the temporal development of the

conditional probability

P (pick a neighbour with state 1|the regarded site is state 0).

We analyse (5.66). Our first observation shows, that the approximation works perfectly for z = 2
– i.e. the symmetric, two sided 1-d neighbourhood. Here ψ = ψ(0) = X0 leads to a perfect

match with the linear ODE (5.50) derived for the two-sided 1-d neighbourhood. For z = 1 the

equation cannot be applied as the transformations from (5.64) to (5.66) required the division by

z − 1. Nevertheless, the prior stated ODE system (5.64) for z = 1 precisely leads the stated

linear growth model for the one-sided neighbourhood.

The second observation deals with the limit case z → ∞. Here, the formula leads to the

standard Mean-field approximation of the model, the logistic growth as z−2
z −→

z→∞ 1.
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Due to its simple shape, we attempt to simplify equation (5.66) even further. Dividing the

two ODEs with ψ interpreted as a function of ϕ we gain

dψ(ϕ)

dϕ
=

1− ψ(ϕ)

1− ϕ

(
z − 2

z

)
which can be solved by separation to(

1− ψ(ϕ)

1−X0

)z

=

(
1− ϕ

1−X0

)z−2

⇒ (1− ψ(ϕ)) = (1− ϕ)
z−2
z (1−X0)

2
z .

Thus, we can write

ϕ′ = λ · dtψ(1− ϕ) = λ · dt
(
1− (1− ϕ)

z−2
z (1−X0)

2
z

)
(1− ϕ), ϕ(0) = X0 (5.67)

which finally leads to one closed first order differential equation comparable with the approxi-

mations (5.50) and (5.40). Its solution is expected to be a mean-field model for any symmetric

neighbourhood with z elements.

The crucial second factor of the equation is clearly

ϕ := 1− (1− ϕ)
z−2
z (1−X0)

2
z

which is close to ϕ for large values of z and is close toX0 for small values of z. In some ordering

sense (dependency of ϕ) we get

X0 � ϕ(t) � ϕ(t).

Unfortunately we cannot expect that the number of neighboured sites z is sufficient information

to accurately predict the aggregated numbers of Scenarios a, b and c. Figure 5.17 shows results

of the pair approximation compared with three different variants of Scenario c, the Von Neumann

neighbourhood. In each of the used neighbourhood scenarios, a site has z = 4 neighbours and

the neighbourhood is symmetric. We investigate

� Scenario c.1 a standard Von Neumann neighbourhood,

S(ci,j) := {ck,l : d1(ci,j , ck,l) ≤ 1} = {ci−1,j , ci,j−1, ci+1,j , ci,j+1},

� Scenario c.2 a two sided 1-d neighbourhood, wherein each site’s neighbours are the two

sites to the left and to the right,

S(ci,j) := {ci−2,j , ci−1,j , ci+1,j , ci+2,j},

and finally

� Scenario c.3 a two sided 1-d neighbourhood, wherein each site’s neighbours are the 13th

and 37th (some randomly chosen prime numbers) site to the left and right,

S(ci,j) := {ci−37,j , ci−13,j , ci+13,j , ci+37,j}.
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Figure 5.17: Solid lines show model scenarios with different neighbourhoods. Although all of

them use a neighbourhood with four sites, the results differ a lot. The pair approximation is

sketched with circles while the dotted lines show the limit cases for the logistic growth and the

linear growth ODE models.

The three sub-scenarios lead to completely different results for the aggregate number of the

microscopic model, though the PA ODE (5.67) for z = 4 states only one solution curve. The

mean-field model somehow suits in the sense that the solution curves lie somewhere in the

middle between the logistic growth ODE and the linear growth ODE. However we simply cannot

expect good approximation results if geometry of the neighbourhood is ignored.

This problem is well known and several attempts to find specific constants to achieve con-

vergence were made to solve it. In literature one finds concepts like the correlated pair approx-

imation (CPA, see [Benoit et al., 2006, Berg et al., 1998]) or the improved pair approximation

(IPA, see [Satô et al., 1994]).

It is clear that artificially increasing the state-space of the microscopic sub-models even

more, e.g. by defining not only pairs but triplets or even the total neighbourhood as individ-

uals of the model, also the geometry of the neighbourhood can be included to the mean-field
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approximation and the resulting numeric solutions would suit better. We attempted a strategy

with |Γ′| = 10 different states (compared to |Γ′| = 4 for the pair-approximation). The numeric

solutions of the resulting system of 10 coupled non-linear differential equations are quite a good

fit to the microscopic model results, but as

� the resulting ODE systems are huge and confusing,

� their derivation is, equally, long, confusing and requires tricky probabilistic calculations,

and

� the quality of the fit is not good enough to justify the exhausting derivation process

we decided not to include the results in this work.

Summarising, local interactions of sub-models as presented on the example of different

neighbourhood concepts on a lattice are still a huge challenge for mean-field approximation.

Hereby a trade-off between reasonable complexity of the mean-field model especially regarding

size of the state-space and validity of the mean-field model can be observed. In all our attempts

to find a useful mean-field model to a microscopic simulation model with real local interactions,

the additional effort of deriving a pair- or even higher order- approximation hardly paid off in

comparison to the efforts of the derivation process. More reasonable results could be achieved

by artificially adjust classic mean-field approximations like the logistic growth ODE by modify-

ing parameters or by adding damping terms, respectively, to depict the slower population growth

rate for smaller z with 2 < z < N .

5.4 Mean-Field Analysis for Microscopic Models with High

Sensitivity

In the language of modelling and simulation the broadly known term sensitivity denotes that a

given system (real or modelled) reacts massively to small disturbances. This term has usually

a negative connotation as applying a sensitive model for actual quantitative decision-support

requires, that the model parameters need to be measured/calculated very carefully to receive

valid model outcome. Mathematically spoken, a model is called sensitive if two slightly different

(input-) parameters i1, i2 lead to heavily differing outcomes o1, o2:

‖i1 − i2‖ 	 ‖o1 − o2‖ . (5.68)

One of the most famous examples for a sensitive system is the weather. The fact that valid

forecasting of weather via models, especially for medium- and long- range time periods requires

extensive and precise data collection, has already been known in the early 1980s. Weather and

therefore also the used weather-forecasting models react very sensitively on missing or slightly

flawed input data [Bengtsson et al., 1984]. Especially the required amount of collected data

for parametrisation of the forecasting models exponentially increases with the desired range of

forecast.
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Anyway, the level of sensitivity of any model needs to be investigated before application to

avoid misinterpretation of the results. For differential equation models there are analytical meth-

ods to precisely detect and quantify sensitivity in model parameters. For most other modelling

approaches, especially microscopic models, these methods are missing. In most cases the only

option to detect sensitive parameters is the trial-and-error approach: parameter sweep. In fact

for stochastic microscopic models even this method is not really sufficient.

As mentioned in Section 2.3.1 one of the key features of microscopic models is the ability to

depict behaviour which is at least partly unpredictable, i.e. emergent. Some of the best models

to depict this kind of behaviour are found investigating cellular automata which, though defined

via simple rules depict very complex behaviour. We will use a case study to show two possible

ways, how sensitivity might occur in microscopic models and, at least for the second case, how

it might be detectable even without executing the model.

5.4.1 Sensitivity Case Study: Game of Life

As mentioned in Section 2.1.2, Game of Life (GoL) by John Horton Conway was probably

the first cellular automaton (CA) which has become prominent to the broad public as it was

introduced as a mathematical game and not as a numb piece of theoretical research.

Model 4.1: Game of Life (original by J.H. Conway)

With regards to the given definition of a cellular automaton (see Definition 1.1) the classic

rules of Conways version of GoL can be given as follows.

Initial Setup:

� We investigate a rectangular grid of N1 ×N2 =: N sites (in the original version, an

infinite grid was used as gedankenexperiment). We denote

C := {ci,j , i ∈ {0, . . . , N1}, j ∈ {0, . . . , N1}}

as the site-space (already combined with the correct two-dimensional index map-

ping) and denote ci,j(t) as the site’s time-dependent state. Each site’s state is, anal-

ogous to the growth model in the last section, either 0 (dead) or 1 (alive).
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Dynamics:

� The Moore neighbourhood is used:

S(ci,j) = {ck,l : d∞(ci,j , ck,l) ≤ 1}.

Hereby neighbourhoods that overlap with the grid boundaries are cut.

� The cellular automaton is updated as follows:

ci,j(t) = 0 → ci,j(t+ 1) = 1 ⇔ |{ck,l ∈ S(ci,j) : ck,l(t) = 1}| = 3 (5.69)

ci,j(t) = 0 → ci,j(t+ 1) = 0 ⇔ |{ck,l ∈ S(ci,j) : ck,l(t) = 1}| �= 3 (5.70)

ci,j(t) = 1 → ci,j(t+ 1) = 1 ⇔ |{ck,l ∈ S(ci,j) : ck,l(t) = 1}| ∈ {2, 3} (5.71)

ci,j(t) = 1 → ci,j(t+ 1) = 0 ⇔ |{ck,l ∈ S(ci,j) : ck,l(t) = 1}| /∈ {2, 3} (5.72)

These rules are usually understood better, when presented in textual form: A living site stays

alive or survives, respectively, the regarded time-step if it has two or three living neighbours –

otherwise it dies. A dead site becomes alive if it has exactly three living neighbours – otherwise

it remains dead. One can imagine these rules to emerge from a never-ending civilisation process:

On the one hand, no one wants to live in an overcrowded area or in a lonely area. Hence, an

individual leaves a certain area (site) if it gets overcrowded (i.e. > 3 neighbours) or if the

neighbourhood dies out (i.e. < 2 neighbours). On the other hand, an individual only settles on a

specific spot if and only if the conditions are perfect (i.e. there are exactly 3 living neighbours).

The presented definition is often used as a paragon for a classic cellular automaton as it is

� easy to understand,

� easy to describe, but not trivial,

� cleanly deterministic,

� easily visualised,

� is known to have a nearly unpredictable temporal behaviour.

Especially for its last feature Conway’s Game of Life has become famous. A lot of interesting

patterns, i.e. characteristic formations of living sites, have been found via lots of (basically)

heuristic research during the last decades. Some of them are known to remain static, others are

known to have an oscillating behaviour. So-called gliders are known to “fly" across the site-space

and would carry on flying forever if the site-space would not be finite. A snapshot showing some

classic patterns is found in Figure 5.18. Since the development of the model in 1970 discovery

of new interesting patterns has become a sportive activity for thousands of scientists.

Regarding specific patterns the GoL turns out to be massively sensitive on changes in the

initial condition. To see this we randomly created a reference initial condition: 20 percent of a

50× 50 = 2500 site grid, i.e. 500 sites were randomly (uniformly) chosen to be alive at the be-

ginning of the simulation while the remaining sites are defined as inactive. To analyse sensitivity,
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Conways’s Game of Life - Snapshot

Oscillating Objects

Moving Object
(Glider)

Static Patterns

Figure 5.18: Some classic Conway’s Game of Life patterns

one additional living site was systematically added to the reference initial condition shown in the

upper-middle of Figure 5.20. I.e. the initial condition was changed by 1 − 501
500 = 0.002 = 0.2

percent. Afterwards, 100 steps of the GoL were executed with both initial conditions, the ref-

erence and the modified one. After 100 steps both grids of the GoL are compared again and

their difference was evaluated as the total number of states that have a different value. I.e. given

the reference initial condition Cref
0 and the modified initial condition Cmod

0 , both interpreted as a

N1 ×N2 matrix, their difference is calculated via∥∥Cref
1 00− Cmod

1 00
∥∥
F
,

with the Frobenius norm F . Note, that always∥∥Cref
0 − Cmod

0

∥∥
F
= 1

as only one additional living site is added. The results of this experiment are shown in Figure

5.19 plotted as a histogram. Of all 2000 inactive sites there were almost 500 cases in which the
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Figure 5.19: The two plots show the same histogram of the 2000 described experiments, wherein

the lower plot is equivalent to the upper one with restricted y-axis. In each of those experiments

one additional living site was added to a reference initial condition of the GoL. Moreover, the

final states of the modified initial conditions after 100 GoL steps were compared to the final state

of the reference initial condition. The outcome of each experiment is the number of sites that

have a different state.

change of the site from dead/inactive to alive/active had no influence on the simulation result

after 100 steps whatsoever. This is especially prominent in the upper plot of the figure. Yet,

there are also specific spots on the grid which have a huge influence on the simulation outcome.

In most cases they lead to a change of 200 to 350 sites compared to the reference result Cref
100, but

also higher values are possible. Changes of 1−100 sites are comparably rare. This is best seen in

the lower part of the plot which is, essentially, a zoom of the upper plot. A representative picture

is given in Figure 5.20. Hereby the reference initial condition is shown in the upper-middle plot

while the corresponding model outcome after 100 GoL steps is shown below. The left part of the

figure shows a modification of a site which had no influence on the simulation result, the right

part of the image shows a modification of the initial condition that changed the state of 414 sites

after 100 steps.

Summarising, the pattern structure of the GoL can be seen to be very sensitive with

respect to its initial condition. Finding an explanation for this is very complex and can hardly

be generalised. Yet, compared with similar models, the feature of a solely deterministic update

function seems to be responsible for high sensitivity while stochastic update rules often lead to
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Figure 5.20: Based on a reference initial conditions seen in the upper-middle, two additional

living sites were added leading to the initial conditions to the upper-right and the upper-left.

100 update-steps of the GoL CA were simulated and the results are plotted directly below the

corresponding initial condition. Only the living site added in the right initial condition had an

impact on the outcome.

more stable simulations. This might sound unintuitive at first, but can be verified by experiments

– the shuffled GoL model introduced in Section 5.4.3 is a perfect example how the introduction

of stochastic elements reduces the sensitivity.

5.4.2 Failed Mean-Field Analysis Case Study: Game of Life

Based on the observed sensitivity problem it is quite clear that the pattern resulting from the

Game of Life (GoL) cannot be obtained with any macroscopic model. There is simply no macro-

scopic approach that reacts that swiftly on minimal changes in the initial condition, especially

not a differential equation. As the total number of changed sites also has an influence on the

aggregated numbers, i.e. the total number of living and dead sites, it may also be doubted that

the mean-field can be modelled validly with a mean-field model.

Yet, we attempt to perform a mean-field analysis like in the previous sections.
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At this point, it is important to mention that it is not usual to analyse the Game of Life (GoL)

on the aggregate level as it is not intended to be. Yet, we want to gain insights into the behaviour

of the system and, in general, into the effects of deterministic local interactions.

We follow the step-by-step process defined for mean-field analysis in Section 4.6.2:

� First, we find, that there areN1 ·N2 =: N individual sub-models in the cellular automaton,

namely each site in the site-space.

� The common state-space of the sites is found by Γ := {0, 1}, i.e. inactive/dead and

active/alive. Let moreover

X1(t) :=

N1∑
i=1

N2∑
j=1

�1(ci,j(t)), X0(t) := N −X1(t).

� Sites may switch from 0 to 1 as well as from 1 to 0.

� The corresponding transition-probabilities could be calculated as follows: We assume that

living and dead sites are uniformly spread among the grid (which is, of course, only an

approximation). A dead site becomes alive if precisely 3 of its 8 neighbours (Moore

neighbourhood) is alive. According to combinatorics, there are

(
8
3

)
possible alignments

of 3 among 8 sites. The chance for each of these alignments can be approximated using

the total fraction

x :=
X1(t)

N

of alive sites via x3(1− x)5. Hence,

P (0 → 1) ≈
(
8
3

)
x3(1− x)5 =

(
8
3

)
X1(t)

3(N −X1(t))
5

N8
. (5.73)

A site dies if its neighbour-count is smaller than 2 or larger than 3. We get a valid estima-

tion for the corresponding probability when approximating the probability for the inverse

event and subtracting this number from one

P (1 → 0) ≈ 1−
((

8
2

)
X1(t)

2(N −X1(t))
6

N8
+

(
8
3

)
X1(t)

3(N −X1(t))
5

N8

)
. (5.74)

Equipped with the correct transition probabilities we can set up the mean-field differential-

equation model and get (after formula manipulations)

d

dt
ϕ1 =

(
8
3

)
ϕ1(t)

3(N − ϕ1(t))
5

N7
+

(
8
2

)
ϕ1(t)

3(N − ϕ1(t))
6

N8
− ϕ1 (5.75)

ϕ1(0) =

N1∑
i=1

N2∑
j=1

�1(ci,j(0)) (5.76)
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Figure 5.21: Fifty GoL results with a 2500 sites automaton and randomly chosen 1000 initially

alive sites (black), compared with their mean-value (red) and the numeric solution of the Mean-

Field ODE (blue). The right plots show a zoom to the first 10 time-steps.

Note, that we used ϕ0 + ϕ1 = N to simplify the equations.

As expected the established mean-field analysis is a great failure as the resulting ODE system

cannot depict the temporal behaviour of the GoL, not even when we randomly permute the

initial condition matrix and take the mean value. Figures 5.21 and 5.22 show how the derived

mean-value solution curve of (5.75) drifts off the microscopic GoL results – they do not even

match qualitatively. The great fluctuations seen in Figure 5.22 for the GoL results additionally

underline that a correct macroscopic description of the dynamics of the aggregated numbers of

this cellular automaton is very likely not possible at all.

More about this can be found in [Bicher and Popper, 2015]. Also Figure 5.21 was already

published there.
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Figure 5.22: Fifty GoL results with a 2500 sites automaton and randomly chosen 250 initially

alive sites (black), compared with their mean-value (red) and the numeric solution of the Mean-

Field ODE (blue). The left plots show a zoom to the first 10 time-steps.

5.4.3 Sensitivity Case Study: Shuffled Game of Life

The results of the last section showed that the Game of Life (GoL) is a nice example for a

microscopic model that cannot be analysed with mean-field methods, at least not with reasonable

efforts. While the question, how to find a reasonable mean-field model for the GoL remains

unanswered, it is possible to investigate the problem from a different angle:

Which parts of the microscopic model, i.e. the cellular automaton (CA), do we have
to change or add, so that the mean-field model (5.75) suits?

As mentioned in the last section the mean-field model is based on the assumption that living

and dead (inactive) sites are uniformly spread among the grid, which is reflected in the local

neighbourhood of any site. As seen in the results this assumption is clearly wrong as the Game

of Life is very sensitive with respect to specific pattern formations. Hence, to establish a model

that suits the mean-field model, it is necessary to bring some additional mixing into the model.

We do that following [Bicher and Popper, 2015] by adding an additional “shuffling” phase in

addition to the update phase.
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Model 4.2: Shuffled Game of Life

With respect to the given definition of a cellular automaton (see Definition 1.1) the rules

of the shuffled version of the GoL can be stated as follows.

Initial Setup:

� We investigate a rectangular grid of N1 ×N2 =: N sites. We denote

C = {ci,j , i ∈ {0, . . . , N1}, j ∈ {0, . . . , N2}}

as the site-space (already combined with the correct two-dimensional index map-

ping) and refer to ci,j(t) as the site’s time-dependent state.

� Each site’s state is either 0 (dead) or 1 (alive).

Dynamics:

� The Moore neighbourhood is used:

S(ci,j) = {ck,l : d∞(ci,j , ck,l) ≤ 1}.

Hereby neighbourhoods are toroidally extended beyond the CA border.

� The cellular automaton is updated as follows:

ci,j(t) = 0 → ci,j(t+ 1) = 1 ⇔ |S(ci,j) = 1| = 3 (5.77)

ci,j(t) = 0 → ci,j(t+ 1) = 0 ⇔ |S(ci,j) = 1| �= 3 (5.78)

ci,j(t) = 1 → ci,j(t+ 1) = 1 ⇔ |S(ci,j) = 1| ∈ {2, 3} (5.79)

ci,j(t) = 1 → ci,j(t+ 1) = 0 ⇔ |S(ci,j) = 1| /∈ {2, 3} (5.80)

Afterwards, every site switches state with a randomly chosen second site.
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Remark 4.1:

To be precise, by addition of this mixing phase the microscopic model defined above

is not a CA anymore, but can be interpreted as an agent-based model on a lattice. The

influence range of a site exceeds, by far, the defined Moore neighbourhood.

Nevertheless, the case study in this section also works nicely if, instead of the stochastic

shuffling process, deterministic movement rules similar to but slightly more rigorous than

in the SIR lattice model 2.1 are defined. Hereby we would regain the interpretation of the

model as a CA, as the site-states are deterministically shifted according to their index on

the grid or, to be precise, the remainder of their x and y position on the grid by four.

As they are more difficult to define and the validity of the mean-field approximation

is not that obvious we did not include them in above model and stick with the stochastic

mixing.

It is clear that the shuffling rule leads to a uniform spread of alive and dead sites. Hence,

also the mean-field approximation holds, which can be seen in the scenario for X0 = 750
in Figure 5.23. Although this toy-model is based on the same rules as the classic Game of Life

formulation, completely different results and asymptotic behaviour are achieved as obviously the

development of patterns and clusters is the most crucial part of Conway’s model. Nevertheless,

the newly defined model still reveals some interesting features regarding a different kind of

stability of stochastic microscopic simulation.

We choose an initial value of X0 = 500 sites, which is 20 percent of total 2500 sites, and

calculated the sample mean and variance of 50 simulation-runs. Hereby a very high variance

(standard deviation) raises interests. Closer analysis of this result shows that about two third

of the simulation-runs converge towards about 920 sites, as they did in the first scenario with

X0 = 750 (in Figure 5.23), but in about one third of the simulation-runs the population dies out.

Consequently, the sample-mean, which converges to about 600 sites, is not a representative

output measure for the behaviour of the simulation results! This is illustrated in Figure 5.24.

This on the first view unpredictable behaviour can be explained analysing the mean-field

ODE (5.75) or, to be precise, the steady-states of it. It turns out, that the ODE has exactly three

positive steady states between 0 and N of which two (the lowest, of course X(t) = 0, and

the highest, about X(t) ≈ 0.37N ) are strongly attracting and the one in the middle (X(0) ≈
0.192N ) is strongly repelling (Figure 5.25). Hence, the initial value X0 = 750 = 0.2N is

extremely sensitive regarding fluctuations. Thus, experimental results need to be interpreted

differently.

This case study, once again, reveals the necessity of a mathematical base for stochastic mi-

croscopic models. Without assistance of the ODE formulation and the related steady state analy-

sis of the differential equation (in combination with Ljapunov stability theory) the strange split-

ting of the resulting curves would have remained unexplained. Using a sample mean value(red

curve in Figure 5.24) as base for any kind decision-support can lead to horrible misplannings.
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Figure 5.23: Comparison between the results of the classic GoL, the shuffled GoL and the

calculated ODE mean-field model for 30 percent initially living sites, i.e. X0 = 750 = 0.3·2500.

Summarising, two different types of sensitivity have been investigated in the course of the

Game of Life case study:

� local sensitivity and

� mean-field sensitivity.

The second source can be predicted and analysed by investigating the stability of the mean-field

model. The first one is usually unpredictable and very difficult to deal with. We do not claim

that these two are the only sources for sensitivity in microscopic models, yet we could, so far,

attribute any sensitivity issue in investigated microscopic models to one (or both) of these two.

Of course, it is in the first place impossible to decide, which of the two types occurred when the

microscopic model results seem unusual, nevertheless, mean-field analysis can be used to either

exclude or to analyse the second one.
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Figure 5.24: Interestingly high standard deviation for initial condition X0 = 500 sites as seen

in the left plot results from strange instability of the simulation results as seen in the right plot.

About two third of the simulation results lead to an approximately stable population while it

quickly dies out in all other runs.

Figure 5.25: Steady state (ss) analysis of the mean-field ODE (5.75).
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5.5 Mean-Field Analysis for State-Continuous Models

As they are considerably easier to develop, most microscopic models are state-discrete, i.e. the

states each individual sub-model can be found to be member of a discrete and usually finite set.

Yet, in some cases the inclusion of state continuous variables is unavoidable, e.g. because a

discretisation process would involve too many errors or is unnecessarily complicated.

A very convincing example for this problem can be seen in [Glock et al., 2012] wherein

(primarily) the discretisation of the basically continuous variable age in a system dynamics

model for obesity required the use of hundreds of system dynamics stocks. Note, that they

all had to be drawn single-handedly on the AnyLogic graphical user interface to finally execute

the model.

On the contrary, to many other modelling approaches continuous variables in microscopic

approaches must not necessarily be discretised to execute the model. An example for this is

given in the following section. We perform mean-field analysis of a state-continuous random-

walk model.

5.5.1 Case Study: Random Walk Model for Groundwater Pollution

The case study in this section, a microscopic random walk model, was motivated from [Winkler

et al., 2015] and [Winkler, 2014]. Herein random walk is used to simulate the spread of pollution

in flowing groundwater. As this particle-based model was developed to pose for an approxima-

tion of the convection-diffusion equation, a candidate for a correct mean-field model is already

known. In this section we want to apply the continuous-space mean-field theorem Corollary 5.3

to prove that this assumption is valid.

Model 5.1: Random Walk Model for Groundwater Pollution

We define the microscopic particle model via its initial setup and its dynamics.

Initial Setup:

� LetN ∈ N be a sufficiently large number of particles and define their time-dependent

position by Ii(t), i ∈ {1, . . . , N}. It is found as a point on the two dimensional plane

Ii(t) ∈ R2.

� Initially, place all particles in the origin. I.e.

Ii(0) = (0, 0)T , i ∈ {1, . . . , N}.

The model is updated in discrete time-steps of length dt.
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Dynamics:

� Every time-step each particle is addressed once to change its position according to

the following law.

� Define

v1i := dt⇀α := dt

(
α1

α2

)
, α1, α2 ∈ R, (5.81)

and

v2i :=
√
dtβ

(
X
Y

)
, β ∈ R+, (5.82)

whereinX and Y are two standard normally distributed random variables. Moreover

Ii(t+ dt) = Ii(t) + v1i + v2i . (5.83)

For the sake of giving a valid picture of the model, we denoted the approach as a particle model
which is not stated as a separate modelling approach in Section 2.1. The reader might also in-

terpret it as an agent-based approach without interaction, a microsimulation model or a dynamic

Monte Carlo simulation.

Clearly, the movement of particles is split into two parts: a deterministic one, which corre-

sponds to a shift into direction (α1, α2), and a stochastic one, which can be seen to spread the

particles. For result plots the reader is referred to [Winkler et al., 2015] Section 5.

We will apply the Continuous Space MFT for Models with Static Population 5.3 directly:

1. Clearly, Γ = R2 and d = 2 as we investigate movement on a two-dimensional space.

Hence, we need to find the transition kernel

ω

(
t,

(
x1
x2

)
,

(
y1
y2

))
=: ω (t,⇀x,⇀y) (5.84)

that states, how likely a particle in state (x1, x2)
T moves to (y1, y2)

T . According to

the definition of the transition kernel Definition 4.10 we may use the finite difference

approximation

ω(t,⇀x,⇀y) ≈ P̃ (Ii(t+ dt) = ⇀y |Ii(t) = ⇀x)

dt

with the transition-density P̃ . Thus, we need to calculate the density for the spatial move-

ment of a model particle.

2. As a result of basic probability calculus a linear affine transformation of a standard Gaus-

sian random number X leads to a Gaussian random number with shifted mean and scaled

standard deviation via

X ∼ N0,1 ⇒ a+ bX ∼ Na,b.
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This can be applied to both rows of the defined time evolution of each particle

Ii(t+ dt) = Ii(t) + v1i + v2i =

(
Ii(t) + dt

(
α1

α2

))
+

√
dtβ

(
X
Y

)

∼
(
NIi(t)1+dt·α1,

√
dtβ

NIi(t)2+dt·α2,
√
dtβ

)
. (5.85)

Hence, the transition density of the two-dimensional position of a particle is a product

density of two independent Gaussian distributed random numbers with different mean but

equivalent standard deviation. It follows that

P̃

(
Ii(t+ dt) =

(
y1
y2

) ∣∣∣Ii(t) = (x1x2
))

=
1√

2π
√
dtβ

exp

(
−(y1 − (x1 + dt · α1))

2

2dt · β2
)

· 1√
2π

√
dtβ

exp

(
−(y2 − (x2 + dt · α2))

2

2dt · β2
)

=
1

2πdtβ2
exp

(
−(y1 − x1 − dt · α1)

2 + (y2 − x2 − dt · α2)
2

2dt · β2
)
.

and, as ω ≈ P̃ /dt,

ω

(
t,

(
x1
x2

)
,

(
y1
y2

))
≈ 1

2πdt2β2
exp

(
−‖⇀y − ⇀x − dt⇀α‖22

2dt · β2
)
. (5.86)

It is not surprising that the transition kernel does not depend on any aggregated numbers

as the particles in the microscopic model do not interact.

3. After definition of the transition kernel, we need to calculate the coefficient functions

F1, F2 and F3. We get

F1(t,⇀x) =

∫
Rd

ω(t,⇀x,⇀y)− ω(t,⇀y,⇀x)d⇀y

=
1

2πdt2β2

∫
R2

e
− ‖⇀y−⇀x−dt⇀α‖22

2dt·β2 − e
− ‖⇀x−⇀y−dt⇀α‖22

2dt·β2 = 0. (5.87)
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The integral vanishes, as with every ⇀x − ⇀y also ⇀y − ⇀x lies in R2. Moreover,

F21(t,
⇀x) =

∫
Rd

ω(t,⇀y,⇀x)(y1 − x1)d
⇀y

=
1

2πdt2β2

∫
R2

e
− ‖⇀x−⇀y−dt⇀α‖22

2dt·β2 (y1 − x1)d
⇀y

=
1√

2π
√
dt

3
β

∫
R

e
− (x1−y1−dtα1)

2

2dt·β2 (y1 − x1)dy1︸ ︷︷ ︸
=−α1

1√
2π

√
dtβ

∫
R

e
− (x2−y2−dtα2)

2

2dt·β2 dy2︸ ︷︷ ︸
=1

(5.88)

can be calculated. For symmetry reasons,

F22(t,
⇀x,⇀y) = −α2. (5.89)

It remains to deal with F3. Analogously to F2 we calculate

F32,1(t,
⇀x) = F31,2(t,

⇀x) =
1

2

∫
Rd

ω(t,⇀y,⇀x)(y1 − x1)(y2 − x2)d
⇀y

=
1

2
dt2

1√
2π

√
dt

3
β

∫
R

e
− (x1−y1−dtα1)

2

2dt·β2 (y1 − x1)dy1︸ ︷︷ ︸
=−α1

· 1√
2π

√
dt

3
β

∫
R

e
− (x2−y2−dtα2)

2

2dt·β2 (y2 − x2)dy2︸ ︷︷ ︸
=−α2

=
dt2α1α2

2
. (5.90)

which is negligibly small, if dt is small. For the two remaining parameter functions we

get

F31,1(t,
⇀x)

=
1

2

1√
2π

√
dt

3
β

∫
R

e
− (x1−y1−dtα1)

2

2dt·β2 (y1 − x1)
2dy1︸ ︷︷ ︸

=α2
1dt+β2

1√
2π

√
dtβ

∫
R

e
− (x2−y2−dtα2)

2

2dt·β2 dy2︸ ︷︷ ︸
=1

=
1

2
(α2

1dt+ β2) (5.91)

of which the first part is, also, negligibly small, if dt is small. Hence,

F32,2 = F31,1 ≈ 1

2
β2. (5.92)

According to the mean-field equation we finally obtain a linear partial differential equation

(PDE) of second order.



5.5. MEAN-FIELD ANALYSIS FOR STATE-CONTINUOUS MODELS 185

Model 5.2: Convection-Diffusion Model

The model is given by

∂

∂t
ϕ(⇀x, t) = −⇀α∇xϕ(

⇀x, t) +
β2

2
Δϕ(⇀x, t), (5.93)

wherein ∇ denotes the Nabla operator, and Δ stands for the Laplacian.

It poses for a valid mean-field model for the microscopic particle approach if dt is chosen

sufficiently small.

As the random-walk model is a valid microscopic representation of the convection-diffusion

equation it can be used as some type of a microscopic solver for the macroscopic PDE system.

The mean-field theorem states the equivalence of the two systems only with respect to some

errors depending on the step-width and the number of particlesN . Note, that the transition kernel

does not depend on the aggregated numbers and, hence, no additional error source depending

on ∇ω is present. The error with respect to N can be reduced easily by simply increasing the

number of particles. To avoid the error with respect to the time-step width it would clearly be

better to rephrase the whole model in a discrete event manner similar to the population model in

Section 5.1. Unfortunately, this is not straight forward, as the individual particle processes do

not only need to be time-continuous, but also space-continuous.

Remark 5.1:

Surprisingly, convection-diffusion processes are often calculated using a lattice model

[Fibich and Gibori, 2010] which, in principle, leads to a discrete state-space again. Also

completely deterministic microscopic approaches can be found [Dembele, ].

Remark 5.2:

The results in this section are usually gained using methods from stochastic differential

equations and Itô integration, which, in this case, is a lot quicker than doing the calculations

on the density function-level (more about these concepts see e.g. [Gardiner, 2009]). The

similarity with stochastic differential equations is seen particularly well in the diffusion

parameter β(X,Y ) in (5.82), wherein correct time-scaling of the requires multiplication

with
√
dt and not with dt.

The case study in this section showed mean-field analysis of a model with solely continuous

states and, especially, without interaction between the sub-models. Hence, we will present a

second case study of a more advanced microscopic model that provides these features. Yet, we

will not perform the mean-field analysis process in details as it would be too long and confusing

(even) for this thesis.
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5.5.2 Case Study: Age-Dependent SIR Model

In this section we want to give an example of a mean-field analysis of a model wherein the

microscopic sub-models interact on a hybrid state-space. As mentioned, we will not discuss

the corresponding mean-field analysis in detail but only state the main results. This case study

will afterwards pose for the perfect base, to point out another very important problem within the

analysis of microscopic models.

We refer to an agent-based SIR epidemics model very similar to the one discussed in Section

5.2.1. Yet, an additional individual feature influences the behaviour of the agents: their age.

First, the feature that a person’s age has a crucial influence on the capabilities of dealing with

a disease are long known and self-explanatory: The human body simply reacts more heavily on

most types of diseases when the infected person is either too old or too young. As a result,

the rate on which a person recovers from a disease (naturally or under medication) tends to be

higher, if the infected person has a vital age.

Second, any kind of contact necessary for spreading an infectious disease to other individuals

strongly depends on the age of the individual and its contact partners. For classic airborne

diseases like measles or influenza we expect that the probability for infectious contacts between

individuals which are about the same age is larger, than between individuals with a higher age-

difference. If the age-difference is one generation – i.e. about 25 to 35 years – we expect that

this probability has a second peak due to parent-child relationships, and finally a third one after

about 50 to 70 years due to contacts with grandparents. Also, the total amount of different social

contacts can be seen to depend on age.

Around 1927 epidemiologists Kermack and McKendrick published the first modelling con-

cepts that include age-specific ideas to model the spread of an Susceptible-Infectious-Recovered

(SIR) epidemic [McKendrick, 1925, Kermack and McKendrick, 1927]. Herein the two scien-

tists were not only responsible for establishing the famous SIR ODE model already stated in

equations (5.20)-(5.22), but had many ideas that exceed this basic concept. In [Hoppensteadt,

1974, Dietz and Schenzle, 1985] a very interesting model based on the ideas of, especially,

McKendrick can be found.
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Model 5.3: McKendrick Equation

Let N ∈ N be sufficiently large and let

S0(a), I0(a), R0(a) (5.94)

be positive functions on [0,∞) with∫ ∞

0
S0(a) + I0(a) +R0(a)da = N. (5.95)

These functions hereby depict population-densities for susceptible (S), infected (I) and

recovered (R) individuals with respect to their age a (in years). Hence∫ c2

c1

S0(a)da

describes the total number of susceptible individuals between c1 and c2. Moreover, the

following system of partial differential equations describes the temporal development of

these densities with time:

∂S

∂t
(a, t) = −∂S

∂a
(a, t)− (λ(a, t) + μ(a))S(a, t), (5.96)

∂I

∂t
(a, t) = −∂I

∂a
(a, t) + λ(a, t)S(a, t)− (μ(a) + γ(a))I(a, t), (5.97)

∂R

∂t
(a, t) = −∂R

∂a
(a, t) + γ(a)I(a, t)− μ(a)R(a, t). (5.98)

Hereby

S(a, 0) = S0(a), R(a, 0) = R0(a), R(a, 0) = R0(a), (5.99)

and

∇S(0, t) = ∇I(0, t) = ∇R(0, t) = 0. (5.100)

Functions μ, μ and γ are positive, age-dependent death and recovery functions and

λ(a, t) :=

∫ ∞

0
κ(a, b)

I(b, t)

N
db

poses for an infection-rate with contact kernel κ. Explanation and interpretation of the

parameter-functions λ, γ, μ, μ and κ is given below.

As the state variable I appears in the definition of λ the partial differential equation (PDE) is

non-linear. As also an integral is involved in the system, we will also denote the set of equations

as integro-partial differential equation (IPDE) system.

We take a closer look at the involved parameter-functions:

μ,μ Independent of whether a person is infected or not, there is always an age-dependent
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chance that it dies. Hence,

μ(a) : R+ → R+ : a �→ μ(a), μ(a) : R+ → R+ : a �→ μ(a)

can be interpreted as a death-rate of an individual with age a if it is healthy (left) or sick

(right). We usually assume

μ(a) ≥ μ(a)

holds, as sick individuals are usually more likely to die. Nevertheless, we will moreover

focus on μ ≡ μ thinking of non-lethal diseases.

γ As the age is a direct indicator for the physical fitness of a person the recovery-chance γ
depends on it. Therefore

γ : R+ → R+ : a �→ γ(a)

can be interpreted as a recovery-rate of an individual with age a.

κ It was already mentioned that contacts between individuals sharing the same age are much

more likely. Hence

κ : R+ → R+ : (a1, a2) �→ κ(a1, a2)

can be interpreted as a rate that an individual with age a1 gets in contact with an individual

with age a2.

Typical shapes for μ, κ and γ can be found applying the ideas right at the beginning of this

section. For our theoretical analysis we used the fictional parameter functions defined in Figures

5.27 and 5.26.

Figure 5.26: Fictional mortality-rate μ(a) ≡ μ(a) and recovery rate γ(a).

We moreover state a related agent-based model.
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Model 5.4: Agent-Based Age-Dependent SIR Model

Based on the mentioned parameter functions, we define an agent-based model via its

initial setup and its time evolution.

Initial-Setup:

� The model consists of N � 1 agents Ii, i ∈ {1, . . . , N}.

� Each agent has a certain state Ii(t) consisting of a health-state (Ii(t))1 ∈ {S, I, R}
(i.e. susceptible, infected and recovered) and a certain age (Ii(t))2 ∈ R+. The states

are initially generated according to three density functions: First, a health-state is

assigned according to the probabilities:

P ((Ii(0))1 = S) =

∫ ∞

0

S0(a)

N
da, P ((Ii(0))1 = I) =

∫ ∞

0

I0(a)

N
da,

and (Ii(0))1 = R, otherwise. Afterwards their initial age (Ii(0))2 is sampled ac-

cording to the corresponding one of the three density functions

S0(a)∫∞
0 S0(a)da

,
I0(a)∫∞

0 I0(a)da
,

R0(a)∫∞
0 R0(a)da

.

The model is simulated in equidistant time-steps with length dt starting at t = t0 and

stopping at tend. Hereby the step-length dt needs to be small enough to guarantee

sup
a,b

(max(dt · γ(a), dt · μ(a), dt · μ, dt · κ(a, b))) < 1

with the already defined parameter functions. Hence, dt · γ, dt · μ, dt · μ and dt · κ can be

used as probability-functions.
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Dynamics:

� Each time-step each agent is addressed once.

� In case the agent’s health-state is susceptible (Ii(t))1 = S, a second, randomly

picked agent Ij is investigated. With an age-dependent probability

κ((Ii(t))2, I
j
2(t)) · dt,

agent i has contact with agent j. In case of a contact, if agent j was infected, agent

i becomes infected too.

� In case the agent’s health-state is infected (Ii(t))1 = I , the agent recovers with

probability γ(Ii2(t)) · dt.
� Furthermore, if the agent is infected, it dies with probability μ((Ii(t))2)·dt otherwise

with probability μ((Ii(t))2) · dt. Hereby it leaves the model.

� Hereafter, all agents increase their age by dt.

The McKendrick equation can be proven to be a valid mean-field model for the stated micro-

scopic approach. This mean-field analysis link has already been published in [Bicher et al.,

2017a] and the reader is referred to this publication for getting deeper insights into this process

as it is time-consuming and complex.

The similarity of the model results can be verified in Figure 5.28. For further contentual

interpretation of the results the reader is once again referred to [Bicher et al., 2017a].

The case study in this section shows, that it is possible to find mean-field models for mi-

croscopic models with hybrid state-spaces and interaction between sub-models. Nevertheless,

mean-field analysis processes for such models always turn out to be quite time consuming and

complicated, especially for inexperienced modellers.

5.5.3 Interpretation of Aggregated Numbers in Space Continuous Models

In this section we want to focus on specific features of the aggregated numbers of state con-

tinuous microscopic models in general, that especially become interesting when thinking of a

macroscopic mean-field model. Surprisingly, there are a couple of questions that arise when re-

sults of microscopic models with continuous state-space need to be interpreted on the aggregated

level.

We study the microscopic model 5.4 and investigate the question:

How many agents are in state (S, 10.5)? (5.101)

In reality, the corresponding question

How many susceptible persons are precisely 10.5 years old? (5.102)

will almost surely be answered with zero as age is measured on a continuous scale and the

probability that an individual is precisely 10.5 years old at a given time-instant vanishes. In
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Figure 5.27: Heat-map of the fictional contact-rate κ(a1, a2). The intended band-matrix struc-

ture appears because of parent-children-relationships.

Figure 5.28: Results for the infected density I(t)/N compared for both models with N =
8000, dt = 0.1 and a given initial condition. The parameters functions were used as defined in

Figures 5.27 and 5.26. The ABM results can be seen to the right and are plotted as histogram

with 40 bins. IPDE results gained with (modified) method of lines are shown to the left.
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the presented age-dependent SIR model 5.4 (and in state-continuous microscopic models in

general), we might observe the same behaviour, but not necessarily. We define three small

model scenarios for Model 5.4 to clarify this:

a) Set

S0(a) := �[0,100](a)
N

100
, I0(a) :≡ 0, R0(a) :≡ 0

and dt := 0.5. As I0(a) = R0(a) = 0, all agents are initially susceptible and will

remain in this state, as no disease is present. Their initial age is sampled according to

S0(a)/N which corresponds to the density function of the uniform distribution on the

interval [0, 100]. As the uniform distribution is a continuous distribution, the sampled age

of the agents (Ii(0))2 will also fulfil

P ((Ii(0))2 = 10.5) = 0.

As the model is updated in steps with length dt and age is enhanced by this amount, also

P ((Ii(k · dt))2 = 10.5) = 0, k ∈ N

holds. Consequently, the answer to above question is equivalent to the answer in reality.

b) Set S0(a) := Nδ(a), with the delta distribution δ, I0(a) :≡ 0, R0(a) :≡ 0 and dt := 0.5.

Consequently, again, all agents start in the susceptible health state, but this time with age

0 (compare with the Dirac (probability) measure 1.4). Clearly, P ((Ii(0))2 = 10.5) = 0,

but after 21 model steps with length 0.5 all agents are 10.5 years old and, therefore,

P ((Ii(21 · dt))2 = 10.5) = 1.

Suddenly, the question about how many agents are in state (S, 10.5) is not trivial anymore.

Hence, the answer to this question differs from reality.

If one tries to simulate the macroscopic IPDE approach it will quickly turn out that the

use of a delta distribution as initial condition is not the best choice to achieve a realistic

model. Yet, this is not so obvious for microscopic models. When applying cohort studies,

for example, one might easily be tempted to initialise a model with a considerably large

number of agents with equivalent age to see how the birth cohort enhances with time.

In the random-walk model 5.1 the initial Dirac pulse (all particles started in (0, 0)) was a

realistic initial condition as it nicely models a punctual source of pollution in a ground-

water stream. The diffusion parameter, which is missing in the SIR model, additionally

justified this choice.

c) Even if the modeller is aware that irregularities may occur if initial conditions are not cho-

sen properly also other processes can lead to problems. Set S0(a) := �[0,100](a)
N
100 , I0(a) :=

0, R0(a) := 0 and introduce a birth-process according to the microscopic Levins model

1.1 in Section 5.1.3. I.e. each time-step each agent has an age-dependent probability to

create an offspring. Logically, the offspring is initialised susceptible with age zero.
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At least for 20 time-steps P ((Ii(k · dt))2 = 10.5) = 0 will be true, but at the 21st, all

agents that were born in the first step are precisely 10.5. Hence,

P ((Ii(21 · dt))2 = 10.5) > 0.

Though the model is initialised properly, irregularities will be brought in the model if

newly generated agents are not initialised correctly. One way to solve this problem is given

as follows: Newborn agents in the k-th model step are assigned a uniformly sampled age

between [0, dt) indicating that they have been born at some time during the last time-step.

We find this strategy later in the case study in Section 5.6.

Summarising, continuous variables in microscopic models need to be treated analogous to their

real pendants. In reality, the correct question would clearly be:

How many susceptible persons have had their 10th birthday, but not yet their 11th? (5.103)

Consequently, also in the model we need to ask ourselves:

How many agents’ states lie inside the set {(S, x), x ∈ [10, 11)}? (5.104)

Hereby the choice of the interval parentheses (open, closed) should not play a role if the model

is defined properly (compare with the three scenarios above).

At this point, surprisingly a second difficulty arises, which seems obvious at first, but be-

comes particularly tricky at second glance: Is question (5.104) for the microscopic model the

optimal pendant to question (5.103)?

The reason why this is not trivial is, that a model agent does not represent one specific real

person, but acts as a statistical representative of a real person. That means, a snapshot of the

model at a given time-instant, i.e. the vector of agents represented by their state, say

⇀

X := {X1, X2, . . . , XN} :=

{(
S

16.3

)
,

(
S

10.1

)
,

(
S

65.4

)
, . . . ,

(
S
5.3

)}
,

is not equivalent to a sample of real persons, but is at most equally distributed. Thus, in order

to answer question (5.103) using the model, we have to find – i.e. estimate – the distribution of

the Xi and, precisely, the distribution of
∑N

i=1Xi ∼ NXi and use the information about the

estimated distribution to answer the question. Mathematically spoken this corresponds to (there

might be other options as well), first, estimation of the density curve of the continuous distri-

bution and , second, perform integration afterwards to get the statistically correct aggregated

numbers.

Estimate a density function f for the iid sample Xi. How large is the integral N

∫ 11

10
f(x)dx?

(5.105)

As mentioned in Section 3.2.2 there are in principle two different strategies for this process.

The first one is the standard histogram. That means, based on specific bins, i.e. a set of

disjoint, halve-open intervals that cover the observed space, the total number of agents in spe-

cific intervals are counted, sometimes normed, and depicted as a piecewise constant function
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that represents an estimated probability density. If the bins of the histogram are chosen as the

intervals [x, x + 1), x ∈ N0, then this density-estimation and integration strategy is equivalent

to answering question (5.104), but it is not wise to choose the set of bins for the histogram ac-

cording to the given research question! The bins should rather be chosen to ensure the optimal

fit of the estimated density, e.g according to [Scott, 1979].

Say, model 5.4 is run with N = 100 agents then a histogram with bins [x, x+ 1), x ∈ N0 is

completely useless: We expect that age of persons are distributed on the interval [0, 105) which

would result in a histogram with 105 bins. Thus, on average, each histogram bin will contain

less than one person which is completely unrepresentative. To estimate a representative density

function, we have two options

1. rerun the model several times to enlarge the sample size, or

2. use larger bins, e.g. [10x, 10x+ 10), x ∈ N0.

The first of these two options is clearly preferred, but requires additional time for simulation-

runs.

The second option to estimate density functions mentioned in Section 3.2.2 is the strategy

of kernel density estimation. If a good bandwidth is chosen, e.g. via (3.25), kernel density

estimation is the better choice to approximate a continuous density function for its smoothness.

Moreover, it is possible to include additional information about the distribution to the density-

estimation by choosing smaller or larger bandwidths or by using different kernel functions.

The macroscopic IPDE approach Model 5.3 can be used as a reference for the fit of the

density estimation as it directly models the temporal development of the aggregated density

curve. If the chosen density estimation of the microscopic model results (qualitatively) matches

the result of the IPDE then the chosen bandwidth or the chosen number of bins was good. Figure

5.29 gives an example how estimated densities of microscopic model results may look like. The

upper left plot shows the (numeric) results of the macroscopic model. The plot directly to its right

shows a Gaussian kernel density estimation of the corresponding microscopic model with 1000
agents. The bottom row shows two histogram representations of the same result. Easily seen,

the histogram on the left with 20 bins is qualitatively similar to the macroscopic density results,

while the analogous histogram with 200 bins right next to it is completely unrepresentative.

5.6 Mean-Field Analysis for Parametrised Models

Throughout literature in social sciences mean-field analysis can be seen to be a rather theoretical

tool for un-parametrised academical microscopic models – we usually find these kind of models

pejoratively denoted as “toy-models” to indicate that they are hardly usable to deduce infor-

mation for the real-world system, at least with respect to quantitative information. Yet, these

models are vitally important for development, testing and benchmarking of methods. Examples

for that are found in almost any field of application from sociology to medicine and especially

epidemiology [Webb et al., 2007,Fibich and Gibori, 2010,de Aguiar et al., 2003,Lachapelle and

Wolfram, 2011,Benoit et al., 2006,Edwards et al., 2003,Deffuant et al., 2000], but also the mod-
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Figure 5.29: Visualisation of model results for the susceptible population of the age-dependent

SIR model. Results of the IPDE model (Model 5.3) are seen at the top-left. Different density

estimations of the microscopic model (Model 5.4) results with N = 1000 agents can be seen on

the other three plots.
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els stated in this work so far can in principle be counted to this class. Consequently, features like

the correct choice of parameters, verification and validation of the models are not considered.

We assume that there are mainly two reasons for that: First, it seems as if experts who

work on mean-field analysis are usually more interested in the method and the involved model

comparison on the theoretical level, than on the application of the model as a real-life decision-

support tool. The gap between high level, general methodological research on modelling and

model development for decision-support applications is larger than ever due to specialisation of

research groups. Secondly, it can be assumed that the time required for mean-field analysis of

parametrised models, which are usually much more complex than mentioned academic models,

would be too extensive. It is a fact that heterogeneity of the state-space (one may think of a

small-world network instead of a rectangular grid) or more complex individual behaviour of

sub-models (memory, goal oriented behaviour, adaptive behaviour) makes mean-field analysis

extremely difficult as a lot of abstraction and cutback processes need to be made.

In this section we want to give an example for a mean-field analysis of a fully parametrised

and validated population model. Hereby, we want to prove that the additional effort of perform-

ing mean-field analysis for parametrised models is reasonably large and that it can be a valuable

analysis tool: We will show how the derived mean-field model helps with the parameter identi-

fication process of the model.

5.6.1 Case Study: Generic Population Concept (GEPOC)

The Generic POpulation COncept (GEPOC) is one of the most successful achievements of

Comet research project DEXHELPP. The main goal of it was to develop a solid foundation

of any (simulation) model that is somehow based on Austria’s population. This includes, for

example, models for epidemiological analysis, analysis of supply and demand in medical care,

resource planning or health technology assessment. It is not simple to explain what physical

form mentioned GEPOC really has. It can be seen to at least consist of

� an agent-based simulation model that depict the current, and forecasts the (close) future

population of Austria,

� an analogous system dynamics model for the same purpose,

� a set of processed data sheets containing sufficient information for successful parametri-

sation of any similar population model for Austria, and finally

� a large (unpublished) Generic Population Handbook [Miksch et al., 2015] that contains

any information about the first three points including a brief description of the models,

the data acquisition and pre-processing process, the model validation and verification as

well as a brief cross model validation with prognoses gained from the Austrian Bureau of

Statistics, our main data-source in this project.

Shortly after the development of GEPOC was finished and the models were successfully val-

idated, the agent-based model, henceforth referred to as GEPOC ABM, turned out to be the

most applicable part of the listed GEPOC project outcomes. Due to its flexibility with respect
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to model extensions it has already proven its worth as a base-model for several applications. We

would like to mention the analysis of measles and polio vaccination rates in Austria (a publica-

tion is to appear soon) and the investigation of hospitalisation and re-hospitalisation of mental

patients to psychiatric hospitals (to appear shortly in [Zauner et al., 2017]). Slightly more about

the second application will be presented in the next section.

Anyway, for more specific details about GEPOC the reader is referred to [Bicher et al.,

2015, Miksch et al., 2016] or to the Generic Population Handbook [Miksch et al., 2015], which

may be obtained on request. Here we will state a definition of the agent-based model.

Model 6.1: Agent-Based GEPOC Model

As done several times before in this work, we define the model via its initial set-up and

its dynamics.

Initial Setup:

� The model initially consists ofN0 agents Ii, i = 1 . . . N0 of which F0 have the prop-

erty female and M0 have the property male. We speak of male and female agents.

According to given distributions, male and female agents are given an initial age.

Hereby let f0(a) describe the density for the female agents while m0(a) describes

the density for the male ones. As we will need it later on, we combine f0 and F0 as

well as m0 and M0 to an aggregated density mapping via

F0(a) := F0f0(a), M0(a) :=M0m0(a). (5.106)

We write

Ii(t) = (s, a)

indicating that agent Ii has sex s and age a at time-instant t.

The model is furthermore updated in equidistant time-steps of length dt [years]. Each time-

step, the following actions take place. All agents are updated simultaneously. Dynamics:

� Each time step consists of two main parts.

� The first part each agent is addressed once. For each of them, the following actions

are applied.

– An initially empty list of actions is assigned, that happened to the agent in the

course of the past time-step. This list is iteratively filled with actions:

– There is a certain time, sex and age dependent probability

Dpdt(t, s, a) (5.107)

that the agent with sex s and age a died in the past time-step – i.e. a “death-

action” took place. Hence, a randomly sampled death-date is added to men-

tioned action list.
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– There is a time, sex and age dependent probability

Emdt(t, s, a) (5.108)

that the agent with sex s and age a emigrated during the last time step. In that

case, a randomly sampled emigration-date is added to the action list.

– There is a time and age dependent probability

Bpdt(t, a) (5.109)

that a female agent with age a generates an offspring. In that case, a randomly

sampled birth-date is added to the action list.

– After that, all actions are applied in the correct order. In case the agent dies or

emigrates, it is removed and all future scheduled actions are cansiteed. For the

birth-action, one new agent with a uniformly sampled age between 0 and dt is

generated and added to the model at the end of the time-step. It is male with

constant probability Bf(m), female otherwise (Bf(f) := 1−Bf(m)).

� The second part of the time-step consists of immigration. Hereby a fixed number of

“immigrant-agents” are added to the model according to a time, age and sex depen-

dent aggregated number

Imdt(t, a, s). (5.110)

That means
∫∞
0 Imdt(t, a, f)da +

∫∞
0 Imdt(t, a,m)da =: Im

f
dt(t) + Im

m
dt(t) =

Imdt(t) new agents will be generated. First their sex is randomly chosen accord-

ing to the fraction of Im
m
dt(t) and Im

f
dt(t), then (for sex s) their age is sampled

according to the density
1

Im
s
dt(t)

Imdt(t, a, s).

The strategy to use an event-based action-list for correct scheduling of (probably multiple) events

that occur in the time-step perfectly maps the real causal logic and avoids the problem, in which

order agent actions should be applied within the time-step. This problem is not trivial as in

reality e.g. individuals might die after they gave birth to a child in a time interval, but cannot

give birth to a child after they have died. In case one tries to define a fixed order for these two

events, the probabilities will be distorted as soon as they occur both in one time-step.

In case of the population model this concept does not really pay off, as the probabilities that

any two of the actions occur in one time-step are extremely small. Nevertheless, it is aim of the

GEPOC ABM to pose for a flexible framework that can be extended by any kind of modules.

The mentioned unlikeliness of two “simultaneous” events must not be given anymore – e.g. the

risk of developing cancer and the risk of death are even positively correlated.

It is questionable if the regarded model should really be denoted as agent-based model as

the most important feature of agents is missing: interaction. We, yet, deemed this terminology

optimal, as the model is only a basic module for more advanced and larger models which, then,
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may include interaction between the individuals.

As stated in [Bicher et al., 2015,Miksch et al., 2016] the model, usually executed with about

8 million agents (1 agent ∼ 1 person), is fully parametrised, verified and validated using data and

prognoses (prognosis tool Sikurs [Austria, 2012]) gained from the Austrian Bureau of Statistics.

Find details in [Bicher et al., 2015] and [Miksch et al., 2015]. Summarising, the model is able

to validly depict Austria’s population from 1990 to 2016 and generates credible prognoses up

to several decades into the future. The liability of long term prognosis may be doubted (as well

as any other demographic long term prognosis), nevertheless these population prognoses are the

best base for planning we currently have.

5.6.2 Mean-Field Analysis of GEPOC ABM

Though the model is fully parametrised with real data, the basic model structure of GEPOC

ABM is quite simple. Hence, it is legit to assume that there might be a valid mean-field model

for it.

Surprisingly, the mean-field analysis can be done very similar to the already mentioned age-

dependent SIR model in Section 5.5. We perform the analysis analogous to the step-by-step

process described in Section 4.6.2, but do not specifically refer to each step.

1. First, we easily find N(0) = N0 agents Ii at the beginning of the simulation. Their

common state-space is investigated and fixed with

Γ := {m, f} × R+. (5.111)

I.e. the state-space is a hybrid one. Thus, each agent has a time dependent state via

Ii(t) = (s, a), s ∈ {m, f}, a ∈ R.

2. We identify all possible transitions between agent states which results in Table 5.1

3. In the list only one real transition is visible, namely the ageing process. As each agent

definitely ages by dt after each time-step in which it did not die or emigrate we get, for

b, c ∈ R+

P (I(t+ h) ∈ {(s, x), x ∈ [b, c]}|I(t) = (s, a))

= �[b,c](a+ dt)(1−Dpdt(t, a, s))(1− Epdt(t, a, s))

≈ �[b,c](a+ dt)(1−Dpdt(t, a, s)− Epdt(t, a, s)).

The correspondent density is a Dirac pulse

P̃ (I(t+ h) = (s, x)|I(t) = (s, a))

≈ δ(x− a− dt)(1−Dpdt(t, a, s)− Epdt(t, a, s)).

Consequently, we define the transition kernel

ω(t, (s, a), (s, x)) :=
δ(x− a− dt)

dt
(1−Dpdt(t, a, s)− Epdt(t, a, s)). (5.112)
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State Transition Reason

(m, a) → ∅ a male agent with age a dies

(f, a) → ∅ a female agent with age a dies

(m, a) → ∅ a male agent with age a emigrates

(f, a) → ∅ a female agent with age a emigrates

∅ → (m, a+ dt) a male agent with age a immigrates

∅ → (m, a+ dt) a female agent with age a immigrates

∅ → (m, a) a male agent with age a (a ∈ [0, dt)) is born

∅ → (f, a) a female agent with age a (a ∈ [0, dt)) is born

(m, a) → (m, a+ dt) a male agent ages

(f, a) → (f, a+ dt) a female agent ages

Table 5.1: Possible state transitions of agents in GEPOC ABM Model 6.1. The symbol ∅ denotes

that the agent either leaves the model or enters it.

4. We now consider birth processes in the model. Hereby we find one process wherein agents

are offspring by other agents. As a newborn agent’s age is uniformly sampled in [0, dt)
we receive the density

P̃ (new agent born in state (s, x)|I(t) = (f, a)) =
�[0,dt)(x)

dt
Bpdt(t, a)Bf(s)

and therefore

c(t, (s, x), (f, a)) :=
�[0,dt)(x)

dt2
Bpdt(t, a)Bf(s). (5.113)

5. A second, global, creation rate was found: immigration. In this model, a time-step is too

large to ask for the probability that one agent enters the model (which is almost surely one)

but we include multiple agents at once. Hence, we need to apply a trick as the mean-field

theorem is not applicable for this case:

Define a sufficiently largeQ ∈ N and rephrase the immigration process of the microscopic

model a little bit. Instead of only regarding one immigration process we regardQ different

immigration processes of which each may only lead to the immigration of one person with

probability ∫∞
0 Imdt(t, a, f) + Imdt(t, a,m)da

Q
.

The densities by which the immigrant’s age and sex are decided remain the same (compare

with (5.110)). Clearly, the rephrased model behaves like the original on the average and

the added fluctuations vanish for large numbers of immigrants (Imdt) by the Law of Large

Numbers.

Hence, for each of those processes j ∈ {1, . . . , Q} we calculate the immigration density

P̃ (new agent immigrated in state (s, x) in process j) =
Imdt(t, x, s)

Q
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leading to the creation kernel

C(t, (s, a)) :=

Q∑
j=1

Imdt(t, x, s)

Q · dt =
Imdt(t, x, s)

dt
, (5.114)

by summing all creation processes.

6. Finally, death as well as emigration equally leads to removal of single agents. Hence,

considering that agents only die if they did not emigrate and vice versa,

P (death or emigration|I(t) = (s, a))

= Dpdt(t, a, s)(1− Epdt(t, a, s)) + Epdt(t, a, s)(1−Dpdt(t, a, s))

≈ Dpdt(t, a, s) + Epdt(t, a, s).

Finally, we set

d(t, (s, a)) :=
Dpdt(t, a, s) + Epdt(t, a, s)

dt
. (5.115)

7. Putting equations (5.112),(5.113),(5.114) and (5.115) together as it is defined in the step-

by-step process, we obtain an IPDE system. Writing ϕf (a, t) as the density of female

agents and ϕm(a, t) as the density for the male ones, we obtain

∂

∂t
ϕf (a, t) = Cf − ϕf (a, t)df +

∫ ∞

0
ϕf (b, t)cf (b)db

+

∫ ∞

0
ϕf (b, t)wf (b, a)− ϕf (a, t)wf (a, b)db (5.116)

∂

∂t
ϕm(a, t) = Cm − ϕm(a, t)dm +

∫ ∞

0
ϕf (b, t)cm(b)db

+

∫ ∞

0
ϕm(b, t)wm(b, a)− ϕm(a, t)wm(a, b)db. (5.117)

with the abbreviations (s ∈ {m, f})

Cs := C(t, (s, a)) =
1

dt
Imdt(t, a, s), (5.118)

cs(b) := c(t, (s, b), (f, a)) =
1

dt

�[0,dt)(b)

dt
Bpdt(t, a)Bf(s), (5.119)

ds := d(t, (s, a)) =
1

dt
(Dpdt(t, a, s) + Epdt(t, a, s)), (5.120)

ws(a, b) :=
δ(b− a− dt)

dt
(1−Dpdt(t, a, s)− Epdt(t, a, s)). (5.121)

As mentioned it is a good idea to perform a Taylor approximation for ϕf (b) and ϕm(b)
at a in the second integral terms as ω(a, b) = 0 for large |a − b|. Hereby we are able to
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pull these terms out of the integral. Note, that it is not wise to do the same for the first

integral term as the age difference between a potential mother (age b) and her child (age

a) is usually quite large.

Therefore, exemplary for ϕm, but analogously for ϕf ,

ϕm(b, t) ≈ ϕm(a, t) +
∂

∂a
ϕm(a, t)(b− a) +

∂2

∂a2
ϕm(a, t)

(b− a)2

2

can be used as approximation. We obtain∫ ∞

0
ϕm(b, t)wm(b, a)− ϕm(a, t)wm(a, b)db

≈ ϕm(a, t)

∫ ∞

0
wm(b, a)− wm(a, b)db︸ ︷︷ ︸

=:I

+
∂

∂a
ϕm(a, t)

∫ ∞

0
(b− a)wm(b, a)db︸ ︷︷ ︸

=:II

+
∂2

∂a2
ϕm(a, t)

∫ ∞

0

(b− a)2

2
wm(b, a)db︸ ︷︷ ︸

=:III

.

Dealing with the single parts we get (now, again, for s ∈ {f,m})

I =

∫ ∞

0

δ(a− b− dt)

dt
(1−Dpdt(t, b, s)− Epdt(t, b, s))

− δ(b− a− dt)

dt
(1−Dpdt(t, a, s)− Epdt(t, a, s))db

=
1

dt
(Dpdt(t, a, s)−Dpdt(t, a− dt, s) + Epdt(t, a, s)− Epdt(t, a− dt, s))

≈ d

da
Dpdt(t, a, s) +

d

da
Epdt(t, a, s), (5.122)

II =

∫ ∞

0
(b− a)

δ(a− b− dt)

dt
(1−Dpdt(t, b, s)− Epdt(t, b, s))db

= −dt
dt
(1−Dpdt(t, a−dt, s)−Epdt(t, a−dt, s)) ≈ −(1−Dpdt(t, a, s)−Epdt(t, a, s)),

(5.123)

and

III =

∫ ∞

0

(b− a)2

2

δ(a− b− dt)

dt
(1−Dpdt(t, b, s)− Epdt(t, b, s))db

=
dt2

2dt
(1−Dpdt(t, a−dt, s)−Epdt(t, a−dt, s)) ≈ dt

2
(1−Dpdt(t, a, s)−Epdt(t, a, s)).

(5.124)

As III = O(dt) we will ignore it henceforth.
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Using the Taylor approximation we finally obtain the following IPDE system.

Model 6.2: GEPOC Mean-Field Model

The mean-field model for GEPOC ABM is defined by the integro-partial differential

equations

∂

∂t
ϕf (a, t) = Cf − ϕf (a, t)(df − αf ) +

∫ ∞

0
ϕf (b, t)cf (b)db− ∂

∂a
ϕf (a, t)βf

(5.125)

∂

∂t
ϕm(a, t) = Cm − ϕm(a, t)(dm − αm) +

∫ ∞

0
ϕf (b, t)cm(b)db− ∂

∂a
ϕm(a, t)βm

(5.126)

with the abbreviations (s ∈ {m, f})

Cs := C(t, (s, a)) =
1

dt
Imdt(t, a, s), (5.127)

cs(b) := c(t, (s, b), (f, a)) =
1

dt

�[0,dt)(b)

dt
Bpdt(t, a)Bf(s), (5.128)

ds := d(t, (s, a)) =
1

dt
(Dpdt(t, a, s) + Epdt(t, a, s)), (5.129)

αs :=
d

da
Dpdt(t, a, s) +

d

da
Epdt(t, a, s) (5.130)

βs := 1−Dpdt(t, a, s)− Epdt(t, a, s). (5.131)

The initial values and boundary conditions are given by

ϕf (a, 0) = F0(a), ϕm(a, 0) =M0(a),
∂

∂a
ϕf (0, t) =

∂

∂a
ϕm(0, t) = 0, (5.132)

as the density needs to be conserved.

For small dt the probabilities Dpdt and Epdt are obviously small. Hence, αs ≈ 0 and βs ≈ 1
may be assumed, which was done in discussion paper [Bicher and Popper, 2016].

The stated IPDE system is a valid mean-field model, but numerically very unstable due to

the steep unsteady indicator function in the birth kernel cs. We used a modified one-dimensional

Method of Lines (MoL) with a very fine spatial discretisation and the implicit 5th order Back-

wards Differential Formula for time-integration. The integral term was solved by numerical

integration with trapezoidal rule.

Though the ABM is fully parametrised we could find a suitable man-field model for it.

Finally, we benefited from the established differential equation model in two interesting ways:

First, the derived model offered us a new view on the results of the microscopic model.

While we mainly investigated cross sections of the microscopic model result (e.g. the temporal

development of the number of male agents with birth year 1990), the results of the macroscopic

mean-field model broadened our focus onto the population as a time-evolving, three dimensional
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Figure 5.30: Visualisation of some numerically gained results of the GEPOC IPDE model 6.2.

The density of the male population M(a, t) is shown in the upper-left corner, different cross-

sections are shown in the smaller plots around it.

density as seen in the upper-left plot of Figure 5.30. This view, though not usable for quantitative

analysis, yet gives a nice picture of why Austria’s population develops the way it does. One

example for this is the impact of the so-called baby boom in the 1960 which leaves a visible

peak in Figure 5.30 in the age pyramid. It can be seen in 1998 for the 40 year-old males and

smoothly shifts the 60 year old in 2023.

Second, the derived model helped us with the calibration of a model extension. We will

discuss this in more detail in the following section.
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5.6.3 Calibration Case Study: Morbidity Extension of GEPOC ABM

A commonly known problem of large stochastic agent-based models like GEPOC ABM is that

execution of the model is very time consuming. A single simulation run of the Python 3.6 im-

plementation of GEPOC ABM with about 8 Million agents and 1500 time-steps, corresponding

to either 30 years with dt = 1 week or about 4 years with dt = 1 day, requires about 30 minutes.

Hereby it generates one stochastic simulation result which usually implies that the simulation

needs to be repeated several times to get rid of the fluctuations. This issue has already been

mentioned to be problematic when it comes to parameter identification of microscopic models

and in specific, parameter calibration.

We explain the basics of a calibration problem: In case a parameter or parameter-vector

value, say, the value of ⇀p , is not precisely known from the beginning of the parametrisation

process of a model, e.g. by surveys of measurements, it must be estimated with other means.

Hereby it is a matter of the validation data if it is possible to find precise values for the parameter

or if educated guesses from experts are the best you can get.

Say, for a specific simulation scenario A the modeller has access to real data, henceforth

called reference-data, that would correspond to the desired (parts of the) simulation output of

this scenario, then the modeller may adjust (i.e. calibrate) the parameter values of the model,

so that the simulation output matches the given data. Moreover, the calibrated parameters can

be used for different model scenarios B,C, . . . for which a reference output is not given. To

formalise this in a more mathematical language we introduce the following notation. Suppose

S(⇀p) corresponds to the simulated output of scenario A and Y denotes the desired simulation

output according to the reference data, the calibration problem is formalised as

⇀popt = argmin⇀p∈X(‖S(⇀p)− Y ‖). (5.133)

Hereby ‖·‖ denotes a suitable error measure. If this minimum is found, ⇀popt corresponds to the

optimal parameter value for ⇀p . As in case of reasonably complex simulation models impossible

to calculate this minimum by hand, so-called calibration algorithms, usually iterative meta-

heuristics, are used. I.e. one calculates a sequence ⇀p i of parameter vectors that fulfil

‖M(⇀p i+1)− Y ‖ ≤ ‖S(⇀p i)− Y ‖ ,
at least for large i, so that the sequence converges towards the optimal value.

Simulated Annealing, Generic or Evolutionary Algorithm or Particle Swarm Optimisation

are probably the three most commonly known members of the large family of calibration algo-

rithms. More about these and other calibration methods can be found e.g. in [Rippinger et al.,

2016,Rippinger, 2016]. Though they are highly optimised and well-studied meta-heuristics, they

all share the issue that successful calibration of a parameter value requires iterative execution of

the simulation thousands of times.

During a study for the investigation of psychiatric diseases the agent-based GEPOC model

was used and extended to depict hospitalisation and re-hospitalization numbers of psychiatric

patients in Austria, Slovenia and parts of Italy. Hereby re-hospitalisation addresses the readmis-

sion of a psychiatric patient to a hospital after a certain time-period. The prediction of the total

number of re-hospitalizations per country until year 2040 was the objective of the model. With-

out going into technical details about the three-staged model extension, for which the reader is
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referred to [Zauner et al., 2017], calibration of specific parameters was required in several parts

of it.

Hereby two main problems were detected that made the calibration of the models particularly

difficult:

1. As defined, GEPOC ABM is a stochastic model. Hence, we have a slightly different

calibration focus here. Instead of (5.133), we need to consider

⇀popt = argmin⇀p∈X(‖E(S(⇀p)− Y )‖). (5.134)

In principle, each time, the simulation is called by a calibration algorithm to calculate the

error to the reference, it needs to be repeated several times to eliminate the fluctuations.

2. Already without the extension to a model for psychiatric diseases, the simulation of

GEPOC ABM is very time consuming. Hence, execution of thousands of simulation-runs

is hardly affordable with respect to time and computational resources.

In summary, a different strategy needs to be used. We applied a strategy based on mean-field

theory which will be published soon in [Bicher et al., 2017b]. As it would be too confusing to

explain this strategy directly on the example of the high-level re-hospitalisation model, we will

define a surrogate problem. The calibration task in this surrogate model will in principle match

the calibration tasks in the re-hospitalisation models, but spares confusing technical details.

Based on GEPOC ABM, we aim to include a non-infectious background morbidity that has
a negative impact on the mortality rate of an agent. Yet, in the course of the model extension,
the total population should be conserved.

The defined scenario is totally academic, but not so unrealistic. One may think of non-

transmittable diseases like e.g. diabetes or, rarer, Chron’s disease. Alternatively, one may also

think of other mortality risk factors like smoking or heavy drinking which, in this sense, act like

non-transmittable background diseases as they also have a negative impact on the mortality risk.

The corresponding model is defined as follows:

Model 6.3: Background Morbidity Extension of GEPOC ABM

We will define the model extension based on the definition of GEPOC ABM 6.1 and

change and add specific parts in its definition.

� The model initially consists of N0 agents Ii, i = 1 . . . N0 of which F+
0 have the

properties female and healthy, F−
0 have the properties female and morbid. Anal-

ogously M+
0 and M−

0 have the properties male and healthy or male and morbid,

respectively. According to given distributions, male and female agents are given an

initial age. Hereby let f+0 (a) describe the density for the female and healthy agents,

f−0 ,m
+
0 and m−

0 describe the corresponding densities for the other states. We com-
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bine, exemplary, f+0 and F+
0 to an aggregated density mapping via

F+
0 (a) := F+

0 f
+
0 (a), F−

0 (a) := F−
0 f

−
0 (a), (5.135)

M+
0 (a) :=M+

0 m
+
0 (a), M

−
0 (a) :=M−

0 m
−
0 (a). (5.136)

� We write

Ii(t) = (s, h, a)

indicating that agent Ii has sex s ∈ {f,m}, healthy state h ∈ {+,−} and age a at

time-instant t.

The following actions have changed in the dynamics of the model.

� In principle, both, healthy and morbid agents are treated equivalently, with exception

of the death process. Hereby infectious agents have a higher death probability

ξ(−)Dpdt(t, s, a), ξ(−) > 1. (5.137)

We assume that the time-step length is large enough to guarantee that the overall

death-probability remains smaller than 1. Consequently

ξ(+)Dpdt(t, s, a) (5.138)

describes the death probability for the healthy agents. Herein ξ(+) is not yet known.

Therefore, its estimation is the aim of the calibration.

� Every healthy agent has an additional probability

Mpdt(t, s, a) (5.139)

to become morbid in the regarded time interval. This process is treated equivalently

to all other agent-related processes in the model (i.e. sampling of an infection-date
etc.).

� Newborn agents are always assumed to be healthy.

� The aggregated density for immigrated agents analogously splits from Imdt(t, a, s)
to Im+(t, a, s) and Im−(t, a, s). They sum up to the values of the basic model

Im+ + Im− = Im.

The estimation of the value of the unknown parameter ξ(+) is goal of a calibration study.

As the mortality for morbid agents is higher than in the model without morbidity, we clearly

expect 0 < ξ(+) < 1 to conserve the overall “level or mortality” and thereby the total number

of agents in the model. As mentioned, we will use mean-field analysis of the model to find a

way to correctly determine the parameter’s value to conserve the overall population.

It is very simple to extend the mean-field analysis of GEPOC ABM to the background
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morbidity model. First of all, the discrete part of the state-space is increased from {f,m} to

{f+, f−,m+,m−}. Hence, we expect a differential equation model with four instead of two

equations. All other parts of the new mean-field model are rather self-explanatory extensions to

the original IPDE model 6.2.

Model 6.4: Background Morbidity Mean-Field Model

∂

∂t
ϕ+
f (a, t) =C

+
f − ϕ+

f (a, t)(d
+
f − α+

f )− ϕ+
f (a, t)γf

+

∫ ∞

0
(ϕ+

f (b, t) + ϕ−
f (b, t))cf (b)db−

∂

∂a
ϕ+
f (a, t)β

+
f

∂

∂t
ϕ−
f (a, t) =C

−
f − ϕ−

f (a, t)(d
−
f − α−

f ) + ϕ+
f (a, t)γf

− ∂

∂a
ϕ−
f (a, t)β

−
f

∂

∂t
ϕ+
m(a, t) =C+

m − ϕ+
m(a, t)(d+m − α+

m)− ϕ+
m(a, t)γm

+

∫ ∞

0
(ϕ+

f (b, t) + ϕ−
f (b, t))cm(b)db− ∂

∂a
ϕ+
m(a, t)β+m

∂

∂t
ϕ−
m(a, t) =C−

m − ϕ−
m(a, t)(d−m − α−

m) + ϕ+
m(a, t)γm

− ∂

∂a
ϕ+
m(a, t)β−m

with the abbreviations (s ∈ {m, f},h ∈ {+,−})

Ch
s := C(t, (s, h, a)) =

1

dt
Imh

dt(t, a, s),

cs(b) := c(t, (s, b), (f, a)) =
1

dt

�[0,dt)(b)

dt
Bpdt(t, a)Bf(s),

dhs := d(t, (s, h, a)) =
1

dt
(ξ(h)Dpdt(t, a, s) + Epdt(t, a, s)),

αh
s := ξ(h)

d

da
Dpdt(t, a, s) +

d

da
Epdt(t, a, s)

βhs := 1− ξ(h)Dpdt(t, a, s)− Epdt(t, a, s)

γs :=
1

dt
Mp(t, a, s).

The initial values and boundary conditions are given by (h ∈ {+,−}, s ∈ {f,m})

ϕh
f (a, 0) = F h

0 (a), ϕh
m(a, 0) =Mh

0 (a),
∂

∂a
ϕh
s (0, t) = 0. (5.140)



5.6. MEAN-FIELD ANALYSIS FOR PARAMETRISED MODELS 209

In order to conserve the total sum of the population we need to compare the integral of

the sums of all functions ϕf and ϕm in Model 6.2 with the integral of sums of all functions

ϕ+
f , ϕ

−
f , ϕ

+
m, ϕ

−
m in the upper IPDE model and determined ξ(+) so that the resulting values are

equivalent.

Clearly, above model is too complicated for direct calculation of ξ(+) via formula manipu-

lation. The interesting part of the strategy we present here is that this is not even the goal:

First, we summarise

⇀

V (a, t) := (ϕ+
f (a, t), ϕ

−
f (a, t), ϕ

+
m(a, t), ϕ−

m(a, t)).

Quick investigation of the IPDE system in Model 6.4 makes it clear that there are vector valued

functions
⇀

Θ and
⇀

Ξ so that the system can be written as

∂

∂t

⇀

V (a, t) =
⇀

Θ

(
⇀

V ,
∂

∂a

⇀

V , a, t

)
+ ξ(+)

⇀

Ξ

(
⇀

V ,
∂

∂a

⇀

V , a, t

)
, (5.141)

wherein ξ(+) only occurs as the prefactor of the second term. Consequently, also the integral of

the sum over all coordinates S(t) :=
∫
a

∑4
i=1

⇀

V i(a, t)da can be expressed as

∂

∂t
S(t) = Θ

(
⇀

V ,
∂

∂a
V, t

)
+ ξ(+)Ξ

(
⇀

V ,
∂

∂a
V, t

)
. (5.142)

with two scalar functions Θ and ξ as the integral is a linear operator. Hence, the impact of ξ(+)
on the time differential of the total population is a linear one.

This information seems strange at a first glance, but is indeed very valuable considering

a calibration process of the microscopic model. Let henceforth S(t, ξ(+)) stand for the total

population of the Background Morbidity model at time t, and let S(t) denote the reference

population of the GEPOC ABM model. Above analysis of the macroscopic model revealed the

existence of a linear relationship of the expected difference E(S(t+dt, ξ(+))−S(t, ξ(+))) and

parameter ξ(+). I.e.

E(S(t+ dt, ξ(+))− S(t, ξ(+))) = d(t) + k(t)ξ(+)

for some scalar unknown functions d(t) and k(t), which can be used to find

E(S(t+ dt, ξ(+))− S(t, ξ(+))) = k(t)ξ(+) + d(t)
!
= E(S(t+ dt)− S(t))

⇒ ξ(+) =
E(S(t+ dt)− S(t))− d(t)

k(t)
. (5.143)

We can draw two important conclusions: First, there is an easy method to determine the correct

values for k(t) and d(t) thinking about properties of scalar linear affine functions: A line is

uniquely determined by two points! So simulating the value of E(S(t+ dt, x1)− S(t, x1)) and

E(S(t+dt, x2)−S(t, x2)) for any two (reasonable) values x1 and x2 for ξ(+) makes it possible

to calculate the parameters of the affine transformation with very basic means.

Second, either ξ(+) needs to depend on time (i.e. ξ(+) = ξ(+, t)) as k(t) and d(t) are very

unlikely to be equivalent for all t, or we aim for an approximation ξ(+) that does not perfectly
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conserve the population for all times. It can be estimated by an optimisation algorithm when

iteratively applying the differences k(t)ξ(+) + d(t) on the initial population.

For the background morbidity model e.g. x1 = 1 and x2 = 0.5 are reasonable choices to

generate the two sampling-points that uniquely define the linear affine function as only ξ(+) ∈
[0, 1) makes sense. Thus,

E(S(t+ dt, 1)− S(t, 1)) =k(t) + d(t)

E(S(t+ dt, 0.5)− S(t, 0.5)) =0.5k(t) + d(t)

⇒
k(t) =2 (E(S(t+ dt, 1)− S(t, 1))− E(S(t+ dt, 0.5)− S(t, 0.5)))

d(t) =− E(S(t+ dt, 1)− S(t, 1)) + 2E(S(t+ dt, 0.5)− S(t, 0.5))

ξ(+, t) =
E(S(t+ dt)− S(t))− d(t)

k(t)
.

The calibration strategy can be summarised (and generalised) as follows:

1. Establish a mean-field model and find a relationship r(⇀p(t)), how the unknown parameter

(-vector) ⇀p(t) influences the differentiated aggregated numbers of the model.

In the regarded case, r(⇀p(t)) was a linear affine function.

2. Execute the simulation with that many different parameter values (⇀p(t) := ⇀xi)
d
i=1 so that

the parameters of r can uniquely be determined by the equation system

E(S(t+ dt,⇀xi)− S(t,⇀xi)) = r(⇀xi), i = 1 . . . d. (5.144)

Hereby multiple simulations runs each need to be used to approximate the right-hand side

expected value.

3. Invert r and apply r−1 on your reference differential data S(t + dt) − S(t) to get the

correct value for ⇀p(t) by

⇀popt(t) := r−1(S(t+ dt)− S(t)). (5.145)

The presented strategy seems very strange, but works extremely well, especially if linear re-

lationships between parameter and aggregated numbers are present. In the course of developing

the re-hospitalisation model this strategy made it possible to find calibrated parameter values by

estimating only two expected values via the sample mean of 100 simulation-runs each, instead

of thousands of iterations with a calibration meta-heuristic. Moreover, the Law of the Iterated

Logarithm (and in specific its direct consequence (3.36)) can be used to find the quality of the

calibrated fit by estimating the convergence rate of the sample mean.

As mentioned, this study is to appear in slightly different form in early 2018 in [Bicher

et al., 2017b]. Herein the strategy will be presented omitting the mean-field analysis part solely

focussing on the involved probabilities. Yet, the concept in behind is the same: stochastic

analysis of agent-based models leads to simple relationships for the aggregated numbers.



CHAPTER 6
Classification of Microscopic Models

In this chapter we will finally summarise all findings that have been made in the presented

mean-field approximation-based studies in Chapter 5. We propose a possible classification of

microscopic models with respect to their aggregated system behaviour. Hereby we want to

enrich the terminology that is currently used to describe microscopic models by very specific

terms that convey an image how the model behaves as a system.

We deem this to be an important contribution as the standard terminology for labelling mi-

croscopic models, that means primarily the approaches described in Section 2.1, is not always

perceived unambiguously in different fields of research. For example we discussed the usage of

the term microsimulation models in Section 2.1.4 and found completely different meanings of

this term for different application fields. It is not even clear if specific methods are only special

cases of the other: In Section 2.1.5 we mentioned that there are modellers (e.g. [Law, 2007]) that

interpret agent-based models as a special case of microscopic discrete event models, while there

are also arguments that the situation might also be actually vice versa – there is no unique truth.

Also the distinction between cellular automata and agent-based modelling can be tricky: The

Susceptible-Infectious-Recovered (SIR) model presented in Section 5.2.1 could be interpreted

as a lattice-gas cellular automaton, but could also be seen as a special case of an agent-based

model on a grid.

A second aspect that motivates to find a more technical classification of microscopic mod-

els is that the statement “we developed an agent-based-, cellular automaton-, microsimulation-

,. . . model” hardly indicates what challenges need to be solved when working with the model.

This includes the questions

� how sensitive the model is,

� how time is updated in the model,

� what kind of interaction among the sub-models is given, or

� how model output needs to be interpreted.

211
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6.1 Classification Parameters

Based on rigorous theoretical research on mean-field analysis and a great number of case studies

we detected four parameters, which have a significant influence on the model’s behaviour and

the challenges involved with modelling and simulation. All of them can be detected solely based

on the formal definition of the model (probably using some of the stochastic methods described

in Chapter 3) and do not require any empirical tests with the model via simulation (e.g. like a

sensitivity analysis).

6.1.1 Classification with Respect to Time-Update

The way how time is updated in a microscopic simulation model is very important for anyone

who is not familiar with the technical details of the model. As mentioned several times in the

course of this thesis there are in principle two types of microscopic models with respect to time

update.

Time-discrete microscopic models are models that are updated in discrete time-steps of pre-

defined length. Herein we may distinguish between models that update in equidistant time

steps and models that use adaptive lengths of time-steps. All models discussed in this work

use equidistant time-step widths, yet the original parametrised agent-based GEneric-POpulation

Concept (GEPOC) model presented in Section 5.6.1 can be updated validly with arbitrary time-

step length which also includes the usage of different length of time steps in one simulation

run [Bicher et al., 2015].

In general, these kind of models need to be parametrised with information that explains

which processes took place in the course of the skipped time interval in between the time-steps.

In most cases, all sub-models are addressed once per time-step, but also different concepts can

be found: In [Deffuant et al., 2000] precisely two (randomly chosen) sub-models are addressed

per time-step. Updates of the sub-models states are usually performed simultaneously to avoid

that certain sub-models have different opportunities only because the are addressed earlier or

later than others.

In terms of time-discrete models two interesting challenges were discussed in the course of

this thesis:

� Rescaling probabilities and processes to different time-step widths. This was in detail dis-

cussed in Section 5.1.1 to be a partially unsolvable problem. Nevertheless, it is sometimes

necessary to rephrase a model with a finer or rougher time-resolution to receive more flex-

ibility. Moreover, the analysis of the time-discrete version of the simple population model

in Section 5.1.3 showed that a smaller time-step length is also beneficial with respect to

stochastic fluctuations.

� Logical ordering of events that occur in one time step. This problem was discussed in

Section 5.6.1 in the agent-based GEPOC model, as it was necessary to be aware of the

difference between a sub-model that dies before it recreates or vice versa. In this example

the processes cannot be scheduled manually as they might occur in any order in reality. In
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other examples a manually defined order among the processes might be unavoidable – in

the most obvious case: a sub-model cannot leave before it entered.

Time-continuous microscopic models are models that are updated based on event driven time-

steps. Hereby the model dynamics are always based on the following iterative process:

1. Evolve time to the next scheduled state-event.

2. This event is now considered to influence the model at precisely this time instant. There-

fore, execute all actions correlated with the event and update the model variables.

3. If the occurrence of the event somehow influenced the future of the model, it is necessary

to schedule new events. Occasionally delete other planned events that became invalid.

4. Find out which event occurs next and continue with 1.

As microscopic models consist of a large number of sub-models, also a huge number of events

have to be handled by the discrete event simulator. It is clear that most events that take place

somehow “belong” to specific sub-models. For example, each agent plans its own specific death-

date, each particle plans the time for its next movement, each entity plans the time when it arrives

at the next waiting queue. This feature poses for a quite natural way to divide and conquer the

huge event-list in event-driven microscopic models and can be used to improve performance.

In general the usage of event-based time update is preferred to discrete-time update as both

mentioned challenges for time-discrete microscopic models are solved at once. Nevertheless,

new challenges occur that make the use of this concept quite tricky.

� Interaction of sub-models with global consequences. Often specific events in the model

have an impact not only on one sub-model, but on a larger number of other sub-models. In

the easiest case we may think of a contact-event between two sub-models which, clearly,

not only influences the future events of one, but of both sub-models. Consequently, heavy

problems occur when an occurring event has a global influence on all other sub-models

and, hence, on all other scheduled future events. Imagine a fictional agent-based stock

market model wherein agents buy and sell stocks – the higher the price, the lower the

motivation to buy. Whenever an agent buys, the price of the stock and equivalently the

buying-rate of all other agents changes. Consequently, all planned “buying-dates” of all

agents have to be cancelled and rescheduled whenever a stock is bought.

� Time dependent parameters. In case a parameter function effects the likelihood of the

occurrence of a specific event in a time-dependent way it is not possible to sample the

occurrence times of this event by simple exponentially distributed variables. There are

essentially two options to solve this problem: First, it is possible to investigate the com-

plete graph of the parameter function and derive a probability distribution for sampling,

that suits the given parameter function. Second, the parameter function is discretised to be

constant for certain time intervals. Moreover, as soon as one of the discretisation intervals

has passed the corresponding event-time is cancelled and re-sampled with a new value.
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The second option essentially corresponds to a time-discrete model update, the first op-

tion is difficult to derive and has bad performance, as sampling of random variables with

arbitrary distribution is a computationally demanding operation.

� Performance of the model. Especially the two aforementioned problems lead to a very

computationally intensive simulation that might pose a challenge to any computer as soon

as the number of sub-models is large.

� Continuous states. We have discussed in the course of the random-walk model analysis in

Section 5.5.1 that it is generally impossible to simulate continuous updates of continuous

states with an event-driven mechanism. Hence, either a discretisation needs to be applied

or the time-enhancement is modelled with a different time-continuous concept, e.g. a

differential equation. The latter is quite usual in simulation of traffic flow (e.g. the famous

car-following Gipps model [Gipps, 1981]).

Depending on the complexity of the model and the number of sub-models it might even be

impossible to define the model in a event-driven style with reasonable effort. In the simple

population model 1.1 discrete event concepts could easily be applied successfully to rephrase

the model to the time-continuous formulation 1.2 as the model parameters were assumed to be

constant. For the agent-based GEPOC model 6.1 this process would be a lot more difficult.

Finally, the choice of terminology for this classification parameter is not unusual. The term

can quite often be found in literature reviews to distinguish different modelling approaches. We

e.g. find this distinction in reviews about traffic flow models [Treiber et al., 2000], but also

describing population/health-care models [Spielauer, 2007].

6.1.2 Classification with Respect to State-Space

We briefly described in Section 4.1 that it is inevitable to formalise the models to be able to per-

form analysis of microscopic models in general. We introduced the term formalised microscopic
model and stated that its formulation is the key to apply the mean-field theorems and methods

in Sections 4.4, 4.3 and 4.5. The classification parameter presented in this section refers to one

specific aspect of this formalisation concept that can be detected in every microscopic model:

the state-space.

Abbreviated by the symbol Γ throughout this work, we denoted the space that contains

the summary of all possible states any sub-model in the microscopic model may have at any

time during the simulation. In this specific case we use the term state to refer to anything that

characterises a specific sub-model at the investigated time-instant and distinguishes it from any

other sub-model. That includes for example

� dynamic states (e.g. age 6.1, health-state 5.4 or position 5.1),

� static states, sometimes so-called properties or different sub-model types (e.g. male/fe-

male 6.1 or predator/prey in a Lotka-Volterra model [Lotka, 1956]),

� memory of prior states (e.g. memorising the time since last food consumption as required

in the WaTor model [Durrett and Levin, 2000]), and
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� variables that describe the behaviour of the regarded sub-model (e.g. individual driving

behaviour in an (advanced) traffic flow model [Treiber et al., 2000]).

Mathematically spoken, in case any two sub-models Ii and Ij both have state s at a given time-

instant t then their future states are (stochastically) equivalent:

Ii(t) = s = Ij(t) ⇒ ∀A ⊂ Γ, ∀t′ ≥ t : P (Ii(t
′) ∈ A) = P (Ij(t

′) ∈ A). (6.1)

In the course of this thesis basically three types of state-spaces could be distinguished: dis-

crete, continuous and hybrid, of which the latter was defined as the product-space of the first

two. Hereby it is always finite dimensional, as any executable simulation model is parametrised

with a finite number of parameters. For this reason, we may also deduce that any state-space of

microscopic models in general can bijectively be mapped to one these three classes.

When investigating a microscopic model with respect to its states, it is often an overhead

to take into account the full state-space Γ. This is not only because the state-space is too large

for analysis, but primarily because not every variable (i.e. dimension) of the state-space is really

measured and defined as an output of the model. One example for this is given by the SIR lattice-

model 2.1. Herein the position of the agent on the grid clearly belongs to the state-space of each

individual, but it is not considered as output variable of the model. Thus, we define the output-

space Γ′ of each sub-model which consists of specifically chosen dimensions I ⊆ {1, . . . , d} of

the original d-dimensional state-space Γ

Γ′ :=×
i∈I

(Γ)i, (6.2)

which describes which elements of the state-space are actually focus of interest. While the size

of the state-space is a result from the model definition, the output-space is given by the research

question or the model objectives, respectively.

State-discrete microscopic models are models in which the common state-space of the sub-

models is solely discrete.

Output-discrete microscopic models are models in which the common output-space of the

sub-models is solely discrete. Clearly, any state-discrete model belongs to this class, though it

might be possible, that models with hybrid state-space are output-discrete if the continuous parts

of the state-space are not considered as model-output. The best examples for this feature are

found in classic microsimulation models or, to be precise, Markov models for health technology

assessment (HTA, see [Abler et al., 2013]), wherein discrete health-states are observed, while

(potentially) continuous patient parameters like age or blood values may have an influence on

the transition probabilities between the health-states, but are not focus of interest.

Anyway, in case of state-/output-discrete microscopic models there is a bijective mapping of

Γ/Γ′ onto a subset of Nd. Hence, it can be identified with it. Moreover, we could not find any

simulation model with finite end-time tend for which a discrete space did not imply the finiteness

of it as well.
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As Nd is always countable, there exists another bijective mapping to a subset of N. Thus,

it is even possible to regard the state- or output-space as one-dimensional. Consequently, the

aggregated model output of time- and state-/output- discrete microscopic models can always

be stored in a two dimensional array. This is a nice feature for communicating simulation results

as this can always be done in simple table-sheets.

State-continuous microscopic models are models wherein the common state-space of the sub-

models contains at least one continuous dimension.

Output-continuous microscopic models are models wherein the common output-space of the

sub-models contains at least one continuous dimension. Clearly, only state-continuous micro-

scopic models can be output-continuous, but do not have to (as discussed in the last property).

Especially for output-continuous microscopic models one additional challenge could be detected

in the course of this thesis.

� Interpretation of the simulation results. We briefly discussed in Section 5.5 what happens

if simulation output of microscopic models is found on a continuous axis. In order to

process and document the aggregated output of the model it is not simply possible to

count sub-models with equivalent state, but one has to estimate the density by which the

sub-models’ continuous states are distributed. Hereby we tend to use a discretisation

in form of histogram bins which may lead to unrepresentative results if the size of the

bins is not adapted to the total number of sub-models in the model, but decided by some

other measure – e.g. the research question. Alternatively the possibility of kernel density

estimation poses for a high-quality but resource-demanding alternative.

In general, the following implications hold:

state discrete ⇒ output discrete,

output continuous ⇒ state continuous.

Very likely, though, a state-discrete/continuous model will also result in a discrete/continuous

output.

Finally, output of microscopic models is not necessarily defined specifically, especially for

“more academic” models for research purposes only. In that cases only the state-space of the

model can be classified.

6.1.3 Classification with Respect to Randomness

The distinction between stochastic and deterministic models is one of the most strictly defined

ones in the whole science. A model is called deterministic if the simulation result is uniquely

defined by the simulation input and parameters. Otherwise it is called stochastic. Yet, in terms

of microscopic models it might be useful to make an additional distinction among the stochastic

models as it has a considerable effect on the behaviour of the simulation.
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Initial-value-stochastic microscopic models denote models that use randomness to establish

the initial states of the model. This feature can often be observed in microscopic models wherein

initial values are distributed according to probability densities. In this work most of the micro-

scopic models belong to this class (e.g. the lattice SIR model 5.4 or the agent-based GEPOC

model 6.1).

Initial-value-deterministic microscopic models are all models, wherein the initial states of the

sub-models are exactly predefined. Any model that does not belong to the prior class belongs

to this one and vice versa. One example for such a model is the groundwater pollution random-

walk model 5.1.

As we could not find any initial-value-stochastic microscopic models in which the initial dis-

tribution of sub-models is not sampled as an iid (independent, identically distributed) sequence

of random numbers (probably mixed with deterministic rules), the law of large numbers ensures

that the normed aggregated numbers of the initial distribution converges towards the mean-value.

Thus, the influence of randomness on the aggregated initial distribution is decreasing with the

total number of sub-models.

Update-stochastic microscopic models denote models that use randomness in their update

rules. Again, most of the models discussed belong to this type, e.g. the lattice SIR model 5.4 or

the agent-based GEPOC model 6.1. Note, that randomness can occur as a transition probability

in time-discrete microscopic models or as sampled random transition dates in time-continuous

microscopic models.

Update-deterministic microscopic models denote models, wherein the model dynamics are

uniquely defined by the initial distribution. In this work only the Game of Life 4.1 belongs to

this class.

The following challenge with respect to deterministic or at least update-deterministic micro-

scopic models can be seen.

� As a result of all performed case studies we clearly deduce that a lack of randomness,

especially for the update rules, reduces the chances of finding a valid mean-field approxi-

mation as deterministic models tend to be more sensitive with respect to local interactions

and pattern formation. Hence, it is questionable if the output of completely deterministic

(or complex update-deterministic) microscopic models can be used for generating valid

quantitative simulation results. After intensive literature research, the idea of Petri net

modelling [Murata, 1989] for the analysis of reachability of complex logistic processes

was the only found example for a deterministic microscopic model that resulted in quanti-

tative exploitable output. Yet, it is questionable, though, if Petri nets are compatible with

our idea of a microscopic model.

6.1.4 Classification with Respect to Interaction Level

Probably the most important classification concept of this thesis relates to the level of interaction

between the microscopic sub-models as it has the most direct consequence on the mean-field
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behaviour of the model.

Non-interacting microscopic models , contact-less- or linear- microscopic models, denote mod-

els wherein the sub-models have no contact with each other whatsoever. The alternative name

linear microscopic model was chosen as any valid mean-field approximation of a contact-less

model is always a linear differential equation – ordinary- in case the state-space if discrete,

partial- or integral- in case continuous states are contained. In the current thesis only state-

continuous microscopic models without contacts were discussed, namely the groundwater pol-

lution random-walk model 5.1 and the agent-based GEPOC model 6.1. Examples for output-

/state-discrete microscopic models without interaction are the mentioned HTA focussed Markov

models [Abler et al., 2013].

Globally-interacting microscopic models , or non-linear microscopic models, denote models

wherein the contacts between the individuals occur on a mean-field level or can be approxi-

mated validly on the mean-field level. Hence, a mean-field approximation can be found based

on the mean-field theorems which has a non-linear shape due to contacts. Hereby especially

linear contact processes, i.e. the search for one random contact-partner, plays a key role as it

always leads to mean-field models with non-linearities of quadratic order. To see this, compare

the microscopic Levins model 2.4 with the corresponding ordinary differential equation (ODE)

model 2.3) or the age dependent SIR model 5.4 with the McKendrick equation model 5.3. In

these models a linear contact occurred as the current state of at least one aggregated number in

the model has a linear influence on the transitions of the individual sub-models.

Locally-interacting microscopic models finally denote models wherein the contacts between

the individuals are so locally restricted that they cannot be approximated on the mean-field level

with reasonable effort. Hence, the behaviour of the aggregated number cannot be dedicated to

linear or non-linear behaviour anymore as it may have any shape. The best examples to see this

are Steven Wolfram’s one dimensional cellular automata which were briefly classified by him

in [Wolfram, 2002]. The particular cellular automata rule 110 and rule 30 can be seen to gen-

erate almost arbitrarily complex behaviour while rule 90 seems to generate completely chaotic

patterns and rule 184 results in a stable steady-state very soon after starting the simulation up-

date. It is obvious that the border between globally- and locally interacting microscopic models

is not sharply defined. Hence, attribution to one of these two classes should not be seen in terms

of black or white, but as a grey-scale map.

The following challenges can be stated for globally- and locally- interacting microscopic

models.

� The most obvious challenge for models with interaction is related to performance. Finding

a suitable contact partner usually raises the computational effort from O(N) (N stands for

the total number of sub-models) to a higher order, oftenN2. The most prominent example

for this feature is probably the agent-based Boids model [Reynolds, 1987] which should

depict the flocking behaviour of birds or fishes was already mentioned in the course of

Section 2.3.1. Each individual agent needs to get in contact with its surrounding agents to
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adapt its velocity and direction. Hereby the calculation of finding which agents surround

the targeted one is an operation with order O(N) which has to be done N -times – once

for each target agent in the model. As a result it is the most computational demanding

operation in the course of the simulation and leads to quick increase of computational ef-

forts whenN is chosen large. While contact-less microscopic models like the agent-based

GEPOC population model 6.1 are executable with up to eight million agents, the Boids

model reaches its computational limits already for a few ten-thousand flock members,

even if performance-optimised.

� Closely related, also computational parallelisation of interacting microscopic simulation

is challenging while it is straight forward for non-interacting models. Surprisingly, this

is easier if the interaction level is as local as possible, as it is common e.g. for cellular

automata [Spezzano and Talia, 1999].

� We have mentioned several times that interaction of sub-models may lead to problems for

time-continuous microscopic models. For more about that, the reader is referred to the

corresponding challenge in the course of the time-update classification in Section 6.1.1.

� Finally, the (quantitative) validation of local-interacting microscopic models is challeng-

ing as the local contacts might lead to completely unpredictable and sensitive behaviour.

It is important to mention that there are clear differences between the classification parameter

proposed in this section and the classification which became prominent by Steven Wolfram’s

famous book New Kind of Science [Wolfram, 2002] in 2002 – his fist publication that included

the classification was actually published decades before that in 1984 [Wolfram, 1984]. He stated

that there are, in principle, four types of behaviour of one-dimensional, deterministic cellular

automata behaviour, namely

1. convergent to a steady state,

2. oscillating,

3. complex, interesting behaviour, or

4. chaotic behaviour.

His collaborator at the Santa Fe Institute, Chris Langton, summarised these four behavioural

types in the famous sketch seen in Figure 6.1. Though this classification of behaviour was estab-

lished for one-dimensional, deterministic cellular automata it can to some extend be extended to

microscopic models in general.

The mentioned difference between the classification strategies lies within the focus of the

classification. Wolfram’s classification concept relies on classifying the models with respect to

their behaviour which is basically unknown until the model is executed. Our classification can

be done ad-priori solely by the model definition and does, in principle, not require simulation of

the model.
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Nevertheless, the class a microscopic model can be attributed to, according to our classi-

fication parameter with respect to interaction level, has a strong influence to which of Wol-

fram’s classes the model belongs. While the behaviour of all non-interacting and the majority

of globally-interacting microscopic models can only be found in the first two classes convergent

and oscillating, only locally-interacting microscopic models may lead to chaotic behaviour. It is,

to us, an open question if behaviour of globally-interacting models can be denoted as complex

or if the ability to perform a mean-field approximation, i.e. the possibility to find a macroscopic

description of the system, already excludes this option by definition of the term complex.

Figure 6.1: Classification of cellular automata according to Steven Wolfram. This sketch was

developed by Chris Langton and published in [Langton, 1990]. The one-dimensional measure λ
is used to quantify the level fo complexity of the model.

6.2 Classification Summary

In the preceding sections we proposed a classification concept via specific attributive adjectives

to the word microscopic models that can be used to characterise these models in a way that

observers, which have no idea about the model in general, are able to get a picture of the chal-

lenges that occur in the model and get ideas about how the model behaves during simulation

(at least on the aggregated level). This classification concept poses an extension to the current

speech describing microscopic models via their modelling method. Figure 6.2 shows most mi-

croscopic models briefly discussed in this work and how they are classified with respect to the

stated concept. A classification of other famous microscopic models can be found in Table 6.1.

With respect to mean-field analysis of the model the classification makes it possible to, on

the one hand, get an idea of the chances of finding a valid mean-field model with reasonable

efforts and, on the other hand, how a mean-field model may look like.

� Time Update. The classification with respect to randomness in principle has no influence

on mean-field analysis related issues. Yet, time-continuous models usually tend to be
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simpler with respect to interaction between sub-models. Hence, we could imply that time-

continuous models are (on the average) more likely to be depicted on the mean-field level

than time-discrete models.

� State-space. As mentioned, the classification with respect to output-space considers if

there are output dimensions of the model which are continuous or if all dimensions are

discrete. It is clear, that as soon as there are continuous variables involved in the model

output a mean-field model needs to be a partial- and/or integro- differential equation.

For output-discrete models a mean-field is usually an ordinary differential equation, but

in cases, in which the state-space includes continuous variables that are not regarded as

model output – i.e. in case the model is state-continuous with a hybrid state-space –

also partial- and/or integro- differential equation might be required for a valid mean-field

description.

� Randomness. We discussed in Section 5.4 that adding randomness, especially random-

ness in the model update processes, to microscopic models has a smoothing effect on the

simulated outcomes of the model. Hence, it has a positive influence on sensitivity and,

therefore, the chances of finding a valid mean-field model.

� Interaction. First, non-interacting and globally-interacting models can (almost) always

be described on the mean-field by a macroscopic model. In the first case, linear differential

equations result. The second case leads to non-linear differential equations. The more in-

dividual contacts between sub-models take place on the local level the more complicated it

gets to find a mean-field description of the system. Compare with the pair-approximation

introduced in Section 5.3.4, high order systems are required to describe the model if in-

teraction leads to very local effects. Finally, at some stage it is not possible to develop

these models with reasonable effort anymore (as stated in the course of the advanced case

studies of the Lattice Growth Model 3.1).
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time-continuoustime-discrete

output-discrete
output-continuous

continuous hybrid

non-interacting
(linear)

globally-interacting
(non-linear)

locally-interacting

initial-value stochastic

update-deterministic

initial-value deterministic

update-stochastic update-stochastic

time 
update

output-space

randomness

interaction

GEPOC ABM

SIR Lattice Model

Agent-Based Age-Dependent
SIR Model

Game of Life

Shuffled Game of Life

Micr. Growth Model

Simplified Population Model 
for Austria - Event-Based

Groundwater Pollution Model

Figure 6.2: Classification of some of the discussed models (GEPOC ABM 6.1, Microscopic

Growth Model 3.1, SIR Lattice Model 2.1 and Game of Life4.1) in this thesis with respect to the

four defined classification dimensions.
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model (application) time-

update

state-

space

randomness interaction

HPP model [Hardy et al., 1976]

(fluid flow)

discrete discrete initial-value

stochastic

globally-

interacting

FHP model [Frisch et al., 1986]

(fluid flow)

discrete discrete completely

stochastic

globally-

interacting

Ising model [Ising, 1925] (mag-

netism)

discrete discrete initial-value

stochastic

globally-

interacting

Nagel-Schreckenberg model [Nagel

and Schreckenberg, 1992] (traffic

flow)

discrete discrete update-

stochastic

locally-

interacting

Gipps model [Gipps, 1981] (traffic

flow)

continuous continuous deterministic locally-

interacting

Schelling’s segregation model

[Schelling, 1971] (ghettoism)

discrete discrete initial-value

stochastic

locally-

interacting

Boids model [Reynolds, 1987] (bird

flocking)

discrete continuous initial-value

stochastic

locally-

interacting

WaTor [Durrett and Levin, 2000]

(predator prey systems)

discrete discrete completely

stochastic

globally to

locally

DYNASIM [Spielauer, 2007] (pop-

ulation based health-care model)

discrete discrete completely

stochastic

non-

interacting

Most other models in [Spielauer,

2007] (same purpose)

discrete discrete completely

stochastic

non-

interacting

Table 6.1: Classification of certain famous models with respect to our defined classes. The

models are regarded by their classic definition (i.e. any kind of modification of the model is

not considered). As most of the models don’t specify the model output we only consider the

classification with respect to the model’s state-space.





CHAPTER 7
Conclusion and Outlook

In the past chapters we introduced several methods to perform formal analysis of microscopic

models focused on the aggregated behaviour of the models. Hereby we established the following

contributions.

� First, we summarised and partially extended the state of the art with respect to mean-

field analysis focused on models in so-called soft sciences like sociology, epidemiology

or economy. This was done by statement of mean-field theorems (MFT) like the general

state-space MFT for microscopic models with static (Theorem 3.1) and dynamic (The-

orem 4.1) population and the theorem for the macroscopic description of the model’s

variance (Theorem 5.1). All other mean-field related corollaries in this work follow from

these three theorems.

� Moreover, we attempted to make mean-field approximation easier to apply for modellers

which are not so familiar with formal stochastic calculus. For this purpose we stated two

step-by-step processes (Sections 4.6.2 and 4.6.4), the first to establish a valid macroscopic

model given a microscopic one, the second for the inverse purpose. Both guide through

mean-field analysis by implicitly applying mentioned mean-field theorems. Main contri-

bution hereby was the derivation of the “correct questions” for these two instructions.

� Based on a number of chosen test-cases we underlined possible fields of direct application

for mean-field approximations. Hereby we specifically refer to the ability to test sensitivity

of specific microscopic parameters (Section 5.4.3), calibration of specific parameter values

(Section 5.6.3) and the acquisition of additional perspectives with respect to, especially

continuous, model output (Section 5.5.3 as well as Figures 5.28 and 5.30).

� Finally, a classification of microscopic models was derived to improve documentation

capabilities of microscopic models especially with respect to publication, presentation

and transfer of model definitions. We are convinced that the four classification parameters

improve the quality of describing a model by transferring a clearer picture of the model

itself, the challenges involved with it, and its behaviour, at least on the mean-field level.
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The current trend in modelling in correlated fields of research goes towards complete disregard

of the qualitative as well as quantitative behaviour of the model interpreted as a system by solely

using empirical and experimental methods for model development, calibration, verification and

validation. Hereby it gets more and more complicated to argue why and how microscopic simu-

lations are superior to (big-) data based approaches like machine-learning, regression modelling

or other statistical means (compare with more classical modelling approaches like differential-

or difference- equation modelling or stochastic processes). Consequently, decision makers will

more and more lose their trust in microscopic simulation models. Thus, tough research ques-

tions and therefore also involved microscopic models become growingly complex, we simply

cannot afford to blindly accept the fact that these models cannot be analysed with formal (math-

ematical) means anymore. As the top level goal, the present thesis aimed to motivate modellers

to perform formal analysis of their microscopic models as we are convinced that it is necessary.

We hope that hereby more and more microscopic models that are now considered as complex
or emergent will, in close future, lose their unexplainable “magic” by finding underlying formal

processes that enable their behavioural analysis.
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Appendix

A.0.1 Proof for the Dynamic General Mean-Field Theorem 4.1

Proof. In order to show the validity of the General Mean-Field Theorem (MFT) for Dynamic

Population 4.1 we will define an arbitrary microscopic model fulfilling the prerequisites 4.4.1

and compare it with a correlated model suitable to fulfil the prerequisites 4.3.1 of the classic

General MFT for Static Population 3.1. Proving that both models act alike on the aggregate

level, we will conclude that the first model fulfils the classic mean-field equation of the second

one. Finally, the General MFT for Static Population applied for the second model will be seen

to result in the equation stated in the General MFT for Dynamic Population.

We will perform the proof in several steps.

1. First of all an arbitrary population dynamic microscopic model M1 that fulfils the pre-

requisites 4.4.1 is taken into account for a limited time interval [0, tend]. Hence, M1(t) is

the state vector of a model consisting of a (large) number of individual agents I1i , each

assigned a dynamic state in a common state-space Γ1.

Based on initiallyN1
0 ∈ N, the number of agents is dynamic and there are rates that agents

change their state, are created or destroyed. We summarise according to 4.4.1

� ω : T × Γ× Γ× Rn → R+ – transition-kernel of an agent into a different state.

� d : T × Γ× Rn → R+ – death-kernel of an agent.

� c : T × Γ × Γ × Rn → R+ – local birth-kernel of an agent triggered by a different

agent.

� C : T × Γ× Rn → R+ – global birth-kernel of an agent.

2. Before we continue defining a correlated model fulfilling the conditions of the classic

mean-field theorem for static population, we introduce a specific measure which is re-
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quired for the definition: With

δX(t)(A) :=

N(t)∑
i=1

�A(Ii(t)) = X(A, t) (A.1)

a measure that counts the number of agents with state inside the given set A is defined. It

really is a measure in the mathematical sense as it is a finite sum of Dirac measures 1.4.

As all agents are random processes, so is δX(t)(A). Clearly∫
Γ
�A(x)dδX(t)(x) = X(A, t)

holds.

3. Now, let M2 denote a model consisting of a static number of individual agents I2i . With

the notation of the first step of the proof, we define M2 agents’ common state-space by

Γ2 := Γ1 ∪ {s†},
introducing an additional state s†. This state can be imagined as a fictional idle-state for

not yet created or already destroyed agents.

With a measure μ1 on Γ1 we define μ2(A) as μ1(A) if s† /∈ A and μ1(A \ {s†}) + 1
otherwise (i.e. an extension of the measure μ1 by the counting measure). Clearly, T 2 :=
[0, tend] is defined.

Moreover, we define a transition kernel ω2 of this population static model based on the

transition kernel of the dynamic model. We set

ω2(t, s, s1,
⇀x) := ω(t, s, s1,

⇀x) , s, s1 ∈ Γ1, (A.2)

ω2(t, s, s†,⇀x) := d(t, s,⇀x), ∀s ∈ Γ1, (A.3)

ω2(t, s†, s,⇀x) :=

∫
Γ1 c(t, s1, s,

⇀x)dδX2(t)(s1) + C(t, s,⇀x)

X({s†}, t) , ∀s ∈ Γ1, (A.4)

Note, that X̃(s†, t) is finite and equivalent with X({s†}, t) due to the introduced counting

measure, while the density X̃(s, t), s ∈ Γ1 might not even exist if the probability measure

does not fulfil the Radon-Nikodym Theorem 1.1 prerequisites.

Now choose a sufficiently large N2 > N1
0 , say

N2 := LN1
0 (A.5)

for some constant L > 1, and initialise that many agents Ii(0) according to the finite

density function

f2 : Γ2 → R+ : s �→ f2(s) =

{
N1

0
N2 f

1(x), s ∈ Γ1

L−1
L , x = s†

, (A.6)

wherein f1 denotes the initial density of the agents in M1. Finally, given the initial con-

ditions, model M2 is fully defined.



229

4. We analyse if M2 fulfil the prerequisites 4.3.1 of the population static MFT. We do that

using the same bullet points.

� The time set is an interval by definition.

� All agents are memoryless processes as all birth- and death- probabilities are defined

via rates. The processes are clearly separable and regular, as long as all kernel func-

tions are finite (which is given by the prerequisites of the population dynamic model)

and X({s†}, t) > 0. We will deal with the latter problem later on and assume that it

is fulfilled now.

� As all birth- and death- kernels only depend on the state of the agent itself and a

finite vector valued function of aggregated numbers, so is ω2 and hence all transition

probabilities. Note, that the dependence on the aggregated numbers has changed

now, as the integral (aggregation measure) and the division by X(s†, t) add addi-

tional dependencies on X . Note, that the dependence on X(s†, t) only appears in

the birth-kernel.

� The process is uniquely described by the transition rates

ω2(t, s, A) =

∫
A
ω2(t, s, s1)dμ(s1).

� By definition the rates have a kernel representation.

� By definition the initial states are given by an iid sequence of random numbers with

density function f2.

5. We investigate the resulting mean-field equation according to 3.1. For s ∈ Γ1 we obtain

d

dt
ϕ(s, t) =

∫
Γ2

ϕ(s1, t)ω(s1, s, t, ϕ)− ϕ(s, t)ω(s, s1, t, ϕ)dμ
2(s1)

=

∫
Γ1

ϕ(s1, t)ω(s1, s, t, ϕ)− ϕ(s, t)ω(s, s1, t, ϕ)dμ
2(s1)

+

∫
{s†}

ϕ(s1, t)ω(s1, s, t, ϕ)− ϕ(s, t)ω(s, s1, t, ϕ)dμ
2(s1)

=

∫
Γ1

ϕ(s1, t)ω(s1, s, t, ϕ)− ϕ(s, t)ω(s, s1, t, ϕ)dμ
1(s1)

+ ϕ(s†, t)ω(s†, s, t, ϕ)− ϕ(s, t)ω(s, s†, t, ϕ)︸ ︷︷ ︸
=:I

. (A.7)

We evaluate the corresponding kernel elements of I for X = ϕ. As

δϕ(t)(A) = ϕ(A, t) =

∫
A
ϕ(s, t)dμ2(s)
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clearly ϕ(s, t) is a Radon Nikodym density of δϕ(t) w.r. to μ2. Hence

I = ϕ(s†, t)
(∫

Γ1 c(t, s1, s, ϕ)dδϕ(t)(s1) + C(t, s, ϕ)

ϕ(s†, t)

)
− ϕ(s, t)d(t, s, ϕ)

=

∫
Γ1

c(t, s1, s, ϕ)ϕ(s1, t)dμ
2(s1) + C(t, s, ϕ)− ϕ(s, t)d(t, s, ϕ).

Consequently, the population static mean-field equation for M2 (limited to Γ1) is equiva-

lent to the stated equation in the population dynamic model. Also the initial condition

ϕ(s, 0) = N2f2(s) = N2N
1
0

N2
f1(s) = N1

0 f
1(s)

suits.

6. In order to finally prove that the stated theorem is correct, it remains to show that model

M1 and M2 (restricted to Γ1) behave alike on the aggregated level - i.e. that

P (X1(A, t+ h) = y(A)|X1(A, t) = x(A))

= P (X2(A, t+ h) = y(A)|X2(A, t) = x(A)) (A.8)

for all natural number -valued measures x, y : Aσ(Γ
1) → N, h > 0 and all A ∈ Γ1.

7. The first (and probably most important) observation is that we only need to prove (A.8) for

arbitrarily small h, as both models operate memoryless. Hence, we may choose h small

enough to guarantee, that at maximum one state-change has happened in the time interval

[t, t+ h]. Consequently, we only have to consider (A.8) with

a) y(A) = x(A),

b) y(A) =

{
x(A), s /∈ A

x(A) + 1, s ∈ A
for some s ∈ Γ1,

c) y(A) =

{
x(A), s /∈ A

x(A)− 1, s ∈ A
for some s ∈ Γ1, and

d) y(A) =

⎧⎪⎪⎨
⎪⎪⎩

x(A), s /∈ A, s1 /∈ A
x(A), s ∈ A, s1 ∈ A

x(A)− 1, s ∈ A, s1 /∈ A
x(A) + 1, s /∈ A, s1 ∈ A

for some s, s1 ∈ Γ1,

as only one agent may have changed its state, is born or died during the small time interval

[t, t+ h]. We will only consider b)-d) as the validity of a) follows from the validity of the

others by the Theorem of Total Probability.
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b) For model M1 case b) is only possible if one additional agent is born which may be

caused by any of the other agents or by the overall system. It calculates to

P (X1(A, t+ h) = y(A)|X1(A, t) = x(A)) = P (A new agent in s is born)

=

N1(t)∑
i=1

P (agent i gave birth to an agent with state s)P (no other events)

+ P (the system gave birth to an agent with state s)P (no other events occurred)

As, by definition, the probability that two or more events occur in a finite time inter-

val is O(h2) the probability that “no other events occur”

P (no other events occurred) = 1−O(h2).

Moreover,

P (agent i gave birth to an agent with state s)

= P (τ start
N1(t)+1 = t+ h, IN1(t)+1(t+ h) = s|Ii(t))

= h · c(t, Ii(t), s) +O(h2)

and

P (the system gave birth to an agent with state s)

= P (τ start
N1(t)+1 = t+ h, IN1(t)+1(t+ h) = s)

= h · C(t, s) +O(h2)

by definition. Thus

P (X1(A, t+ h) = y(A)|X1(A, t) = x(A))

= h

⎛
⎝N1(t)∑

i=1

c(t, Ii(t), s) + C(t, s)

⎞
⎠+O(h2)

= h

⎛
⎝N1(t)∑

i=1

∫
Γ1

c(t, s1, s)dδIi(t)(s1) + C(t, s)

⎞
⎠+O(h2)

= h

(∫
Γ1

c(t, s1, s)dδX1(t)(s1) + C(t, s)

)
+O(h2),

by definition of the aggregation measure (A.1) based on the Dirac measure 1.4.
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The correspondent change of the aggregated number in model M2 is gained by a

state transition from s† to some state in A. Hence

P (X2(A, t+ h) = y(A)|X2(A, t) = x(A))

=
∑

i:Ii(t)=s†

P (agent i switches to s)

=
∑

i:Ii(t)=s†

h · ω2(t, s†, s) +O(h2)

= X({s†}, t)h
(∫

Γ1 c(t, s1, s)dδX2(t)(s1) + C(t, s)

X({s†}, t)

)
+O(h2)

= h

(∫
Γ1

c(t, s1, s)dδX2(t)(s1) + C(t, s)

)
+O(h2).

Hence

P (X2(A, t+ h) = y(A)|X2(A, t) = x(A))

= P (X1(A, t+ h) = y(A)|X1(A, t) = x(A)) +O(h2).

for all A ∈ Γ1. As h was chosen arbitrarily small, the terms corresponding to h2 can

be neglected. Hence, the probabilities for case b) are equivalent in both models.

b) Case c) in model M1 corresponds to the death of one agent in state s. Consequently,

P (X1(A, t+h) = x(A)−1|X1(A, t) = x(A)) = P (An agent with state s died)

=
∑

i:I1i (t)∈A
P (agent i died|I1i (t) = s)P (no other events occurred)

∑
i:I1i (t)=s

P (τ
stop
i = t+ h|I1i (t) = s)P (no other events occurred) =

=
∑

i:I1i (t)=s

h · d(t, s) +O(h2)

The analogous probability in model M2 corresponds to a state change from s to s†.
It calculates to

P (X2(A, t+ h) = y(A)|X2(A, t) = x(A)) =

=
∑

i:I2i (t)=s

P (I2i (t+ h) = s†|I2i (t) = s)P (no other events occurred)

=
∑

i:I2i (t)=s

hω(t, s, s†) +O(h2)

=
∑

i:I2i (t)=s

h · d(t, s) +O(h2)
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So the two regarded probability measures for case c) are equivalent up to O(h2) as

well.

b) Case d) follows trivially as the transition rates for a state change within Γ1 are equiv-

alent in both models.

We have proven that both models behave alike on the aggregated level, in the sense that

for any two aggregation measures x, y the transition probability for both models from x to

y are equivalent for small h. As both models evolve memoryless, both models also evolve

alike on the aggregated level.

Hence, the population-dynamic mean-field equation (4.35) which was valid for modelM2

also holds for model M1, restricted to Γ1.

8. Finally the proof of this Theorem is only valid, if the creation rate c(t, s, A) is a finite

function which implies that X({s†}, t) is greater than 0 at all times during the simulation.

This leads to two final remarks:

� The Mean-Field Theorem is valid for finite time sets only. Only this way, N1(t) <
∞ and therefore N2 < ∞ can be assured for all times t which is required for the

convergence statement in the population-static theorem.

� The more agents are created during the simulation process, the higher L with N2 =
LN1

0 has to be chosen. As the error, of the population-static mean-field theorem de-

pends on the total number of (static) agents, also the error of the population dynamic

theorem in principle depends on N2 and, hence, on L. Consequently, the population

dynamics model will not converge well towards the mean-field equation if N1
0 is

small while c(t, s, s1) or C(t, s) is large.

�
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A.0.2 Proof for the Discrete-Space Variance Theorem 5.1

Proof. Let

⇀

X(t) := (X({si}, t))Ni=1 :=

⎛
⎝ N∑

j=1

�{si}(Ij(t))

⎞
⎠N

i=1

(A.9)

denote the vector-valued aggregated number of a formalised microscopic model with static pop-

ulation according to 1.1 with N agents and state-space

Γ := {s1, . . . , sn} (A.10)

that fulfils the prerequisites 4.3.1. Moreover, let

ω(t, i, j,
⇀

X) := ω(t, si, sj ,
⇀u(

⇀

X, t)) (A.11)

denote the agents’s transition rates. By statement of the prerequisites there exists a Taylor de-

composition of the form

ω(t, i, j,
⇀

X) = ω(t, i, j,
⇀

φ) +
(
⇀

X − ⇀

φ)T

N
∇ω(t, i, j,⇀φ) +O

(
|⇀X − ⇀

φ|2
N2

H(ω)

)
(A.12)

with finite nabla ∇ω and Hessian matrix H(ω), wherein

⇀

φ := E(
⇀

X(t)). (A.13)

By statement of Theorem 3.1 we already know that |⇀X − ⇀

φ| = O(
√
N) which makes the first

order term of the decomposition

(
⇀

X − ⇀

φ)

N
∇ω(t, i, j,⇀ψ) = O(N−1/2). (A.14)

The second order term is O(N−1). For fixed i, j and t ∈ T investigate the temporal change of

the covariance for small h > 0. By linearity of the covariance we receive

Cov(
⇀

Xi(t+ h),
⇀

Xj(t+ h))− Cov(
⇀

Xi(t),
⇀

Xj(t))

= Cov(
⇀

Xi(t+ h),
⇀

Xj(t+ h))− Cov(
⇀

Xi(t+ h),
⇀

Xj(t))

+ Cov(
⇀

Xi(t+ h),
⇀

Xj(t))− Cov(
⇀

Xi(t),
⇀

Xj(t))

= Cov(
⇀

Xi(t+ h),
⇀

Xj(t+ h)− ⇀

Xj(t)) + Cov(
⇀

Xi(t+ h)− ⇀

Xi(t),
⇀

Xj(t))

= Cov(
⇀

Xi(t+ h),
⇀

Xj(t+ h)− ⇀

Xj(t))− Cov(
⇀

Xi(t),
⇀

Xj(t+ h)− ⇀

Xj(t))

+ Cov(
⇀

Xi(t),
⇀

Xj(t+ h)− ⇀

Xj(t)) + Cov(
⇀

Xi(t+ h)− ⇀

Xi(t),
⇀

Xj(t))

= Cov(
⇀

Xi(t+ h)− ⇀

Xi(t),
⇀

Xj(t+ h)− ⇀

Xj(t))︸ ︷︷ ︸
=:I

+ Cov(
⇀

Xi(t),
⇀

Xj(t+ h)− ⇀

Xj(t))︸ ︷︷ ︸
=:II

+Cov(
⇀

Xi(t+ h)− ⇀

Xi(t),
⇀

Xj(t))︸ ︷︷ ︸
=:III

. (A.15)
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We aim to divide above equation by h and apply the limit h → 0. Hereby an equation for the

right-sided differential quotient is derived. As it is easily seen that the same equation follows for

the left-sided differential equation, a differential equation system for Cov(
⇀

Xi,
⇀

Xj) with i, j ∈
{1, . . . , n} is derived.

1. We initially fix i �= j and deal with the opposite case later.

I = Cov(
⇀

Xi(t+ h)− ⇀

Xi(t),
⇀

Xj(t+ h)− ⇀

Xj(t))

= E((
⇀

Xi(t+ h)− ⇀

Xi(t))(
⇀

Xj(t+ h)− ⇀

Xj(t)))︸ ︷︷ ︸
=:Ia

− E(
⇀

Xi(t+ h)− ⇀

Xi(t))E(
⇀

Xj(t+ h)− ⇀

Xj(t))︸ ︷︷ ︸
=:Ib

By the Theorem of Total Expectation (see 1.5) we may iterate expected values: We assume

that the state of the vector is known at t and write

Ia = E
(
E((

⇀

Xi(t+ h)− ⇀

Xi(t))(
⇀

Xj(t+ h)− ⇀

Xj(t)))|⇀X(t))
)

As h may be chosen arbitrarily small, we only need to consider the state change of one

agent during the observed time-period h. Hence, the aggregated number vector can only

be reduced by 1 at one index, while it is increased by 1 at a certain other index. Necessarily

the vector at all other indices needs to keep its value. Consequently, the inner expected

value can only be non-zero if either one of the agents in state si switched to sj or vice versa

(Note, that this is different for i = j). In both cases the inner expected value becomes −1

Ia = E
(−P (switch from i to j|⇀X(t))− P (switch from j to i|⇀X(t))

)
.

As any of
⇀

Xj(t) agents might switch from i to j the corresponding probability calculates

to

P (switch from i to j|⇀X(t))

=
⇀

Xi(t)P (I(t+ h) = sj |I(t) = si,
⇀

X(t))P (all others keep their state).

Note, that we may set probability that all other agents keep their state to 1 as we consider

arbitrarily small h. As

P (I(t+ h) = sj |I(t) = si,
⇀

X(t))

h
−→
h→0

ω(t, i, j,
⇀

X),

we get
Ia

h
−→
h→0

−E(
⇀

Xi(t)ω(t, i, j,
⇀

X))− E(
⇀

Xj(t)ω(t, j, i,
⇀

X)). (A.16)

As

ω(t, i, j,
⇀

X) = ω(t, i, j,
⇀

φ) +O(N−1/2),
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and
⇀

Xi/j = O(N) we get

Ia

h
−→
h→0

−E(
⇀

Xi(t))ω(t, i, j,
⇀

φ)− E(
⇀

Xj(t))ω(t, j, i,
⇀

φ) +O(N)O(N−1/2)

= −⇀

φiω(t, i, j,
⇀

φ)− ⇀

φjω(t, j, i,
⇀

φ) +O(
√
N).

Part Ib is very simple to deal with. As both, E(
⇀

Xi(t + h) − ⇀

Xi(t)) and E(
⇀

Xj(t + h) −
⇀

Xj(t)) converge to 0 linearly with h, their product converges quadratic. Hence

Ib

h
−→
h→0

0.

As a result
I

h
−→
h→0

−⇀

φiω(t, i, j,
⇀

φ)− ⇀

φjω(t, j, i,
⇀

φ) +O(
√
N). (A.17)

2. Clearly, parts II and III can be modified analogously. We start with II . By the Law of

Total Covariance (also see 1.5) we receive

II = Cov(
⇀

Xi(t),
⇀

Xj(t+ h)− ⇀

Xj(t))

= E(Cov(
⇀

Xi(t),
⇀

Xj(t+ h)− ⇀

Xj(t)|⇀X(t)))︸ ︷︷ ︸
=:IIa

+ Cov(E(
⇀

Xi(t)|⇀X(t))),E(
⇀

Xj(t+ h)− ⇀

Xj(t)|⇀X(t)))︸ ︷︷ ︸
=:IIb

.

Part IIa can easily be seen to be zero as knowing
⇀

X(t) leads to perfect knowledge of
⇀

Xi(t) (compare 1.5). For the same reasons

E(
⇀

Xi(t)|⇀X(t)) =
⇀

Xi(t).

Hence, II = IIb and can be written to

II = Cov(
⇀

Xi(t),E(
⇀

Xj(t+ h)− ⇀

Xj(t)|⇀X(t))︸ ︷︷ ︸
=:IIc

).

The value inside the conditional expected value IIc can be 0, 1 or −1 of which only the

latter two cases need to be considered for its calculation. With similar ideas as in Ia we

get

E(
⇀

Xj(t+ h)− ⇀

Xj(t)|⇀X(t))

= P (switch from any state to j|⇀X(t))− P (switch from j to any state|⇀X(t))

=

n∑
k=1,k �=i

⇀

Xk(t)P (I(t+ h) = sj |I(t) = sk,
⇀

X(t))

−
n∑

k=1,k �=i

⇀

Xj(t)P (I(t+ h) = sk|I(t) = sj ,
⇀

X(t))
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and

IIc

h
−→
h→0

n∑
k=1,k �=i

⇀

Xk(t)ω(t, k, j,
⇀

X)− ⇀

Xj(t)ω(t, j, k,
⇀

X)

=

d∑
k=1

⇀

Xk(t)ω(t, k, j,
⇀

X)− ⇀

Xj(t)ω(t, j, k,
⇀

X).

Using the linearity of the covariance this leads to

II

h
−→
h→0

d∑
k=1

Cov(
⇀

Xi(t),
⇀

Xk(t)ω(t, k, j,
⇀

X))− Cov(
⇀

Xi(t),
⇀

Xj(t)ω(t, j, k,
⇀

X)). (A.18)

In order to finally close the equation system we need to “drag” the ω parts out of the

covariances. Therefore, we use Taylor decomposition of the terms
⇀

Xk(t)ω(t, k, j,
⇀

X) at
⇀

X =
⇀

φ. Note, that by Theorem 3.1 still

�

⇀

φ = O(N),
⇀

X = O(N),

� V(X) = O(N), and

� |⇀X − ⇀

φ| = O(N1/2)

hold asymptotically. By the product law and the stated Taylor-decomposition of ω we get

⇀

Xk(t)ω(t, k, j,
⇀

X) =
(⇀
φk(t) + (

⇀

Xk(t)− ⇀

φk(t))
)
ω(t, k, j,

⇀

X)

=
(⇀
φk(t) + (

⇀

Xk(t)− ⇀

φk(t))
)(

ω(t, k, j,
⇀

φ) +
(
⇀

X(t)− ⇀

φ(t))

N
∇ω(t, k, j,⇀φ) +O(N−1)

)

=
⇀

φk(t)ω(t, k, j,
⇀

φ)

+ (
⇀

X(t)− ⇀

φ(t))T ·
⎛
⎝(0, . . . , 0, 1︸︷︷︸

k

, 0, . . . , 0)Tω(t, k, j,
⇀

φ) +
⇀

φk(t)
∇(ω(t, k, j,

⇀

φ))

N

⎞
⎠

+(
⇀

X(t)−⇀

φ(t))T ·

⎛
⎜⎜⎝(

⇀

0 , . . . , 2
∇(ω(t, k, j,

⇀

φ))

N︸ ︷︷ ︸
k

, . . . ,
⇀

0)T +O(N−1)

⎞
⎟⎟⎠

︸ ︷︷ ︸
O(N−1)

·(⇀

X(t)−⇀

φ(t)).

(A.19)

Clearly, the covariance applied on this term can be used on all summands separately for

its multilinearity property.

Applying Cov(
⇀

Xk, ·) on the second order parts of the Taylor decomposition we obtain

terms in form of

Cov(
⇀

Xk, (
⇀

X l − ⇀

φl)(
⇀

Xm − ⇀

φm))O(N−1). (A.20)
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Using the Cauchy-Schwartz inequality and the Theorem of Steiner we obtain

Cov(
⇀

Xk, (
⇀

X l − ⇀

φl)(
⇀

Xm − ⇀

φm)) ≤
√
V(

⇀

Xk)V((
⇀

X l − ⇀

φl)(
⇀

Xm − ⇀

φm))

=
√
O(N)

(
E((

⇀

X l − ⇀

φl)2(
⇀

Xm − ⇀

φm)2)− E((
⇀

X l − ⇀

φl)(
⇀

Xm − ⇀

φm))2
)

≤
√
O(N)E((

⇀

X l − ⇀

φl)2(
⇀

Xm − ⇀

φm)2)

=

√
O(N)E

(
O(

√
N)2O(

√
N)2

)
)

=
√

O(N)O(N2) = O(N3/2).

Hence, these terms have asymptotic order O(N3/2)/N = O(
√
N).

The zero order term of the Taylor decomposition vanishes as it is deterministic

Cov(
⇀

Xk,
⇀

φk(t)ω(t, k, j,
⇀

φ)) = Cov(
⇀

Xk, 1)
⇀

φk(t)ω(t, k, j,
⇀

φ) = 0. (A.21)

Hence, only the first order terms of the Taylor decomposition remain. As Cov(
⇀

Xk,
⇀

X −
⇀

φ) = Cov(
⇀

Xk,
⇀

X)− Cov(
⇀

Xk,
⇀

φ) = Cov(
⇀

Xk,
⇀

X)− 0 the first order terms can be calcu-

lated to

Cov(
⇀

Xi(t),
⇀

Xk(t)ω(t, k, j,
⇀

X))

= Cov(
⇀

Xi(t),
⇀

Xk(t))ω(t, k, j,
⇀

φ)

+

n∑
m=1

Cov(
⇀

Xi(t),
⇀

Xm(t))

⇀

φk(t)

N

∂ω(t, k, j,
⇀

φ)

∂
⇀
Xm

N

+O(
√
N).

Consequently

II

h
−→
h→0

d∑
k=1

Cov(
⇀

Xi,
⇀

Xkω(t, k, j,
⇀

X))− Cov(
⇀

Xi,
⇀

Xjω(t, j, k,
⇀

X))

=

d∑
k=1

Cov(
⇀

Xi,
⇀

Xk)ω(t, k, j,
⇀

φ)− Cov(
⇀

Xi,
⇀

Xj)ω(t, j, k,
⇀

φ)

+

d∑
m=1

Cov(
⇀

Xi(t),
⇀

Xm(t))

d∑
k=1

(
⇀

φk(t)

N

∂ω(t, k, j,
⇀

φ)

∂
⇀
Xm

N

−
⇀

φj(t)

N

∂ω(t, j, k,
⇀

φ)

∂
⇀
Xm

N

)
+O(

√
N).

(A.22)
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Analogously for part III we receive

III

h
−→
h→0

d∑
k=1

Cov(
⇀

Xj ,
⇀

Xkω(t, k, i,
⇀

X))− Cov(
⇀

Xj ,
⇀

Xiω(t, i, k,
⇀

X))

=

d∑
k=1

Cov(
⇀

Xj ,
⇀

Xk)ω(t, k, i,
⇀

φ)− Cov(
⇀

Xj ,
⇀

Xi)ω(t, i, k,
⇀

φ)

+

d∑
m=1

Cov(
⇀

Xj(t),
⇀

Xm(t))
d∑

k=1

(
⇀

φk(t)

N

∂ω(t, k, i,
⇀

φ)

∂
⇀
Xm

N

−
⇀

φi(t)

N

∂ω(t, i, k,
⇀

φ)

∂
⇀
Xm

N

)
+O(

√
N)

(A.23)

3. Finally putting I, II and III together we obtain the equation

lim
h→∞

Cov(
⇀

Xi(t+ h),
⇀

Xj(t+ h))− Cov(
⇀

Xi(t),
⇀

Xj(t))

h

= −⇀

φi(t)ω(t, i, j,
⇀

φ)− ⇀

φj(t)ω(t, j, i,
⇀

φ)

+

d∑
k=1

Cov(
⇀

Xi(t),
⇀

Xk(t))ω(t, k, j,
⇀

φ)− Cov(
⇀

Xi(t),
⇀

Xj(t))ω(t, j, k,
⇀

φ)

+

d∑
k=1

Cov(
⇀

Xj(t),
⇀

Xk(t))ω(t, k, i,
⇀

φ)− Cov(
⇀

Xj(t),
⇀

Xi(t))ω(t, i, k,
⇀

φ)

+

d∑
m=1

Cov(
⇀

Xi(t),
⇀

Xm(t))

d∑
k=1

(
⇀

φk(t)

N

∂ω(t, k, j,
⇀

φ)

∂
⇀
Xm

N

−
⇀

φj(t)

N

∂ω(t, j, k,
⇀

φ)

∂
⇀
Xm

N

)

+

d∑
m=1

Cov(
⇀

Xj(t),
⇀

Xm(t))
d∑

k=1

(
⇀

φk(t)

N

∂ω(t, k, i,
⇀

φ)

∂
⇀
Xm

N

−
⇀

φi(t)

N

∂ω(t, i, k,
⇀

φ)

∂
⇀
Xm

N

)

+O(
√
N). (A.24)

Clearly, limh→∞
Cov(

⇀
Xi(t),

⇀
Xj(t))−Cov(

⇀
Xi(t−h),

⇀
Xj(t−h))

h leads to the same equations which

makes
⇀

X steadily differentiable. Hence, we found a differential equation for Cov(
⇀

Xi,
⇀

Xj)
which is fulfilled up to an error of

√
N . As the solution ⇀ϕ(t) of the mean-field equation

4.42 approximates
⇀

φ(t) = E(
⇀

X(t)) with the same asymptotic error, we can replace
⇀

φ
in (A.24) by ⇀ϕ without increasing the error order. As solutions of differential equations

depend steadily on the equation parameters (compare with the Lemma of Gronwall) any
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solution ξi,j(t) of the system

d

dt
ξi,j(t) = −⇀ϕi(t)ω(t, i, j,

⇀ϕ)− ⇀ϕj(t)ω(t, j, i,
⇀ϕ)

+

d∑
k=1

ξi,k(t)ω(t, k, j,
⇀ϕ(t))− ξi,j(t)ω(t, j, k,

⇀ϕ(t))

+

d∑
k=1

ξj,k(t)ω(t, k, i,
⇀ϕ(t))− ξj,i(t)ω(t, i, k,

⇀ϕ(t))

+

d∑
m=1

ξi,m(t)
d∑

k=1

(
⇀ϕk(t)

N

∂ω(t, k, j,⇀ϕ)

∂
⇀
Xm

N

−
⇀ϕj(t)

N

∂ω(t, j, k,⇀ϕ)

∂
⇀
Xm

N

)

+

d∑
m=1

ξj,m(t)

d∑
k=1

(
⇀ϕk(t)

N

∂ω(t, k, i,⇀ϕ)

∂
⇀
Xm

N

−
⇀ϕi(t)

N

∂ω(t, i, k,⇀ϕ)

∂
⇀
Xm

N

)
(A.25)

with ξi,j(0) = Cov(
⇀

Xi(0),
⇀

Xj(0)) approximates the covariance curve Cov(
⇀

Xi(t),
⇀

Xj(t))
with error depending on

√
N . As V(

⇀

X) = O(N) this error comparably vanishes on the

scale of the (co-)variance.

4. It remains to discuss the case i = j. Hereby only part I is going to change as the expected

value in

I = E
(
E((

⇀

Xi(t+ h)− ⇀

Xi(t))(
⇀

Xj(t+ h)− ⇀

Xj(t)))|⇀X(t))
)

= E
(
E((

⇀

Xi(t+ h)− ⇀

Xi(t))(
⇀

Xi(t+ h)− ⇀

Xi(t)))|⇀X(t))
)

can either be 1 if an agent switched from any other state to state si or (−1)2 = 1 if an

agent switched from si to any other state. Consequently, we obtain

E((
⇀

Xi(t+ h)− ⇀

Xi(t))(
⇀

Xi(t+ h)− ⇀

Xi(t)))|⇀X(t))

=
n∑

k=1,k �=j

⇀

Xk(t)P (I(t+ h) = si|I(t) = sk,
⇀

X(t))

+

n∑
k=1,k �=j

⇀

Xi(t)P (I(t+ h) = sk|I(t) = si,
⇀

X(t))

and

E((
⇀

Xi(t+ h)− ⇀

Xi(t))(
⇀

Xi(t+ h)− ⇀

Xi(t)))|⇀X(t))

h
−→
h→0

=

n∑
k=1,k �=i

⇀

Xk(t)ω(t, k, i,
⇀

X) +
⇀

Xi(t)ω(t, i, k,
⇀

X)

=

n∑
k=1

(⇀

Xk(t)ω(t, k, i,
⇀

X) +
⇀

Xi(t)ω(t, i, k,
⇀

X)
)− 2

⇀

Xi(t)ω(t, i, i,
⇀

X).
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Applying the Taylor approximation we obtain

I

h
−→
h→0

n∑
k=1

(⇀
φk(t)ω(t, k, i,

⇀

φ) +
⇀

φi(t)ω(t, i, k,
⇀

X)
)− 2

⇀

φi(t)ω(t, i, i,
⇀

φ).

The right part of this term matches part I of the i �= j case applied to i = j. For this

reason we may finally write the complete differential equation system using an indicator

function:

d

dt
ξi,j(t) = −⇀ϕi(t)ω(t, i, j,

⇀ϕ)− ⇀ϕj(t)ω(t, j, i,
⇀ϕ)

+ �i(j)

n∑
k=1

⇀ϕk(t)ω(t, k, i,
⇀ϕ(t)) + ⇀ϕi(t)ω(t, i, k,

⇀ϕ(t))

+

d∑
k=1

ξi,k(t)ω(t, k, j,
⇀ϕ(t))− ξi,j(t)ω(t, j, k,

⇀ϕ(t))

+

d∑
k=1

ξj,k(t)ω(t, k, i,
⇀ϕ(t))− ξj,i(t)ω(t, i, k,

⇀ϕ(t))

+

d∑
m=1

ξi,m(t)

d∑
k=1

(
⇀ϕk(t)

N

∂ω(t, k, j,⇀ϕ)

∂
⇀
Xm

N

−
⇀ϕj(t)

N

∂ω(t, j, k,⇀ϕ)

∂
⇀
Xm

N

)

+

d∑
m=1

ξj,m(t)
d∑

k=1

(
⇀ϕk(t)

N

∂ω(t, k, i,⇀ϕ)

∂
⇀
Xm

N

−
⇀ϕi(t)

N

∂ω(t, i, k,⇀ϕ)

∂
⇀
Xm

N

)
(A.26)

5. Finally we deal with the initial condition. Let
⇀

f denote the distribution of the initial states

of the agents which are independent by definition, then

Cov(
⇀

Xi(0),
⇀

Xj(0)) = Cov

(
N∑
k=1

�i(Ik(0)),
N∑
l=1

�j(Il(0))

)

=

N∑
k=1

N∑
l=1

Cov (�i(Ik(0)),�j(Il(0))) =

N∑
k=1

Cov (�i(Ik(0)),�j(Ik(0)))

=
N∑
k=1

E (�i(Ik(0))�j(Ik(0)))− E(�i(Ik(0)))E(�j(Ik(0)))

=

N∑
k=1

E (�i(Ik(0))�j(Ik(0)))− P (Ik(0) = si)P (Ik(0) = sj)

=
N∑
k=1

E (�i(Ik(0))�j(Ik(0)))− ⇀

f i
⇀

f j .
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For i �= j the product in the first expected value can never be non-zero as Ik(0) cannot

have both states si and sj . For i = j the expected value equals the probability that

Ik(0) = si which is equivalent with
⇀

f i by definition. As, finally, the summands do not

depend on the index anymore, it resolves to a multiplication with N . Thus

Cov(
⇀

Xi(0),
⇀

Xj(0)) = �i(j)Nfi − fifj . (A.27)

�
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