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Kurzfassung

In der mathematischen Modellierung �okonomischer Ph�anomene erfreuen sich
analytische Modelle, die das Vorhandensein eines stabilen Gleichgewichtszu-
standes postulieren gro�er Beliebtheit. Dabei wird meist unterstellt, dass die
den Systemzustand de�nierenden Gr�o�en sich allm�ahlich dem Gleichgewicht
ann�ahern, und anschlie�end in dieser Ruhelage verharren. Weiters wird oft
davon ausgegangen, dass sich die handelnden Wirtschaftssubjekte stets voll-
kommen rational verhalten | d.h. dass sie stets die Entscheidungen tre�en,
die ihren Nutzen maximieren.

Zur Modellierung von Wirtschaftssystemen, die einem st�andigen und sich
fortlaufend beschleunigenden Wandel unterworfen sind, sowie zur Beschrei-
bung von Individuen, die nicht nur mit Intelligenz, sondern auch mit Emotio-
nen ausgestattet sind, sind solche Ans�atze nur sehr eingeschr�ankt geeignet.
Deshalb macht die Theorie der komplexen adaptiven Systeme von Computer-
simulationen Gebrauch, deren erfolgreiche Implementierung nicht notwendi-
gerweise mit der Existenz von Gleichgewichten bzw. von vollkommen rational
handelnden Agenten zusammenh�angt.

In der vorliegenden Arbeit werden zun�achst die Notwendigkeit und die
Zweckm�a�igkeit des Einsatzes von komplexen adaptiven Systemen zur Be-
schreibung aktueller wirtschaftlicher Vorg�ange er�ortert. Anschlie�end werden
Methoden, die zur Implementierung solcher Systeme geeignet sind erl�autert.
Insbesondere wird dabei ausf�uhrlich auf Classi�er Systeme und genetische Al-
gorithmen eingegangen. Zur Illustration der Einsatzm�oglichkeiten bzw. der
Grenzen des Einsatzes dieser Verfahren dienen einige daran anschlie�ende
Beispiele. Auf diesen Ausf�uhrungen aufbauend werden zwei umfangreiche
betriebswirtschaftliche Modelle formuliert.

Das erste Modell behandelt das Problem der Kommunikation innerhalb
eines Betriebes, der ein neues Produkt entwickelt. In gro�en Unternehmen
stellt die Gestaltung eines e�ektiven und eÆzienten Informations
usses ei-
ne gro�e Herausforderung dar. Weiters treten in verteilten Entscheidungs-
prozessen mitunter einander widersprechende Ziele auf. In den Proze� der
Gestaltung eines neuen Produktes sind von der Marktforschung bis zur Ein-
lastungsplanung und Instandhaltung unz�ahlige Mitarbeiter mit unterschied-
lichen Sichtweisen und oftmals stark voneinander abweichendem Fachvoka-
bular involviert (siehe Abb. 4.1 auf S. 63).

Zur L�osung dieses Problems schlugen (Hauser and Clausing, 1988) ein
Kommunikationsschema vor, das sie ,,House of Quality\ nannten. In der
vorliegenden Arbeit wird eine darauf aufbauende Simulation, die in MAT-
LAB implementiert wurde, vorgestellt. Die Entscheidungstr�ager (die adap-
tiven Agenten) sind als Classi�er Systeme modelliert, und versuchen unter
Verwendung von genetischen Algorithmen eine sinnvolle Strategie zu lernen.
Zur Bewertung der so erzielten Ergebnisse ziehen wir die mittels vollst�andiger
Enumeration erhaltenen optimalen Strategien zum Vergleich heran. Es zeigt
sich, da� die genetischen Algorithmen tats�achlich in der Lage sind, brauchba-
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re Entscheidungsregeln zu generieren. Die so erzielten Regeln zeigen auf, wie
sich die verantwortlichen Individuen in unterschiedlichen Situation verhalten
sollten.

Im zweiten Modell wird ein heterogener Markt von substituierbaren
G�utern untersucht. Die Aufgabe der lernenden Agenten besteht darin, ih-
re Produkte so zu plazieren, dass sie von m�oglichst vielen Kunden gekauft
werden. Auf diesem Markt treten insgesamt vier Klassen von untereinan-
der konkurrierenden Agenten auf. Zwei dieser Gruppen beinhalten lernende
Agenten. Die erste Gruppe beobachtet die Positionen (= Bed�urfnisse) der
Kunden direkt. Die zweite Gruppe beobachtet die Positionen der Anbieter,
und die von ihnen erziehlten Gewinne. Aufgrund dieser Beobachtungen wer-
den die Entscheidungen f�ur die n�achste Verkaufsperiode getro�en. Weiters
gibt es eine Gruppe von Anbietern, die ihre Produkte gem�a� eines ,,random
walk\ im Markt positioniert, sowie einen Anbieter, der sich immer auf die
Position des in der Vorperiode erfolgreichsten Anbieters setzt.

Zum Vergleich dieser Strategien werden drei unterschiedliche Verhaltens-
muster auf Seiten der Kunden betrachtet: i) statisch, ii) zyklisch zwischen
zwei Zust�anden wechselnd und iii) random walk. Um gezielte Aussagen �uber
den Zusammenhang zwischen dem Kundenverhalten und dem Erfolg der
Strategie eines Anbieters zu erm�oglichen, weisen innerhalb einer Simulati-
on stets alle Kunden das gleiche Verhaltensmuster auf. Es zeigte sich, dass
in den F�allen i) und iii) die Strategie des Imitierens optimal ist | unter der
Voraussetzung, dass nur ein einziger Anbieter diese Strategie verfolgt. Ver-
halten sich die Kunden hingegen gem�a� ii), so sind die lernenden Agenten,
die die Kunden direkt beobachten, am erfolgreichsten (siehe Abb. 5.5 auf S.
92).
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Abstract

In the �eld of mathematical modelling of economic phenomena analytical
models, assuming the existence of a stable equilibrium, are very popular. It is
often expected, that the quantities de�ning the state of the system gradually
approach to the equilibrium, and remain there in the following. Moreover, it
is often assumed, that the interacting individuals behave perfectly rational
| i.e they always take those decisions, that maximize their utility.

Such approaches, however, have only limited suitability for modelling eco-
nomic systems subject to a permanent and succesively accelerated change.
Moreover, they are only partially capable to describe individuals that do not
only possess intelligence but also emotions. Therefore, the theory of com-
plex adaptive systems applies computer simulations whose implementations
does not necessaryly depend on the existence of equilibria or perfectly ratinal
agents.

At the beginning of this thesis the necessity and the practicality of the
employment of complex adaptive systems for describing recent economic hap-
penings is discussed. Then methods that are quali�ed to implement such sys-
tems | in particular classi�er systems and genetic algorithms | are being
explained. In the following some examples are provided to illustrate possi-
bilities and also restrictions of the usage of such procedures. Based on this
elaborations two comprehensive economic models are formulated.

The �rst model is about the problem of communication within a �rm
developing a new product. In big enterprises it is often a big challenge to
establish an e�ective and eÆcient 
ow of information. Moreover, in dis-
tributed decision making processes con
icting objectives may occur. Many
di�erent groups of employees are cooperating in the process of designing a
new product. The tasks reqired to successfully introduce a new product in-
volve employees from market research, engineering, scheduling, maintenance,
and many others (see �g. 4.1 on p. 63). These people may possess di�erent
viewpoints and di�erent technical languages.

To solve this problem (Hauser and Clausing, 1988) suggested a communi-
cation scheme called \House of Quality". This thesis introduces a simulation
based on the \House of Quality", which was implemented in MATLAB. The
decision makers are implemented as classi�er systems, and apply genetic algo-
rithms to learn a meaningful solution. To evaluate the rules generated by this
adaptive learning process, the obtained results are compared with the results
gained by full enumeration. It turns out that the genetic algorithms indeed
create pretty good decision rules. These rules illustrate how the responsible
individuals should react to the encountered situations.

The second model examines a heterogenous market of goods that can be
substituted for each other. The task of the learning agents is to place there
products in the market such that the number of customers who buy their
products is maximized. Four classes of di�erent agents occur in this market.
Two of these groups contain learning agents. The �rst group observes the
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positions (= the needs) of the customers directly. The second group observes
the positions of the suppliers and their pro�ts. The decisions for the next
planning period are based on these observations. Additionally, there is a
group of suppliers placing their products according to a \random walk", and
another supplier who always takes over the position of the most successful
seller of the previous period.

To compare these strategies three di�erent behaviour patterns of the de-
mand side are taken into consideration: i) static, ii) cyclic, and iii) random
walk. To allow accurate conclusions about the relation between customer be-
haviour and the success of a certain selling strategy, all the customers exhibit
the same behaviour pattern within one particular simulation. It turned out,
that in the cases i) and iii) the strategy of imitating the most successful seller
is optimal | under the assumption, that only one supplier follows that strat-
egy. If the customers behave according to ii), on the other hand, the agents
observing the customers directly are the winners (see �g. 5.5 on p. 92).
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Software tools

The simulations described in this thesis and most of the graphics were done
with the help of Matlab (5.2, 5.3, and 6.0). The typesetting and some of the
graphics were done with LATEX2e.
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Chapter 1

Introduction

Many methods used in today's management science are based on micro-
economic theory. Therefore, neoclassic approaches assuming that there exists
a stable equilibrium play a major role. Such approaches typically assume

1. perfect information about the analysed problem and its structure,

2. diminishing returns, and

3. only perfectly rational individuals.

However, in reality there are many situations in which these assumptions are
not ful�lled. Individuals lack complete information and di�erent participants
interpret the same information in a di�erent way. Moreover, individuals do
not always behave rational, both due to lacking abilities and due to lacking
motivations. This results in an increasing popularity of models taking into
account the e�ects of so-called bounded rationality. The second assumption
fails in case of network externalities.

Some of these models are very elegant from a mathematical point of view.
They may be appropriate for describing an agricultural or manufacturing
economy, but they are not at all suitable for a market determined by innova-
tion, change, and uncertainty. A typical neoclassical model is based on simple
assumptions about the individuals' behaviour. The bene�ts obtained by such
models are the mathematical proofs con�rming the results. The disadvantage,
however, is the restriction of the behaviour of the interacting agents to the
simple assumptions. If the assumptions exclude important aspects of the real
world, then the answers delivered by the model are irrelevant. In order to (at
least partially) overcome those shortcomings we will make use of computer
simulations based on assumptions that are too complex to be included into
a neoclassical analytical model. This gives us the chance to consider aspects
of learning, adaption, uncertainty and bounded rationality.

The remainder of this chapter is organized as follows. In section 1.1 some
thoughts about the shortcomings of neoclassical equilibrium-based economic
models are elaborated. In section 1.2 complex adaptive systems (CASs) are
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introduced as a tool to model dynamic markets determined by learning in-
dividuals in a more realistic way. Section 1.3 describes the second industrial
revolution which started in the nineties of the twentieth century. In section
1.4 some thoughts about the problems accompanying the increasing bulk
of information are formulated. Finally, in section 1.5 some arguments em-
phasizing the increasing importance of knowledge management in modern
enterprises are collected.

In chapter 2 classi�er systems (CSs) and genetic algorithms (GAs) are
discussed in detail as two possible tools to simulate CASs. Some examples
to illustrate the capabilities and limitations of these tools are given in chap-
ter 3. In chapter 4 we build and analyse a model to simulate the process of
developing new products in a big company consisting of departments with
partially con
icting interests. In chapter 5 we formulate a model of product
placement in a market with several competing vendors supplying highly re-
placeable products. The needs of the consumers cannot be observed directly
but only the sales of all the suppliers including the own sales. Therefore,
the process of adaption has to be capable of detecting indirect connections.
Finally, in chapter 6 we summarize the results obtained by our simulations,
draw some conclusions, and outline a couple of promising possible extensions
of the present work.

1.1 Shortcomings of equilibrium-based eco-

nomic models

The world in which we live is not static, nor does it converge to a stable-
state equilibrium at all. If it were, it would be almost impossible for a new
entrepreneur to succeed in a market segment that is already covered by big
suppliers with decades of experience. Innovation and growth cannot be ex-
plained as internal e�ects of an equilibrium-based model but just as a result
of random exogeneous shocks (see Beinhocker, 1997).

Bloomberg News for instance showed that it is possible for a newcomer to
outperform established competitors within a few years. What they did, was
reinventing existing services and providing additional features which were
experienced as additional values by the customers. Such changes which take
place in many lines of todays business usually do not occur within a math-
ematical framework based on equilibrium theory. Neither can such a frame-
work describe the appearance of deregulation, profound technological change,
industry convergence, globalisation, and increasing returns. The latter phe-
nomena for instance occur in internet business or telecommunication services
which ensures that even the second of the above assumptions (p. 1) must be
challenged.

To choose a certain strategy of any kind, the situation has to be analysed
�rst. Based on some observations one might choose an appropriate strategy
and, �nally, a decision (an action) is derived as an outcome of the chosen
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strategy. Managers must take into account such con
icting objectives as their
companies competitive situation, the needs of the customers, capital markets,
the regulatory environment, new technology, the structure of its industry, and
the strengths and weaknesses of itself as well as of its competitors. Having a
dominant strategy, however, is not enough. Another important aspect is the
ability to implement it. Hence, in the simulation in chapter 4 a weighted sum
of implementation costs and opportunity costs will be considered.

The long-run success of a company highly depends on the alignment be-
tween the abilities and the requirements for executing the strategies. Aspesi
and Vardhan (1999) distinguish two major kinds of strategies: transforma-
tional and operational. Transformational strategies are applied in an environ-
ment determined by signi�cant uncertainty. Such strategies often attempt to
change the game in the industry, and address substantial customer, chan-
nel, or competitive challenges. When the level of uncertainty is low, and the
company just tries to play the same old game better than the competition,
then the strategy is called operational. There is no global rule determining
or distinguishing which of the two kinds of strategies is better in general.
Neither is it possible to say which of the two is the easier way. It always
depends on the particular situation and the internal abilities.

In many business �elds changes of paradigms take place indicating the
transition from the old{world of business to the e-world of business. The
success of some of the so{called dot{coms is often due to their understand-
ing that although o�ering recent technology is important, business model
innovation can be the most important property determining global market
shares. Such business model innovations often include changes of paradigms
that do not only require transformations at the level of business processes
and process work
ows, but also fundamental alterations of the general busi-
ness model and the information 
ows between organizations and industries.
Many traditional companies that try to enhance their distribution channels
by entering into e-business encounter serious challenges in integrating their
physical and virtual value{ and supply{chains.

Two examples are given in (Aspesi and Vardhan, 1999). The �rst ad-
dresses the situation of gas and electric power industries. In the United States
| similarly to Europe | originally protected markets have become open to
competition. The customers have the choice among several suppliers and, on
the other hand, the suppliers are no more obliged to serve the customers with
a fully vertically integrated chain from production to supply. In California
these deregulations resulted in substantial instabilities in the supply of elec-
tricity. Nevertheless, this chapter addresses the challenges and opportunities
of a deregulation from the viewpoint of a supplier. Two types of reactions
are possible: transformational and operational.

Implementing an operational strategy could mean, for instance, to invest
in technological research to increase the eÆciency of power plants. Moreover,
many processes required for running and maintaining a power plant can be
improved to reduce costs and increase productivity. This could strengthen
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the competitive position and help to survive in the opened market. Choosing
a transformational strategy, on the other hand, could mean to improve the
position in the retail business. A provider originally limited to its local market
can think about selling energy to new groups of customers and, thus, take
pro�t from the deregulation of the formerly regulated market.

The second example deals with the changes in the US pharmaceutics in-
dustry, undertaken in the 1990s. Originally, patent protection excluded price
competition, and health insurances avoided the development of customers'
price sensitivity. Physicians, consuming the drug companies sales provisions,
took the decisions, and the consumers had no incentive to call that in ques-
tion. The appearance of managed health care suddenly jeopardized these
habits. Doctors were encouraged to use low-cost alternatives instead of the
well-known but costly brands. As a consequence, pro�ts and share prices of
drug companies decreased remarkably.

Similarily to the engergy business, again, an operational strategy may
be based on improving product research and sales. Reducing the time from
conception to clinical tests can help to defend market shares against alter-
native manufacturers. Hiring and educating a strong sales force will also
strengthen the competitiveness. A possible transformational strategy, on the
other hand, is to integrate vertically by purchasing a pharmacy bene�ts man-
ager. In reality, this was achieved by installing two committees for governing
a pharmaceutical company. The �rst one was responsible for operations and
the second for strategic decisions. One major task of the strategic division
was to evaluate the business portfolio and divest the majority of the noncore
business units. This, in turn, generated cash which was invested in the core
business.

According to Aspesi and Vardhan (1999) all of the four approaches men-
tioned in the previous paragraphs were successful in a real-world scenario.
Therefore, even when looking at one particular industry it is impossible to
determine, whether it is better to follow an operational or a transformational
approach. An organization can gain great power after recognizing, what it
does well and focusing on it. A strategy cannot be recommended, nor can it
be rejected without looking at the skills of the company that has to imple-
ment it. Both, operational and transformational strategies can result in an
outstanding performance in the same industry and at the same time.

Whenever an individual takes a decision based on information collected
one time step ago, the decision can only be optimal with respect to the
environment as it was one time step before. If, in the sequel, the individual
sticks to the strategy that was good with respect to the formerly observed
situation, the di�erence between the assumptions and reality becomes bigger
and bigger.

Thus, real world individuals usually do not stick to one strategy for a
long time. If they do, they will not survive within a changing environment.
Therefore, in the following we will elaborate on models that are capable of
describing environmental changes and learning individuals being confronted
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with limited information.

1.2 Complex adaptive systems

A dynamic market makes it diÆcult for the participants to maintain their
competitiveness and survive in the long-run. Companies with a lot of ex-
perience in their main business units might feel motivated to rely on their
strategies that have proven to be successful in the past. To survive dramatic
shifts of customers' tastes or sudden technological changes, a company must
be as good or even better at evolving as the environment. If the company is
not capable of performing the required level of evolution, then the market
will do it by the entry and exit of �rms. Therefore, companies that want to
remain successful within a dynamic environment have to keep on observing,
analysing, learning, and adopting continously. This process is illustrated in
�gure 1.1.
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Figure 1.1: The process of adaption

Moreover, they must be prepared to face a big variety of situations and
adopt their behaviour even when the system is in a state that has never
been experienced before. Companies' competitive survival and long lasting
sustenance highly depend on their ability to continuously rede�ne and adapt
organizational goals, purposes, and the organization's \way of doing things".
Therefore, it has been suggested that the role of senior management needs
to change from command and control to sense and response. The recent
dynamics of economic environments force market participants to put less
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emphasis on playing by prede�ned rules and more on understanding and
adapting as the rules of the game | as well as the game itself | keep
changing. Hence, a big bundle of optional strategies might be a valuable tool
in a modern economy. A market built up by many individuals of that kind
can be seen as a complex adaptive system (CAS). According to (Beinhocker,
1997) the main characteristics of CASs are:

open and dynamic: Only a closed system without external (exogeneous)
in
uences can tend to a stable-state equilibrium and persist there for
a lengthy time interval. In a CAS the individuals are always aware
of unpredictable changes and quickly adapt their behaviour whenever
such shifts are encountered. In �gure 1.1 external shocks (external from
the viewpoint of the considered individual) can originate from the cus-
tomers and from the competitors as well. The customers might change
their taste (e.g. yesterdays trendy items might run out of fashion today)
and their buying habits (people who went to the retailer on a regular
basis might get used to order products via internet). The competitors,
on the other hand, can perhaps launch a completely new technology
and, therefore, gain a sudden competitive advantage. The actions of
the illustrated adaptive company, on the other hand, are considered as
exogeneous shocks by the other agents.

interacting agents: Decisions taken by one agent have an impact on the
environment of all the agents and, in turn, they all have to adjust their
strategy to the new situation. Thus, when one agent, due to evolution,
changes her/his main strategy, this does not only e�ect the environ-
ment but also the evolution of the other agents. This causes the in-
herent dynamics of a CAS which makes it so unlikely to arrive to a
steady-state. Therefore, in �gure 1.1 there is an arrow pointing from
the decision block to the environment block. This indicates that the
agents decision does not only in
uence the outcome in the near fu-
ture (direct e�ects) but can also cause (or at least initiate) signi�cant
and long lasting changes of the whole system (indirect e�ects). A char-
acteristic example are the huge changes of stock prices. In a typical
classical model they can only be explained by external perturbations,
while in fact they are just a result of the investors' manners of trade or
expectations, respectively.

emergence and self-organisation: There is no central planner deciding
what and when things happen, but there are many intelligent individ-
uals taking their own decisions. Only the whole bundle of the partici-
pating individuals' actions and reactions can determine the behaviour
of the system. As a result it is very diÆcult to predict the dynamics of
a CAS.

Practical examples of CASs are cities (not located in a dictatorial country),
ecosystems, the internet, economies, and �rms with a fractal structure (see
excursion 1).
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Excursion 1 (Fractal �rm)

The reorganization of production processes by introducing independently
operating but connected working units can be seen as a central task of man-
agement in the post Taylor age. A mathematical view { in particular a fractal
geometrical view { can help to explain these new production structures.

The organization of working processes introduced by Taylor is based on
dividing big and complex processes in many small and simple steps. This
enables unskilled workers to learn their part of the big puzzle and do the
same task many times a day. As a consequence, eÆciency increases and mass
production of standardized goods becomes possible. Taylorism is characterized
by multi-layer hierarchies, low level of education and responsibility, growing
bureaucracy, low 
exibility, and �xed working times. In such a structure,
research and development has to be completely separated from production.
Moreover, high levels of inventory emerge due to the many bu�ers required
between the steps of the production.

Improved skills of contemporary employees, general movements towards
emancipation, higher complexity of products, and the increased demand for
customized products force companies to shift to an organization that supports
the creativity of the workers. Thus, the working process becomes more cus-
tomer oriented. Now, technological changes are no more introduced by a big
bang in the whole company at once, but in small steps at the group level. Each
working group operates like a company itself, taking the responsibility from
customers demands until delivering the �nished products. Optimization and
improvement is no more a task of top level management, but of the groups
themselves.

This kind of organization led to the keyword \fractal �rm", because a
small part of the company has the full functionality of the whole company
(see �gure 1.2). This is what such a fractal �rm has in common with the
objects known from fractal geometry.

The business is seen as a learning organism and must organize itself to
survive in the market competition. Consequently, each co-worker is service
oriented rather than looking only at his/her own task. In contrast to Tay-
lorism, higher levels of order are built up from the lower ones. This is only
possible, because the level of education increased rapidly since Henry Ford
installed the �rst conveyor belts.

Another reason, why microeconomics cannot always describe an economy,
is the shortcoming of human reasoning. In many situations humans are just
overtaxed, when they have to analyse all the information they have, transform
it to knowledge, think of all the connections that might exist, and �nally,
take the right decision taking into consideration several con
icting objectives.
Therefore, most individuals use their experience. They compare the current
situation with things that happened in the past, and guess which of their
rules created previously �ts best to the new problem. This even quali�es
such models to explain, why two individuals facing the same pattern of recent
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Figure 1.2: The structure of a fractal �rm

information behave di�erently due to their di�erent experience. In a classical
microeconomic model such e�ects are very diÆcult to give reason for.

Human beings often use induction instead of deduction, and that's ex-
actly, what agents in CASs are doing. Both, the real-world individuals and
the agents in CASs, try to recognize patterns and develop and apply in-
ductive rules of thumb. This even works in case of incomplete or changing
information. Most of the time not even all the available information is actu-
ally taken into consideration. Real-world individuals have di�erent reasons
to change their behaviour, such as mistakes, curiosity, or external perturba-
tions. Typical arti�cial agents use variation, elimination, and imitation to
update their rule-base.

Two examples of methods which can be used to simulate such an adaptive
company are classi�er systems (CS) and genetic algorithms (GA), which will
be described in detail in chapter 2. CSs have the ability to pursue several
paths simultaneously, which is a prerequisite to prosper in a CAS. On the
other hand, GAs enable our arti�cial agents to discard unsuccessful rules,
recombine the successful ones, and make some random changes to create rules
that might be helpful in completely new situations. Brenner (1996) claimed
that evolutionary algorithms cannot describe the change of an individual's
behaviour due to dissatisfaction about the achieved results. Nevertheless, in
this study it will be shown that a synthesis of CSs and GAs can do that.
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1.3 The second industrial revolution

While the so-called lean-management philosophy, which was very popular un-
til the early nineties, was highly focused on industrial enterprises, we are now
in the era of a new industrial revolution. Around 1900 most people worked in
agriculture and only a small share of an economy's workforce was allocated
to the information sector. Nowadays these relations have changed dramat-
ically. Only a small share of the population is working in agriculture while
employment in the information sector has boomed amazingly. Moreover, even
countries that gained their wealth with petrol have started to invest in in-
formation technology to be prepared for the demands of the future. The �rst
industrial revolution provided considerable wealth to the vast majority. The
result of the current industrial revolution, on the other hand, is the expanded
access to accurate and comprehensive information and education.

Today, capital is no more a limited resource | at least it is no more the
most important one. In the new world of e-business, the scarce resource is
not information, but human attention (see Malhotra, 2000, p.11). Knowledge
is the primary resource for individuals and for the economy in general. Land,
labour and capital | the economist's traditional factors of production |
do not disappear, but they become secondary. There are several examples
of small Internet companies whose level of stock{value at least temporarily
exceeds or exceeded the stock{value of huge traditional companies with an
evident physical value much higher than the upcoming dot{coms. Obviuosly
such strange e�ects depend on the availability of risk capital. In the third
world or developed regions exposed to underdeveloped stock and capital mar-
kets this is very unlikely to happen.

Such startups are often founded by university dropouts. Their competi-
tive advantages are enthusiasm and creativity. On the other hand, when a
few employees bearing the key information responsible for a company's suc-
cess leave that company it may lead to a sudden crash of the stock{value.
Banks do a lot of advertisement to o�er loans to the customers. Never before
wealth was accessible to so many people | partially due to inheritance. Both
observations indicate that there is more than enough capital available.

While capital, on the one hand, is indivisible (i.e. the capital of one indi-
vidual cannot be shared among several persons without reducing the individ-
uals amount) knowledge, on the other hand, is divisible. When the employes
exchange their knowledge it usually does not mean that the knowledge of the
best informed individual is smaller after the exchange. Nevertheless, in some
situations the value of knowledge might decrease when it is shared with oth-
ers. The exploration of the traditional factors of production is limited since
any increase in land, labour, and capital leads to diminishing returns on the
production outcomes. Information assets, on the other hand, seem to obey a
completely di�erent law of economic returns. Investment in an additional unit
of information or knowledge created and used results in a higher return (in
contradiction to the second assumption on page 1). This is often attributed to
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externalities. The more individuals become members of the network and use
its services, the greater will be the value added to the network. Knowledge
is the only productive factor that cannot be transfered directly. It can only
be perceived indirectly, it has the inert ability to be multiplied, and �nally,
utilization does not reduce the supply of knowledge.

Many countries move from an industrial society to an information society.
Some typical paradigms characterizing the di�erence between the logic of an
industrial society and the logic of an information society are listed in table
1.1.

industrial society
{ the �rm is a machine (Input ! output)
{ making money is the highest target
{ leadership is mostly accomplished by central planning, delegation,

motivation, and control
{ control is based on power and money
{ strategy is the exclusive task of top management
{ the value of a �rm is determined by its book value
{ employees are basically paid for the time they spend for the com-

pany
{ time is the limited resource

information society
{ the �rm is a human(e) community
{ �rms follow a commonly shared vision (economic performance is a

consequence)
{ leadership is accomplished by common visions and de�nition of

boundaries
{ control is based on knowledge
{ strategy is everybody's task
{ the value of a �rm is determined by the market
{ employees are basically payed for their performance
{ attention is the limited resource

Table 1.1: Industrial society vs. information society

1.4 The homo informaticus

Information from everywhere in the world provided by newspapers, televi-
sion, or internet penetrate our habitat day by day. The new media did not
only create a new infrastructure facilitating the spread of news and facts but
also initiated the occurence of bulks of news. The evil about this 
ood is
the impossibility of escaping from it. Recent information has become a vi-
tally necessary constituent of our everyday life, no matter whether it is just
a short message, explosive news, or a commodity. Classical (vertical) means
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of control like power, money or the law have been replaced. An intact 
ow
of information as a new (horizontal) control medium determines wealth and
competitiveness in the modern information society. Decentralisation and plu-
ralism may help to avoid the emergence of totalitarian monopolies. Political
hierarchies become obsolete in the internet. Some important aspects of the
information superhighway with respect to socio-political consequences are
concentration of power, information priority, selection processes undertaken
by the users, and self regulation of markets.

As a result of progressive globalisation and networking of the mass media
it is becoming more diÆcult for dictators to refuse their citizens access to
international and independent information channels. Reversely, the respon-
sibility of the companys for their employees is increasing due to the faster
expiration of valuable knowledge.

Information may be transformed to knowledge and power. It takes over
the role of a raw material and a productive factor at the same time. From an
economic point of view, information has to be seen as commodity but from a
sociological viewpoint, on the other hand, it is seen as the feeding of knowl-
edge. Thus, in the latter case information is a process serving the removal
of ignorance. In the context of business additional information transformed
into knowledge leadership means a surplus value.

Additional information can also lead to confusion. The information so-
ciety is not represented as a homogenously well-informed society. The bulk
of information subject to rapid expiration creates confusion and becomes
the dilemma of the global citizen. The fast spread of Internet technology
does not only enlarge the individual's chances, but also result in irritation
and desorientation. The post-industrial age is characterized by a new type of
human being. The change from the industrial society to the information soci-
ety replaces the \homo oeconomicus" by the \homo informaticus". Optimal
exploitation of information becomes a key issue.

The ability of di�erentiation de�nes new social splitting lines. Orienta-
tion and purposeful utilization of the huge stream of available information
requires an intact selection mechanism. The information chaos surfeited with
redundant facts may degenerate the global village into a global jungle. Those
who cannot participate in the global data exchange and those who cannot
di�erentiate are in danger of social isolation. Commercialization is a solution
to this problem and a part of this problem at the same time.

On one hand increased commercialisation will improve the services and
methods of information brokers o�ering individually customized information
services to those who can a�ord it. This already indicates that only the upper
class will be able to take pro�t from advanced information technologies. The
social loosers will be forced to search on the data garbage dump for facts
that have been disposed by the winners | similar to the cycle of physical
goods which go �rst to the rich and then to the poor.

On the other hand a data supply that has to pass a tailored but commer-
cial check only supports information with a commercial value. Organizations
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o�ering non-pro�t information may be the loosers of that kind of develop-
ments. A big danger occurs when some groups of information brokers form a
monopoly. This would give them an amazing amount of power since control
of information will provide more in
uence in the near future than control
of physical goods or political power. To guarantee a free 
ow of information
an information structure allowing the customers to perceive the di�erence
between infotainment and infotisement (information and advertisement) is
required.

1.5 Knowledge management

It is a well-known phenomenon, that pupils are more successful in gaining
knowledge when they are taught in groups than when they have to learn
on their own. They motivate each other and, moreover, the observation that
colleagues are able to understand the contents of the lectures encourages
to succeed as well. Thus, in some situations, groups can learn more than
the single members of the group could do. Moreover, big organizations even
have the potential to learn more than the groups inside the organizations
could do. Therefore, keywords like knowledge management (KM), organiza-
tional learning, information economy, and so on are very common in modern
management literature. Why is it possible to understand these keywords
as indicators of a new management philosophy. Didn't organizations always
learn?

What makes a company successful or unsuccessful is no more a matter
of capital but a matter of knowledge and knowledge management. The im-
portant di�erence is the ability to utilize any kind of knowledge, ranging
from scienti�c or technical knowledge to social, economic, and management
knowledge. Because of the accelerated expiration of knowledge successful ap-
plication of knowlege has become more desireable rather than just accumu-
lation. The focus has moved from storing facts to storing information about
processes. A learning organization must exhibit the capacity to design its
own future.

When a �rm di�ers signi�cantly from its competitors, when it is able to
create a product or a service that generates value inside the market, then it
is only due to its knowledge. Information is a raw material and a productive
factor at the same time. Information is any di�erence that will make a dif-
ference at a later event (Bateson and Bateson, 1972). Examples of companies
succeeding in using their employees' capabilites to create customer value in
an eÆcient way are for instance Gilette, SAP, and Li Kashing. Their and
other companies strategies are described in detail in (Baghai et al., 1999).

Peter Drucker's (see Drucker (1970)) de�nition of the knowledge worker
points out that her loyalty is primarily to herselfe and to her career de-
velopment, rather than to her current host organisation. Encouraging and
maintaining loyalty inside ones workforce is therefore a striking challenge
for knowledge-based companies. Stock options as a part of the employment
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package are widely used as loyalty-bonds. Another method are pro�t sharing
systems that generate a payo� consumable with a reasonable time lag. Both
are preferably used in knowledge-intensive branches like for instance the soft-
ware industry. Corporate sponsorships for further quali�cations and learning,
sabbatical opportunities, and even corporate universities, are on the rise.

What is knowledge management? It can be seen as some combination of
technology supporting a strategy for sharing and using both the brainpower
resident within an organization's employees and internal and external infor-
mation found in \information containers" (primarily documents). Malhotra
(2000, p.11) gives the following de�nition:

Knowledge management caters to the critical issues of organiza-
tional adaption, survival, and competence in face of increasingly
discontinuous environmental change. Essentially, it embodies or-
ganizational processes that seek synergistic combination of data
and information{processing capacity of information technologies,
and the creative and innovative capacity of human beings.

The goal of knowledge management is to simultaneously manage data, in-
formation and explicit knowledge while leveraging the information hidden in
the people's heads (tacit knowledge) through a combination of technology
and management practices. Before discussing knowledge management, the
question must be addressed, how knowledge di�ers from information.

In short, there are three levels of \information" | data, information,
and knowledge | with a great deal of overlap between them. Nevertheless,
within an environment determined by an overwhelming 
ood of information
it is becoming extremely important for the success of nearly any organization
to understand the strategic distinction between knowledge and information.
One way to think of the di�erence is that knowledge is a �nished product
and information and data are raw materials. I.e. knowledge may also be in-
terpreted as the potential for action. It can be distinguished from information
in terms of its direct connection with performance. Further, there are two
categories of knowledge: tacit and explicit. Tacit knowledge is what is stored
somewhere in our heads. It's a combination of context, information, experi-
ence, intuition, talent, and so on (see table 1.2). Tacit knowledge often can
only be shared with others by means of demonstration. For instance, one
may think about attempting to learn skiing by reading a book about it.

That makes tacit knowledge extremely hard to transfer. Accessing tacit
knowledge is the goal of knowledge management. Explicit knowledge is an
attempt to place our tacit knowledge in some sort of container, most com-
monly a document. Knowledge in this sense, as a body of information (chem-
istry, biology, etc.) is currently managed. In many �rms most of the valuable
knowledge is implicit. Every task in the business process that is performed
by routine without further analysis is part of a company's tacit knowledge.

Yet, the implementation of knowledge management tools and processes is
still at the beginning. Many enterprises' knowledge management is based on
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implicit knowledge explicit knowledge
bound to a person not bound to a person
complex compressed
integrated detailed
experience facts
language-independent language-dependent
practice theory

Table 1.2: Implicit vs. explicit knowledge

models that are well-suited to satisfy the demands of the industrial epoch.
Often it is expected that storing all kind of data in a central repository would
somehow ensure that everyone equiped with access to that data{warehouse
is capable and willing to explore the information stored therein. In reality,
despite the availability of comprehensive reports and data{bases, many exec-
utives base their decisions on interactions with others who they consider to
be knowledgeable about the issues in question. Furthermore, the assumption
of singular meaning of information, though desireable for seeking eÆciencies,
excludes creative abrasion and con
ict that is neccessary for comprehensive
business reengineering.

Instead of bene�ting these organizations, such antiquated models weaken
their information strategies. Even companies and organizations aligned on
professional knowledge{based services like consultants, newspapers, publish-
ers of specialized journals, libraries, and so on hardly di�er from the com-
panies in the seventeenth century concerning knowledge management. The
arrangement of lists, card index boxes and data{bases is designed to avoid
access rather than encouraging it.

According to a comprehensive questionary (Fraunhofer Institut f�ur Ar-
beitswirtschaft und Organistion, Deutsche Bank AG, 1999), 66% of the com-
panies do not have the feeling to have a comprehensive overview about the
knowledge available inside the company, 80% assume that a medium or even
high utility gets lost because of not exploited knowledge, and even 80% feel
a demand for an improvement of knowledge management. Conversely, about
80% of the initiatives to facilitate knowledge management are cancelled un-
successfully within less than 24 months.

Implementing an enterprise knowledge management system is such a
lengthy, expensive | and contentious | process that initiatives often run
out of time, money or political support before they can contribute real value.
Meanwhile, if knowledge workers believe that the chores of contributing to the
knowledge management program bene�t only their bosses, they may decide
the best way to take advantage of the value of their individual knowledge is to
change jobs or go independent. It seems obvious, but it is not often said that
knowledge management works best when knowledge workers take the initia-
tive and responsibility for what they know, don't know and need to know.
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Doing so not only makes the individual more valuable to the corporation, it
also enhances the value of intellectual capital for the corporation.

In attempting to apply their collective expertise for competitive advan-
tage, corporations often overlook the fundamental truth that knowledge be-
gins and ends as personal. Nearly all the knowledge is stored in the peo-
ples heads. Without human understanding, personal context and immediate
utility, all we have is data. This is also consistent with the observations of
Churchman (1971):

knowledge resides in the user and not in the collection of infor-
mation . . . it is how the user reacts to a collection of information
that matters.

Moreover, Nonaka and Takeuchi (1995) state that only human beings can
take the central role in knowledge creation. Despite the fact that automati-
cally generated data may not be the right medium to store human interpreta-
tion for potential action, knowledge always depends on the user's subjective
context of action based on that information.

During the last decades of the twentieth century important changes con-
cerning data{processing took place: modern information technology now of-
fers many opportunities to create competitive advantage; increased demand
and supply in the �eld of IT{outsourcing, considering information as a util-
ity, comparable to electric power or telphone services; and the e{everything
phenomenon allowing internet and e{commerce emerge as key factors of the
business{ and IT{strategy. Moreover, a transition from an era of competitive
advantage based on information to one based on knowledge creation is taking
place. The former was characterized by modest and predictable changes that
most information systems were capable to process. Regarding to (Malhotra,
2000) three phases in the evolution of the information{processing paradigm
can be distinguished (see also �gure 1.3):

Automation increased eÆciency of operations

Rationalization of procedures streamlining of procedures and eliminat-
ing obvious bottlenecks that are revealed by automation for enhanced
eÆciency of operations

Reengineering radical redesign of business processes that depends on in-
formation technology{intensive radical redesign of work
ows and work
processes

The development of information technology during those phases was fa-
cilitated by a rather predictable view of products and services. Despite the
risk and returns due to the increased investments in IT there were only little
e�orts concerning business model innovations.

Successful knowledge management does not just mean to

� provide laptop computers,
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Figure 1.3: Risk and return in the \old world of business"

� send the employees a few days longer to advanced training seminars,

� allocate a little bit more money to the R&D department,

� rename the IT-department to KM-department, and �nally,

� use any opportunity to criticize the lack of adaptability within the
companys workforce.

But it does mean to

� develop a common understanding of the business,

� determine a knowledge strategy and de�ne knowledge targets,

� communicate the knowledge strategy such that each coworker can rec-
ognize her contribution to reach the strategy,

� make knowledge assessable and remunerate the sta� according to per-
formance, and

� provide resources and the infrastructure to encourage organizational
learning.

The continued challenge for modern knowledge management{systems is
to ensure the adaptability and 
exibility of information interfaces and infor-
mation 
ows | both internally and externally | required for coping with
dynamically changing business and competitive environments. The simula-
tions discussed in chapters 4 and 5 elaborate on the obstacles arising when
a complex organizational structure is required to act within a dynamically
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changing environment. Moreover, they deal with the question of how to use
incomplete information within an organization and also address the problem
of transfering knowledge within an organization. In particular the incentive
scheme to encourage sta� to submit information to other departments and
also consider information received from the others is given attention. Similar
models can be found in (Aoki, 1996), (Carley and Svoboda, 1996), (Carley
and Lee, 1998), (Kollman et al., 2000), (Marengo, 1992), (Page and Ryall,
1998), and (Paul et al., 1997).
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Chapter 2

Genetics-based machine

learning

So far, we have elaborated why methods that are capable to simulate complex
adaptive systems are useful in many situations to analyse economic phenom-
ena. In this chapter some of these methods will be described in detail. In
section 2.1 we will introduce rule-based decision mechanisms called classi�er
systems. The following section 2.2 deals with genetic algorithms that, for
instance, can be used to update such rule-bases. Concluding, in section 2.3
some simple examples are worked out to give a �rst view about the possi-
bilites given by the described algorithms.

2.1 Classi�er systems

To model a connection between input and output signals consisting of vectors
of integer (or binary) entries we use classi�er systems (CS). CS were �rst
introduced by (Holland, 1976) as a tool for pattern recognition. They can be
seen as a vehicle to use GAs in studies of machine learning (Holland, 1995).

2.1.1 The rule base

The main part of a CS is the rule base consisting of the condition part and the
action part (see Fig. 2.1). The conditions within one particular row plus the
action in the same line represent a rule, which can also be called a classi�er.
The conditions may contain integer (binary) entries plus the so called don't
care symbols #. Thus, in the most simple implementation only the three
symbols 0, 1, and # are permitted. On the other hand, the entries of the
message list and the action part are restricted to integer (binary) values.
The message list represents the information the individual receives, already
encoded in a way appropriate for further computation. First, the information
in the message list has to be compared with the conditions. Whenever there
exists a message that is equal to a condition, except those bits where a #
occurs, then the condition is considered to be ful�lled. A whole rule is ful�lled,
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when all its conditions are ful�lled. Thus in the example in �gure 2.1 the �rst,
the third, and the fourth rule are ful�lled.

message list

1 0 1
0 1 1
1 0 0
0 0 1
1 1 1

rule base

condition part

cond. 1 cond. 2

1 0 1
# 1 0
1 # #
# 0 #
# 0 1

0 # 1
1 0 #
1 # 1
0 0 #
1 1 0

action part

0 1 1
1 1 0
0 0 0
1 1 1
0 1 0

Figure 2.1: The message list and rule base of a classi�er system

2.1.2 Choosing an action

Now all the ful�lled rules become candidates to post an action. If, like in
the previous example, more than one rule is ful�lled, one of them has to be
selected randomly. Usually the strength of the rule, which depends on the
success of this rule in the past, and the speci�ty are used to weigth the rules.
The speci�ty is a measure of the frequency of the don't care symbols. A very
general rule, i.e. a rule containing many #, certainly has a higher chance to
get selected, because it will be ful�lled more often. To compensate this, it is
neccesary to favour the more speci�c rules. Moreover, we can assume that
a more speci�c rule might yield a better solution to a particular situation,
another reason to favour those rules containing only a few #.

The chosen action may be posted directly to the environment, or it may
be used as an internal message, and be brought back to the message list.
Thus, it will be considered as an input in the next time step. In �gure 2.2
the core part of the classi�er system, which has already been shown in detail
in �gure 2.1, is placed into a dashed box. The arrow pointing from the right
edge of the rule base to the message list illustrates the stream of internal
messages. To distinguish between internal messages and output signals, one
bit of the action part has to be reserved to determine the type of the signal.

Now, how can the classi�er system get connected to the environment? In
general, it is assumed that there exists an input interface, which translates the
information available in the environment into signals that can be interpreted
by the classi�er system. Thus, the signals generated by the input interface
must be vectors with a �xed length, containing only integer (binary) entries.
The input vector may represent the state in a chess game, or it may contain
the temperature, atmospheric pressure, and the atmospheric humidity. These
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Figure 2.2: A classi�er system
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signals are collected in the message list, and proceeded as described in the
above paragraphs.

In case the action is posted to the environment, it has to be translated by
the output interface. For instance, if a CS is used to play chess, the output
interface translates each possible vector into a particular move. When it
is used to forecast the weather, it may contain the data being of interest
for the meteorologist. Whatever kind the chosen actions are, it in
uences
the environment, and may yield a good or bad situation for the individual
represented by the CS, resulting in a certain payo�.

2.1.3 Coupled rules

So far we have only discussed how one rule, activated by one or more input
messages, can post a message to the environment and, therefore, cause a
good or bad result for the CS as a whole. However, CSs can also produce
organized sequential activities. This can only be achieved by means of internal
messages. In �gure 2.3 we see a simple example of coupled rules containing
only one condition part. At time t a rule is activated by an input message.
We assume that its action part is tagged as an internal message. Thus, it
enters the message board of the next time step, and, in turn, may ful�ll
another rule's condition. Thus, the e�ect of the input message that entered
the system at time t occurs at time t+ 1, which leads to a time lag between
input and output. If more rules are coupled like that, also bigger time lags
may appear.

message

?
condition1 action

' $
?

condition1 action

t t+1

Figure 2.3: Coupled Rules in case of one condition part

In case of two or more condition parts the emergence of rule coupling is
a little bit more complex. In �gure 2.4 a message matching condition1 enters
the system at time t. Assuming there is another message, which ful�lls con-
dition2, the corresponding classi�er may be selected to post. In the sequel
(time t+ 1) there might be another classi�er with condition2 matching that
message. Activating that classi�er requires another message ful�lling condi-
ton1. Nevertheless, whenever an action labeled as internal message matches
any condition of another rule these two rules are called coupled.

Summarizing we can say that rule coupling occurs, when a rule active at
time t may result in activating another rule at time t + 1.
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message

?
condition1 condition2 action

' $
?

condition1 condition2 action

t t+1

Figure 2.4: Coupled Rules in case of two condition parts

1. The rule and message (performance) system is set up for stim-
ulus response boolean function learning.

2. The bidding structure is ideal.

3. Default hierarchy formation is perfect.

4. Context sensitivity is negligibly small.

Table 2.1: Restrictions for an idealized classi�er system

Although such complicated connections within a CS violate the restric-
tions de�ning an idealized CS (Goldberg et al., 1992, p.1-2) (see table 2.1),
they are widely used to implement complex types of behaviour such as time
lags between emergence of a signal and the appropriate reactions, or com-
bining information of the past with recent inputs to completely understand
the encountered situation.

2.1.4 Apportionment of credit

Somehow the system must recognize and recompence the rules responsible
for its success. The inductive mechanism must execute three di�erent but
connected tasks. It has to

� evaluate the systems rules as tools for accomplishing a certain goal,
improve them when necessary and favour the better ones in application;

� create useful new rules that are capable to detect and apply regularities
in experience; and

� provide associations between and clustering among classi�ers to gener-
ate more complex knowledge structures leading to eÆcient modelling
of the environment.
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Hence, we need a mechanism to evaluate all the situations that can occur
in the environment. This may be a problem sometimes. If again we think
about a CS trained to play chess there are three possible outcomes, a win, a
loss, and a draw. Although it seems to make sense to rate them with 1, -1,
and 0 { or to use any equivalent scale { there arises the problem, that only
at the end of the game the result is known. If the value of the result of the
game gets assigned to all the rules activated during the game, it may happen
that extremely good rules get assigned a bad value and vice versa.

If we think about checkers as another example, it is easy to agree that a
triple jump is something very valuable, hence, the according rule should get
assigned a very high strength. However, how can we �nd out which classi�ers
made it possible to enter a state that allows such a triple jump? Moreover,
even when there is a possibility to evaluate the state at every time step, in a
CS with internal messages there is still the problem of assigning meaningful
values to those rules that caused internal messages.

Several techniques to deal with that problem have been developed. Basi-
cally, we can distinguish between local and nonlocal techniques for apportion-
ing credit. If the rules are strengthened directly, without storing intermediary
results, then this is called a local technique, otherwise it is nonlocal.

2.1.5 The bucket brigade algorithm

In this section we will describe a very popular local method called the bucket
brigade algorithm (see Goldberg (1989, p. 255 �) or Holland et al. (1997,
chap. 10)). This procedure can be seen as an information economy. The
main components of this economy are the auction and the clearinghouse.
The classi�ers take over the role of the trading agents who can buy and
sell the right to trade information. The rules place bids in exchange for the
opportunity to post their actions. The bid is a function of the rule's strength,
the speci�ty, and the support it gaines from the messages that match it. With
this bid a rule can participate in an auction and, as a result, the message of
the winning rule will be posted. Rather than always choosing the message
with the highest bid, it makes sense to use a random process with the bids
being the weights.

Whenever a rule is chosen to post its action part, the message carries
support equal to the bid that was previously placed. Consequently, this sup-
port can be consumed by another classi�er in the next time step. Therefore
it in
uences the auction taking place in the following cycle. As a result, the
support of the messages has immediate consequences for the further devel-
opment of the system. Moreover, the bids are also used to update the rules'
strengths on the basis of current bids. The in
uence of those adaptions of
the strengths lasts much longer than the change in support.

In a sequence of coupled rules each rule can be interpreted as a middleman
in a complex supply chain. The suppliers are those rules providing messages
that match a condition of the considered rule. The customers, on the other
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hand, are those rules whose conditions match with the action of the rule
taken into consideration.

When a rule wins an auction and, therefore gets the right to post, it pays
its bid to its suppliers and receives payments from its consumers in exchange
for providing support. Thus, the strength of the rule re
ects the ability to
create a pro�t. A rule that receives higher payments from its customers than
it payed to its vendor makes a pro�t, which results in an increased strength.
The more pro�table the consumers are, the more likely it is for a rule to
make a pro�t itself. This ensures to detect successful chains of coupled rules
rather than only rewarding the last rule for the good result at the end of a
complex series of decisions.

The following equation (2.1) shows the whole process of updating the
strength,

Si(t+ 1) = Si(t)� Pi(t)� Ti(t) +Ri(t) : (2.1)

The strength of the i-th rule at time t is donated by Si(t). Each matching
rule o�ers a bid Bi = cbid �Si, and an auction-mechanism with random noise is
applied to select a rule. Afterwards, the wining rule has to pay Pi(t) = Bi(t).
All the rules { also those, that do not match { have to pay a tax Ti = ctax �Si.
This ensures that the strength of useless rules decreases, and they can get
discarded by the learning algoritm, for instance a genetic algorithm. Finally,
the reward possibly gained in the previous cycles adds to the strength. Thus,
rules that led to a successful outcome get an encouragement.

The ultimate rules gain pro�t directly from the environment. At this
moment the payo� is added to all the rules that are active. When a chain of
rules leads to a bad result, then the reward will be low. In the sequel this rule
will not be able to pay a competitive bid anymore. As a result, the suppliers
of this rule have to sell their actions for a lower price, which reduces their
strengths as well. After several time steps the chain of coupled rules will
not be able to win the bidding processes anymore and alternative paths get
explored. The bucket brigade algorithm conserves strong links and repairs
weak links.

In chapter 4 we will introduce a method similar to the bucket brigade
algorithm to solve the problem of apportionment of credit in case of a series
of classi�er systems.

2.1.6 Learning better rules

A classi�er system creates new classi�ers (rules) by running a genetic algo-
rithm (see section 2.2) | or any other suitable learning algorithm (see also
sections 2.3.3 and 2.3.4) | on the present population of classi�ers. In �gure
2.2 the box in the right upper corner is connected with the rule base by two
opposite arrows. This indicates that the learning process takes the current
population of classi�ers and their recent strengths as an input to create the
new population which will be used in the next time step. To avoid an ex-
tremely volatile behaviour of the system, the incoming messages have to be
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processed through the classi�er system several times before the learning al-
gorithm may be invoked. In chapters 4 and 5 the variable rp is used to denote
the number of repetitions.

2.2 Genetic algorithms

Genetic algorithms (GA) basically have been created to optimize technical
systems. Later on, it turned out that they might also be of interest in model-
ing human behaviour. This is due to the strong analogy between the genetic
operators and human learning by trying, experiencing, and imitating, which
is outlined in more detailed in the subsequent paragraphs. This makes them
a powerful tool to simulate social interaction. Todays applications of GAs
cover such �elds as optimization, automatic programming, machine learn-
ing, economics, operations research, ecology, population genetics, studies of
evolution and learning, and social systems.

A GA works on a population of strings with a �xed length. These strings
are called genomes and, similar to genomes in nature, they carry all the
information required to identify an individual. In genetic algorithms a genome
usually represents a possible solution within a given �eld of feasible solutions
of a particular problem. When GAs are used to optimzie a CS, then each
genome represents a rule. These strings may contain only binary digits (i.e.
only 0 and 1), integer numbers, real values, symbols from any appropriate
alphabet, or even such complex entries like tree representations. In case of a
CS the genomes can only take binary or integer numbers. Although originally
GAs were developed for operating on binary strings only, the main principle
remains the same when the operators are modi�ed to be able to handle more
sophisticated alphabets. Michalewicz (1994) has shown, that real valued GAs
are more eÆcient than binary GAs in terms of consumption of CPU time.
Nevertheless, the whole population of strings must be of the same type.

The set of all possible genomes is called the search space. Applying a
GA only makes sense, when the search space is too large to fully enumerate
it, and when there is no structure that allows a directed search or even an
analytical optimization procedure. Depending on the kind of data to be used,
the genetic operators di�er sligthly.

The solution process works as follows. First an initial population of
genomes is generated by a random processor, or manually, if some prede-
termined knowledge should be inserted. Each string gets assigned a particu-
lar �tness value by some meaningful evaluation process. Then the GA tries
to improve the average �tness in the population by an iterative procedure.
The old population and its �tness values are the basis for creating a new
generation of strings.

The main operations of GAs are

� selection,

� replication,
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� recombination, and

� mutation.

Certainly, it does make a big di�erence for the individual if the evolution of
the system as a whole is caused by natural selection (i.e. elimination of un-
successful individuals) or by learning. In contrast to GAs, learning processes
are characterised by

� variation,

� satisfaction, and

� imitation.

A nice distinction between learning and evolution is given for instance by
(Brenner, 1998). The main di�erence lies in the fact that a learning process
changes the involved individuals, while an evolutionary process changes the
distribution of di�erent types of individuals within a population, without
any modi�cations of the individuals. However, here the GAs are used to
force evolution and improvement within the individuals' rule-bases rather
than within the population of agents itself. The share of those rules that
performed well in the past increases, while shares of rules that led to an
outcome below the average decreases. Thus, only rules can be eliminated,
but not the individual as a whole. Therefore, the improvement within the
population of agents takes place due to learning e�ects rather than selection
among individuals.

In the following we will have a closer look to the main steps of genetic
algorithms.

2.2.1 Selection

The selection operator chooses strings out of the population that are allowed
to place their o�springs into the next generation. The selection process is
highly in
uenced by the �tness values. A meaningful selection operator must
secure that genomes with a high �tness are more likely to be chosen. Oth-
erwise previously gathered knowledge may get lost. Individuals may also be
selected more than once, and all individuals { also those which performed
very badly in the previous steps { have a chance to be selected. Thus, the
selection is based on a probabilistic procedure. Common schemes of selection
are roulette wheel selection, scaling techniques, tournament, elitist models,
and ranking methods.

Many popular selection methods assign a probability Pi to each genome,
depending on its �tness. A sequence of random numbers xn is generated and
compared with the cumulative probability Ci =

Pi
j=1 Pj. For each random

number xn that lies within the interval (Ci�1; Ci] the individual i is chosen.
Several methods (roulette wheel, linear ranking, and geometric ranking) make
use of this idea. They only di�er in the mechanism of assigning probabilities.
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Roulette wheel selection

Roulette wheel selection, developed by Holland (1995), de�nes the probability
according to

Pi =
FiPJ
j=1 Fj

;

with Fi (Fj) denoting indivial i's (j's) �tness and J being the size of the
population. This formula only produces meaningful results, when the objec-
tive is to maximize the (average or maximum) �tness within the population
and all �tness values assigned take only nonnegative values. In an attempt to
allow for minimization and negative �tness values as well, extensions such as
windowing and scaling have been proposed. Nevertheless, the basic principle
is still the same.

Remark: It follows immediately that the above formula guarantees that
the probabilities sum up to one.

Ranking methods

A ranking method can always be applied when the evaluation process maps
the genomes to a partially ordered set. First, all the solutions are sorted { i.e.
there must be a preference scheme among the genomes. The probability Pi

then depends on the rank of solution i within the population. Thus, it is not
crucial, how well a genome solves a given problem, but how well it does in
comparison to the other genomes. Joines and Houck (1994) suggest a scheme
called normalized geometric ranking that assigns probabilities

Pi = q0(1� q)ri�1 ; (2.2)

where

q = parameter determining the probability of selecting the best
individual,

ri = rank of the individual i, 1 being the best,
q0 = q

1�(1�q)J
, and

J = population size, like in the previous subsection.

For big populations q approximately equals the probability of selecting
the best individual, because of

lim
J!1

q0(1� q)ri�1 = lim
J!1

q

1� (1� q)J
(1� q)0 = q

Besides the bigger range of possible applications ranking selection also
provides an advantage compared to roulette wheel selection in terms of com-
puting time. Since the �tness levels within the population may change from
generation to generation, the selection probabilities taken into consideration
by roulette wheel selection have to be computed separately for each gener-
ation. When ranking methods are applied, the selection probabilities only
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depend on the parameter q, and on the size of the population. Therefore,
they only need to be calculated at the beginning of the iteration process and
may be used again for all later generations.

An important di�erence with respect to roulette wheel selection is that the
di�erence of the probability of choosing the �ttest, second{�ttest, and so on
remains the same, without regarding the di�erence between their �tnesses.
Thus, for ranking selection the selection pressure remains constant, which
does not hold true for �tness proportional selection. To illustrate the e�ects
of geometric ranking, in table 2.2 numerical values of Pi are listed in case of
a population of 5 individuals and q = 0:2; 0:3; 0:4; and0:5.

q
rank 0.2 0.3 0.4 0.5
1 0.2975 0.3606 0.4337 0.5161
2 0.2380 0.2524 0.2602 0.2581
3 0.1904 0.1767 0.1561 0.1290
4 0.1523 0.1237 0.0937 0.0645
5 0.1218 0.0866 0.0562 0.0323

Table 2.2: Selection probabilities in case of geometric ranking

Remark: The above formula also guarantees that the probabilities sum

up to one, since
JP
i=1

Pi =
JP
i=1

q0(1� q)ri�1 =
JP
i=1

q

1�(1�q)J
(1� q)ri�1

= q

1�(1�q)J
� 1�(1�q)

J

1�(1�q)
= 1.

Tournament selection

Tournament selection also requires to map all genomes into a partially or-
dered set. A �xed number of individuals is chosen without regarding their
�tness, nor their rank. The best out of these is selected. Repeating this pro-
cedure until the desired population size is achieved concludes the selection
process.

2.2.2 Crossover

After being selected the genomes are placed into a mating pool. Yet, selec-
tion alone does not enable the GA to explore new regions in the search space.
Therefore, genetic operators are required that use the previously gained in-
formation to create new genomes. The �rst, and most important operator is
crossover. Before crossover is applied, all the strings selected in the mating
pool are grouped to pairs. Then, with some crossover probability pc a new
pair of strings is created by exchanging parts of an existing pair of strings.
The newly generated strings are called o�springs, since they contain features
of both parents. With a probability of 1 � pc no crossover takes place and
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both individuals are members of the new generation without any changes so
far. This procedure is applied to each pair independently.

Simple crossover

The most simple crossover operator just cuts the individuals at a randomly
chosen position and exchanges the strings' tails, as illustrated in �gure 2.5.

crossover site

a1 a2 a3 a4 a5
b1 b2 b3 b4 b5

)

crossover site

a1 a2 a3 b4 b5
b1 b2 b3 a4 a5

Figure 2.5: Simple crossover

This operator can be applied to binary, integer and real valued strings,
since there are no requirements that must be ful�lled by the entries ai and
bi.

Crossover masks

A more complicated method, that also can be used for any kind of data,
exchanges multiple parts of the parents de�ned by a randomly generated
crossover mask. The crossover mask is a binary string of the same length
as the considered genomes. One o�spring is created by placing the gene ai
at each position where the crossover mask contains a 1, and bi otherwise.
Another o�spring is done just the other way round, as illustrated in �gure
2.6.

crossover mask: 1 0 1 1 0

a1 a2 a3 a4 a5
b1 b2 b3 b4 b5

) a1 b2 a3 a4 b5
b1 a2 b3 b4 a5

Figure 2.6: Crossover with a mask

Compared with simple crossover applying a crossover mask may enable
the GA to explore more distant regions in the search space, because genes
are exchanged more extensively. On the other hand, it is also more likely to
loose good solutions, because sucessful combinations of genes may be dis-
rupted. The interested reader will �nd a comprehensive analysis concerning
the survival of schemes in (Goldberg, 1989, p. 28-33). It depends on the kind
of problem and the chosen encoding of the search space which of the two
methods is more eÆcient.
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Despite the fact that simple crossover and crossover with masks can be
applied to all kind of genetic encodings, they may not always succeed in
�nding the right genomes. Since they both just exchange genes between two
individuals but never create new entries, they can only explore those regions
within the search space that can be reached by those entries that already exist
in the randomly created initial population. For binary strings and integer
strings with a rather small di�erence between lower and upper bound this
will not be a problem, since all the possible entries may already occur in the
initial population. However, when the genomes contain real numbers, then
the set of possible values is in�nite. Therefore, it is very unlikely that a �nite
initial population already contains those values required for generating an
individual that leads to an acceptable result. Two possible tools to overcome
this shortcoming are big populations and crossover operators. The �rst tool
consumes a lot of memory and CPU time, the latter is based on chance. In
the following sections two crossover operators will be introduced that provide
the ability to create new genes based on information that is already available
within the existing population. This results in a directed search within the
set of real numbers. In chapter 3 it will be shown, that those operators may
produce better results in a learning domain built up by real numbers.

Arithmetic crossover

In contrast to the crossover methods examined so far, arithmetic crossover
can only be applied to a population of real-valued strings. Yet, a random
number � within the interval [0; 1] is used to compute a linear combination of
the genomes in consideration. Thus, each gene (position) of the new genomes
is in
uenced by both parents. This process is illustrated in equation (2.3).

at+1i = � � ati + (1� �) � bti
bt+1i = � � bti + (1� �) � ati

(2.3)

Remark: If there are some restrictions that must be ful�lled by the com-
ponents { i.e. a lower and an upper bound { then they are ful�lled, if the
parents ful�ll them.

Heuristic crossover

Heuristic crossover is another method that only makes sense when the search
space is encoded by real-valued strings. While arithmetic crossover can be
seen as some kind of linear combination that searches for intermediate solu-
tions of the parents, heuristic crossover can be interpreted as an extrapolation
of the existing solutions. To determine in which direction the extrapolation
should take place, the �tness values of the existing strings are utilized. It is
assumed that the �tness might become better when the neighbourhood of
the more successful one of the two individuals is explored. Again a random
number � 2 [0; 1] is generated. Now (w.l.o.g.) let us assume that (ai) is the
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better performing genome. Then the new individuals become

at+1i = ati + � � (ati � bti) ;
bt+1i = ati :

(2.4)

However, after computing the new individuals according to equation (2.4) it is
checked whether the new individual (at+1i ) is feasible, i.e. if all its components
ai lie between some lower and upper bounds ai and ai, limiting the region of
useful solutions within the search space. If this restrictions are not ful�lled,
then another random number is computed and the extrapolation is repeated.
Nevertheless, it must be ensured that this process terminates within �nite
time. Thus, a maximum number of trials is de�ned in advance. If no feasible
solution is found after the maximum number of trials, then both genomes
remain unchanged and the o�springs in the next generation are identical to
their parents.

2.2.3 Mutation

The operators described so far enable the GA to explore new regions of the
search space while previously collected knowledge is taken into considera-
tion. Although it sounds meaningful to create new generations by selecting
genomes regarding their �tness and combining them, this alone would not
make GAs such a powerful tool for optimizing complex functions. When only
selection and crossover are implemented, the GA is tempted to converge very
quickly. Hence, it is possible that those regions of the search space containing
the best solutions in terms of �tness are left out. To avoid such an overhasty
convergence, a mutation operator slightly changes the o�springs gained by
crossover. Thus, there is a chance to jump into regions that have not been
visited so far. To avoid that a whole population of successful individuals gets
destroyed, mutation should only take place with a very small probability. If
the mutation probability pm is �xed, then values around 0:001 have turned
out to be best. More sophisticated GAs start with a higher mutation proba-
bility, to avoid a quick convergence at the beginning, and reduce it later on,
helping the GA to arrive at a steady state before termination. This method
will be shown in more detail in section 3.3.

Binary mutation

The simplest mutation operator is called binary mutation, and { as the name
already indicates { it can only be applied to binary genomes. If mutation takes
place, a 0 becomes a 1 and vice versa. Each bit is 
iped with a probability
of pm. Like in any other mutation technique, all the random processes used
to determine whether a change takes place are independent.
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Uniform mutation

For integer or real valued strings the method described in the section before
does not work well, since there are more than two values that can occur in
each gene. In case of mutation, a random variable is inserted at the chosen
position. As already mentioned in the section about heuristic crossover, we
need a lower bound ai and an upper bound ai. For integer values the discrete
uniform distribution over the set fai; ai+1; : : : ; ai� 1; aig is used. In case of
real-valued genomes the random variable follows a uniform distribution over
the interval [ai; ai].

Boundary mutation

Boundary mutation operates very similar to uniformmutation. The di�erence
is that only the lower and upper boundaries (ai and ai) are candidates for
being inserted. Usually both are chosen with equal probability. Consequently,
the chance, that a certain gene may be changed to its lower (upper) bound
is pm=2.

Non-uniform mutation

Another procedure similar to uniform mutation is non-uniform mutation.
The only di�erence is the random distribution used to determine the new
elements. Houck et al. (1995) suggest the following method. Two random
variables �1; �2 � U[0;1] are generated to derive the new gene

at+1i =

(
ai + (ai � ai)f(j) if �1 < 1=2 ;
ai � (ai � ai)f(j) if �1 � 1=2 ;

(2.5)

where

f(j) = (�2(1�
j

G
))b,

j = the index of the current generation,
G = the maximum number of generations (explained

in detail in a later section), and
b = a shape parameter.

The function f(j) is strictly decreasing in its argument j. Therefore, the
changes caused by mutation are bigger at the beginning and become less
dramatic when the generation counter approaches close to termination.

Multi-non-uniform mutation

A very severe kind of mutation is the multi-non-uniform mutation. This
method applies the operator described in the section before to all the en-
tries in the parent string. Thus, the string experiences a complete change,
possibly interfering all the schemes that it represents.

Since f(j) in equation 2.5 takes non-integer values, (multi-)non-uniform
mutation is only meaningful when the genome population is real-valued.
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2.2.4 Termination

Although GAs have been applied successfully in many �elds, there is no guar-
antee that they will always converge towards an acceptable solution. There-
fore, it is recommended to de�ne a �xed maximum number of generations
to ensure that the GA terminates. Additionally, it is possible to implement
further termination criteria. Such criteria for instance could be the attain-
ment of an acceptable �tness level. The �tness under consideration can be
the maximum �tness, if only one good solution is required, or the average
�tness, if a whole bundle of good genomes is needed. The latter is the case
when GAs are used to optmize CSs, where a list of rules leading to satisfy-
ing results in many situations is desired. Another meaningful approach is to
stop the iteration procedure, when the �tness level has stopped increasing
for several periods. However, such a feature should always be implemented
with caution, since in very complex search spaces it may happen that the GA
seems to converge, due to an arrival at a local extrema, while within some
more iterations it might �nd an even better region, due to a successful shift
caused by the mutation operator. In cases where only one solution is desired,
the algorithm may also be terminated, when the deviations among the whole
population fall below a speci�ed level.

2.3 Opportunities and limitations of

genetics-based machine learning

According to Korzybski (1950) animals and plants can be seen as space-
binders, while humans can be better characterized as time-binders. This is
due to humans capabilities of learning from experience and passing what
was learned to succeeding generations. Experience can be transfered into
later periods. Humans can collect knowledge from the past and inform future
generations about their own knowledge. In this chapter the possibilities and
the limitations of describing those abilities by algorithms and implementing
them in arti�cial learning systems will be elaborated.

2.3.1 Gaining knowledge

At the beginning newborn children have almost no knowledge, except their
innate instincts. Motivated by their curiosity they observe their environ-
ment and try to in
uence it with their own actions. The reactions of the
environment are also observed. Many of these observations (if not all) are
stored in the brain, and gradually some connections and interdependencies
emerge. The child learns to predict the results of di�erent actions under given
circumstances. If a completely new situation arises, the learning individual
presumably tries to compare it with a similar situation already encountered
before. If that doesn't work either, the child will try any action | this action
can also mean to do nothing. Based on this single observation a completely
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new rule will be formed. As time elapses, these rules may change, due to
forgetting, trying new actions, or when a prediction turns out to be wrong.

Machine learning

Algorithms applied in the �eld of machine learning (ML) are inspired by
human learning. Therefore, procedures similar to those described in the pre-
vious paragraph can be found. Machine learning is the study of computer
algorithms that improve automatically through experience. For instance, a
rule-base is initialized with random numbers and a learning algorithm is
used to update it. The rule-base may also be seeded with some rules to in-
sert some existing knowledge. This existing knowledge can be the result of
another search algorithm, or it can stem from the wisdom of human experts.
If all the rules are given right from the beginning, this structure is called an
expert system. Typical ML-systems do not apply given knowledge, but only
learn through experience and make predictions about the future.

The main challenge is to describe all relevant states of the environment,
all possible actions, and all possible results in a way that can be interpreted
by a computer.

If we are ever to make a machine that will speak, understand
or translate human languages, solve mathematical problems with
imagination, practice a profession or direct an organization, ei-
ther we must reduce this activities to a science so exact that we
can tell a machine precisely how to go about doing them or we
must develop a machine that can do things without being told
precisely how . . . In short, although it might learn to perform a
task without being told precisely how to perform it, it would still
have to be told precisely how to learn.

Friedberg (1958)

The process of ML starts with the identi�cation of the learning domain and
ends with testing and using the results of the learning. A learning domain is
any problem or a set of facts, where it is possible to identify the \features"
of the domain that are to be measured, and a result or several results that
should be predicted. Certainly, this can only be done when there exists a con-
nection between the features and the results. An ML-system goes through the
learning set (a subset of the learning domain), and tries to learn from those
examples. The validation set is another subset of the same learning domain.
The inputs of the validation set are used to test, whether the ML system
indeed has learned a meaningful connection between features and results, or
it has just stored the learning set. The ability to apply the learned connec-
tions to new data sets is called generalization. The di�erence between several
well-known ML-systems is mostly due to the applied learning algorithms.
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2.3.2 Problem representations

The representation of an ML-system contains the de�nition, how possible so-
lutions of the problem may look like, what kind of inputs are accepted, how
the inputs are proceeded, and how the outputs are generated. In Banzhaf
et al. (1998) �ve kinds of representation typical for ML systems are men-
tioned. In the following sections it will be shown that it is possible to trans-
form all of them into an equivalent classi�er system.

Boolean representations

The following example for illustrating the di�erent representation concepts is
given in Banzhaf et al. (1998). Let us assume a scientist wants to determine
whether a particular character featured in a Dick Tracy cartoon is a \bad
guy" or a \good guy". The researcher examines several episodes of Dick Tracy
cartoons and recognizes the following features to be useful:

� shifty eyes

� scarred face

� skull tattoo

� slouches while walking

� hooked noose

� wears two-way wrist radio

All these features can be encoded by a boolean variable (true or false). There
are two basic types of boolean systems:

Conjunctive boolean systems (CBS)

A CBS connects the features with a logical AND. A particular learning
algorithm may have found the concepts given in table 2.3 to distinguish
between \bad guys" and \good guys".

concept 1 shifty eyes AND scarred face AND skull tattoo
concept 2 hooked noose AND wears two-way wrist radio

Table 2.3: Learning concepts in a conjunctive boolean system

Yet, the concepts alone do not suÆce. They must also be interpreted and
classi�ed. The classi�cation again may be represented in di�erent ways. Dick
Tracy himself may choose the following method to use the two concepts.
Concept 1 corresponds with his personal \crime watchers guide". Concept 2,
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concept value bad guy?
1 true true
2 true false

Table 2.4: Classi�cation of the concepts

on the other hand, is ful�lled by himself. Therefore, Dick Tracys classi�cation
of the concepts becomes as listed in table 2.4.

Each of the concepts only becomes valid, when all the features are ful�lled.
Therefore, there might be many situations, where none of the two works. A
CS implementation of those concepts is given in �gure 2.7.

1 1 1 # # # 1
# # # # 1 1 0

Figure 2.7: Classi�er system implementation

To use this CS, the person under consideration has to be examined with
respect to all the six features. The results are written into a row vector of
length six. A 1 means that the according feature is true, a 0 means false. This
vector becomes the input and is going to be compared with the condition part
of the CS | the part on the left hand side. If the input corresponds with the
output at all components, except those marked with a don't care symbol #,
then the rule is ful�lled. If both or none of the two rules are matched, the CS
does not help in classifying the person. If only one of the two rules is matched,
then it can be used as a tool for characterization. In this example the output
is only one-dimensional. A 1 indicates a \bad guy" and 0 a \good guy". In
more complex problems the output may be an element of a vector-�eld of
any �nite dimension.

Disjunctive boolean systems (DBS)

In a DBS the features are connected with a logical OR. Whenever one of
the simple concepts of a DBS is ful�lled, then the output also is de�ned to
be true. Let's have a look at the concepts in table 2.5.

concept feature value
concept 1 shifty eyes true or false
concept 2 scarred face true or false
concept 3 skull tattoo true or false

Table 2.5: Learning concepts in a disjunctive boolean system

Now, the CS implementation becomes as depicted in Fig. 2.8
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1 # # # # # 1
# 1 # # # # 1
# # 1 # # # 1

Figure 2.8: Classi�er system implementation

Combinations of CBS and DBS can describe more complex input-output
relations which can be used for sophisticated decision support systems.

Treshold representations

Treshold representations are more powerful than boolean representations be-
cause of their higher degree of 
exibility. A treshold unit only produces an
output, when the input exceeds a certain level. For instance, a heating con-
trolled by a thermostat is switched o�, whenever the temperature in the
room exceeds a certain upper bound. In an ML-system a treshold unit may
be used to prepare an input before it is further proceeded by the system. In a
multi-layer feedforward neural network, in each layer the data are proceeded
by treshold units.

For example, it may be required that at least two out of the three features
under consideration in concept 1 in the section about CBS (see table 2.3) are
true. A rather tedious CS implementation of such a treshold unit is given by

# 1 1 # # # 1
1 # 1 # # # 1
# 1 1 # # # 1

Figure 2.9: Classi�er system implementation

With a customized input detector such a treshold unit can be imple-
mented in a much more elegant way. Suppose that in a �rst step all the three
features (shifty eyes, scarred face, skull tattoo) are checked. In the next step
the ful�lled features are counted, and encoded as a binary string of length 2.
Thus, the input vectors undergo the following transformation

0 0 1 # # #
0 1 0 # # #
1 0 0 # # #

9>=
>;

0 1 1 # # #
1 0 1 # # #
1 1 0 # # #

9>=
>;

1 1 1 # # #
o

!

!

!

0 1

1 0

1 1

Now the treshold unit simply becomes 1# j 1. Certainly, the rule-base only
is that small, because there are only three features under consideration. Nev-
ertheless, also in more complex situations it is often possible to compress
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the rule-base, if the input interface is designed to reduce the set of possible
inputs. It may be worth to spend some extra e�orts in a reduction of the
search space in order to accelerate the learning process.

Case-based representations

Further common methods of machine learning store the data as representa-
tions of classes. Moreover, they may just store general descriptions of classes,
derived by some averaging of the training data. The K-nearest neighbour
method for instance interprets the data themselves as a part of the problem
representation. A new input is assigned to the class containing most of the K
nearest neighbours. Consequently, each new classi�ed element immediately
in
uences the problem representation and also the classi�cation of further
inputs.

Another possibility is to divide the learning domain into classes sepa-
rated by some hyperplanes. If the data are discrete, then such a case-based
representation can also be implemented as a classi�er system.

Example: Let us assume the learning domain is given by the set
f0; 1; 2; 3; 4; 5; 6; 7g2, and two classes are de�ned by

A : y >
9

4
+
x

2

B : y <
9

4
+
x

2
:

This situation is illustrated in �gure 2.10.
If the coordinates of the elements of f0; 1; 2; 3; 4; 5; 6; 7g2 are described by

vectors containing the binary representation of the components (e.g. (3; 4) =
(0; 1; 1; 1; 0; 0)), then the above classi�cation is accomplished by the system
given in �gure 2.11.

This example shows, that even very simple classi�cations require rather
complicated rule-bases, when they are implemented as a CS. Therefore, a
CS-implementation may not be the method of �rst choice, although it is a
possible solution.

Tree representations

Many decision situations may be clearly illustrated by decision trees. Con-
sequently, many ML-systems also use tree representations. Each node repre-
sents a feature. Each edge represents a value of the feature represented by
the node above it. If we look again at the two concepts given in table 2.3,
then each node means a feature like shifty eyes, scarred face, and so on. The
edges below these nodes can take the values true or false. Thus, an equivalent
tree representation is given by the two trees in �gure 2.12.

Since a tree can only accept a �nite set of di�erent values, it is always
possible to implement a classi�er system that is equivalent to the tree rep-
resentation. A CS equivalent to the tree in �gure 2.12 was already given in
�gure 2.7.
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Figure 2.10: The sets A and B

0 0 # # 1 1 A
0 1 # 1 # # A
1 0 # 1 # 1 A
# # # 1 1 # A
# # # 0 0 # B
# # # 0 1 0 B
# 1 # 0 1 1 B
1 # # 1 0 0 B
1 1 # 1 0 1 B

Figure 2.11: Classi�er system implementaion
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Figure 2.12: Tree representation

Genetic representations

The applications of genetic representations are manifold. Genetic algorithms
(described in detail in section 2.2) often use binary strings of a �xed length.
Each bit gets assigned a particular meaning. Since there are no limitations
about this assignment, genetic representations o�er a very high degree of
freedom. As already illustrated, with some limitations all the concepts men-
tioned so far can be substituted by an equivalent genetic representation.
Genetic algorithms do not use any information related to the meaning of the
bits. Representations allowing more entries than just 0 and 1 | for instance
integer numbers, real values, or alphabets of any symbols | often lead to an
increased eÆciency compared to pure binary encodings.

2.3.3 Search Strategies

Yet, the decision about the problem representation alone does not solve the
problem. In the next step a suitable method to explore the solution space
has to be chosen. The current literature (see for instance Goldberg (1989) or
Banzhaf et al. (1998)) identi�es three classes of search methods:

� calculus{based

� enumerative

� randomized

Calculus{based methods only work when the function that has to be op-
timized is known and suÆciently smooth (e.g. continuously di�erentiable).
Since such functions are only a small subset of the whole range of possibilities
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| and often it is only possible to evaluate single points without obtaining
information about the universal connection between input and output |
calculus{based methods often fail. Enumerative methods require evaluating
every single point in the search space. The idea and also the implementation
of such search strategies is rather straightforward. Dynamic programming is
one of the most popular implementations of an enumerative scheme. However,
in most cases evaluating the whole space is not possible due to the complexity
of the problem and to time restrictions. Therefore, most ML-systems apply
randomized methods to explore the solution space.

It is important to distinguish between random methods (e.g. blind search)
and directed search methods that use some random choices. The search op-
erators determine how and in which order the ML-system selects the possible
solutions. It is evident that a proper ML-system chooses a path through the
solution space that detects good solutions and omits bad ones. In general all
well-known randomized search strategies belong to one of the following three
categories.

Blind search

When applying blind search the elements of the solution space are chosen
without considering any information about the structure of the problem or
results of previous learning iterations. The algorithm continues until a termi-
nation criterion is met. Such termination criterions may for instance consider
the number of evaluations or the quality of the solution. The termination cri-
terion may be the same for all the three categories mentioned here. When the
search space is suÆciently small, blind search may be the best alternative |
in terms of CPU{time consumption. When problems show some level of com-
plexity such simple search methods usually do no better than enumerative
schemes.

Hill climbing

Hill climbing methods start at a single point in the search space, evaluate this
single point and store the solution. Afterwards some movements are done.
Only the best solution found so far is stored. If a new solution is better then
the previously best solution, the new solution is stored and the old one is
discarded. Otherwise, the new solution is discarded immediately. There is no
record containing several of the past solutions.

Some examples of hill climbing algorithms are simulated annealing and
many neural network training algorithms. At each time step only one solu-
tions is being considered, and only one path through the solution space is
investigated. For the sake of completenss it should be mentioned that also
methods that are looking for a valley (minimum) on a �tness{landscape may
belong to the group of hill{climbing methods, if the basic idea behind the
search is the same.
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Beam search

All the algorithms mentioned in the previous sections perform single point{
to{point searches. Beam search methods always keep a record of a population
of solutions. Thus, beam search can be seen as a compromise between ex-
haustive search (enumeration) and hill{climbing. An evaluation criterion is
used to choose a certain number of individuals that are taken into the popu-
lation. These individuals form the beam. All other solutions that have been
evaluated are discarded. In the next time step this beam is used to �nd new
solutions which again have to be evaluated. Thus, the search space is limited
to those solutions that can be generated by applying some search operators
to the individuals within the given population.

Compared to hill climbing the memory required to store the intermediate
results increases but, on the other hand, the number of necessary function
evaluations decreases. Some examples of beam search methods are genetic
algorithms (see section 2.2), particle swarm optimization (see Eberhart and
Kennedy (1995), Kennedy (1997), Kennedy and Eberhart (1995), Kennedy
and Eberhart (1997), and Kennedy and Eberhart (1999)), ant colony opti-
mization (see Dorigo et al., 1991), and other contemporary heuristic search
methods. ML{systems have operators to determine the size, contents, and
the ordering of the beam.

2.3.4 Learning methods

Among others, there are three main approaches that are of interest for ge-
netics based machine learning.

Supervised learning

Every output produced by the learning agent is compared with a given de-
sired output. The deviation or correspondence determines the �tness assigned
to the objects that produced the output. This is for instance applied in a
multilayer perceptron that has to �nd a nonlinear conncetion between multi-
dimensional inputs and outputs. Examples of genetic algorithms performing
supervised learning are given in sections 3.1, 3.3, and 3.4.

Unsupervised learning

When unsupervised learning is desired, the system does not get any infor-
mation about the desired output. Rather it has to �nd it's own classi�cation
of inputs. Examples for unsupervised learning are Kohonen networks, or the
K-nearest neighbour classi�cation (see section 2.3.2, p.38).

Reinforcement learning

Reinforcement learning can be seen as a compromise between supervised and
unsupervised learning. The system is not told directly what output would
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have been desired. Instead there is an evaluation function providing infor-
mation about the quality of the solution. Thus, the system obtains more
information than in case of unsupervised learning, but the information is not
very accurate. This is the most common approach in ML. Examples are given
in section 3.2, and in chapters 4 and 5.
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Chapter 3

Examples

In chapter 2 the concepts and methods of genetics-based machine learning
were sketched brie
y. In this chapter four examples of possible applications
will be given. In sections 3.1 and 3.2 it will be shown that genetic algorithms
may also �nd pretty good solutions when an exact analytic solution technique
is available. Of course this is not for free. When the information utilized for
obtaining the analytical solution is neglected and a heuristic search method
is applied then this is done for the cost of performing signi�cantly more
computations. In section 3.1 the function under consideration is smooth and
has only one local extremum, while in section 3.2 a function with several
optima will be studied. Later on, in sections 3.3 and 3.4, GAs as a tool
for training classi�er systems will be examined. While the CS in section 3.3
performs a rather simple input-ouput relation, in section 3.4 a CS is required
to store the inputs for one time unit, leading to certain diÆculties concerning
the apportionment of credit.

3.1 Ordinary least squares estimation

Let us assume that y is an aÆne function of the two variables x1 and x2
disturbed by some white noise �, i.e. y = �0 + �1x1 + �2x2 + �. Given K
samples of yj, xj1, and xj2 (j 2 f1; 2; : : :Kg), the task of ordinary least

squares estimation is to �nd estimators �̂0, �̂1 and �̂2, that minimize the sum
of the squares of the errors

S
�
~�
�
:=

KX
j=1

[yj � (�0 + �1xj1 + �2xj2)]
2 : (3.1)

If we de�ne

~� :=

0
B@ �0
�1
�2

1
CA ; X :=

2
66664
1 x11 x12
1 x21 x22
...

...
...

1 xK1 xK2

3
77775 ; and ~y :=

0
BBBB@

y1
y2
...
yK

1
CCCCA ;
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then S
�
~�
�
can be rewritten as1

S
�
~�
�
:=
�
y �X~�

�0 �
y �X~�

�
:

The best linear unbiased estimator �̂ = (�̂0; �̂1; �̂2)
0 is given by

�̂ = (X 0X)�1X 0~y : (3.2)

Proof: See (Caspary and Wichmann, 1994, p.198�) or (Johnston and Di-
Nardo, 1997, p.70�).

If we assume that �0 = 1, �1 = 0:3, �2 = 0:5, and � � N(0; 0:01), then
we might get the following samples:

x1 x2 � y
1.4 1.8 0.00000431918416 2.32000431918416
0.1 0 -0.03178594512477 0.99821405487523
0.1 0 0.10950037387875 1.13950037387875
0.9 0.6 -0.18739902576410 1.38260097423590
0.0 1.8 0.04281832730452 1.94281832730452
1.2 0.2 0.08956384712118 1.54956384712118
2.0 1.1 0.07309573384295 2.22309573384295
0.3 1.9 0.05778573463308 2.09778573463308
0.1 2.2 0.00403140316184 2.13403140316184
1.8 2.1 0.06770891875973 2.65770891875973

Table 3.1: Samples for the ordinary least squares estimation

According to equation (3.2), the best unbiased linear estimator becomes

�̂ =

0
B@

1:00687068282030
0:30908175061436
0:50725393409751

1
CA : (3.3)

Applying these values we get the squared error (see equation 3.1) S(�̂) =
0:06525, while when applying the actulally chosen parameter vector � =
(1; 0:3; 0:5)0 the squared error becomes S(�) = 0:07126. So we see that it
is impossible to �nd the originally chosen parameters by just observing the
above sample. The sample data and their projections into the (hyper-)plane
de�ned by the parameters given in equation (3.3) are shown in �gure 3.1.

Now we will have a look at the capabilities of GAs to estimate the param-
eters. We start with a randomly chosen initial population of 10 individuals
and compute the squared errors S(�). The obtained results are listed in table
3.2.

To generate this population, a uniform random distribution over the in-
terval [0; 1:5] was used, and all the entries were rounded to two digits after

1The apostrophe 0 indicates the transpose of a matrix or vector.
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Figure 3.1: The sample data and their projections

index �0 �1 �2 S(�) rank Pi

1 0.99 1.45 1.59 63.8371 6 0.0519
2 1.80 0.62 1.91 87.4115 9 0.0178
3 1.64 1.68 1.05 68.7301 7 0.0363
4 1.29 1.14 1.76 74.7146 8 0.0254
5 1.64 0.74 0.35 7.3564 3 0.1513
6 1.32 1.41 1.96 107.5855 10 0.0125
7 0.68 1.09 0.54 4.4434 2 0.2161
8 0.58 0.89 0.50 1.8626 1 0.3087
9 0.68 1.39 1.75 58.9737 5 0.0741
10 1.07 1.24 1.47 49.9509 4 0.1059

Table 3.2: Initial population
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the decimal point. This is obviously a very small population, but we want to
keep the problem small such that it is possible to pursue the e�ects of the
genetic operators. The average squared error within this initial population
is �S(�) = 52:4866, which is about 800 times the squared error of the best
solution �̂. The best individual within this population reaches a squared er-
ror of 1:8626 (about 30 times S(�̂)), while the worst shows a value of 107:59
(about 1600 times S(�̂)). Starting with this population we try to �nd better
parameter sets within the learning domain.

Selection

Obviously the squared errors S(�) are used to rank the individuals. Since
this value has to be minimized, roulette wheel selection cannot be applied
straight forward. If there exists an upper bound Sup then a �tness value
can be computed following Fi = (Sup � S(�))=Sup, which ensures, that Fi

always stays within the interval [0; 1]. Since all the squared errors are positive,
another possibility would be to use the inverse of the squared error | i.e.
Fi = 1=S(�). Both types of �tness values may be used to derive the selection
probability Pi in the following. Nevertheless, a ranking method de�ned in
equation (2.2), will be the method of choice. The ranks and also the selection
probabilities for a parameter value of q = 0:3 are listed in table 3.2.

After applying the selection operator we might get a population contain-
ing three copies of the two best strings and two copies of the fourth and the
�fth string. Therefore, the mean squared error has become 23.6767 and the
maximum squared error has changed to 58.9737. Obviously the minimum er-
ror remains, since selection cannot �nd better individuals than those already
represented in the original population. Nevertheless, the average �tness of
the whole population has improved signi�cantly.

Since the parameter q must be chosen appropriately with respect to the
population size, in the following it will always be denoted as a fraction q =
Q=ps, ps denoting the size of the population. Then we can apply the same
parameter values for Q for di�erent population sizes.

Crossover

In order to study the di�erences among several possible ways of crossover,
simple, arithmetic, and heuristic crossver where implemented. Since the
length of the strings under consideration is very small, it does not make a big
di�erence whether simple crossover (at a single crossover point), or crossover
with a mask is applied. Therefore, crossover masks will be omitted in this
example. To get a good balance between preserving existing individuals and
testing new ones, the crossover probability pc has to be chosen carefully. To
observe the e�ects of pc, the values 0:25; 0:4; 0:5; 0:8; and 1:0 were tried.
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Mutation

Since the function S(�) is smooth and has only one local minimum, mutation
is not crucial for the success of the search. For the sake of completeness,
mutation probabilities pm = 0 and pm = 0:001 have been chosen.

Results

In total 123 simulation runs | either 40 or 50 generations | were done with
the following variations:

population size 10, 20, 40
q (ranking selection) 1:1=ps, 1:2=ps, 1:3=ps, 1:5=ps, 3:0=ps
crossover type simple, arithmetic, heuristic
crossover probability 0.25, 0.4, 0.5, 0.8, 1.0
mutation probability 0, 0.001

Table 3.3 shows the top ten solutions found within this 123 simulations.

�0 �1 �2 S(�) pop. q crossover pc pm
size

1.0097 0.3071 0.5064 0.0653 40 1.1/ps heuristic 0.4 0
1.0198 0.3058 0.5065 0.0662 40 1.2/ps heuristic 0.4 0.001
1.0014 0.3118 0.5157 0.0663 20 3.0/ps arithmetic 0.8 0.001
0.9963 0.3443 0.5049 0.0739 20 3.0/ps arithmetic 1.0 0
1.0294 0.2547 0.5193 0.0769 40 1.2/ps heuristic 0.4 0
1.0255 0.2910 0.4821 0.0787 40 1.2/ps heuristic 0.4 0
0.9991 0.3563 0.4834 0.0794 40 1.3/ps heuristic 0.4 0
0.9740 0.3613 0.4986 0.0796 40 1.1/ps heuristic 0.4 0
1.0297 0.2547 0.5188 0.0814 40 1.2/ps heuristic 0.4 0
1.0400 0.2700 0.5400 0.0955 20 3.0/ps simple 0.5 0

Table 3.3: Best results

The best solution �ts the (hyper-)plane better into the sample than the
parameters that were actually chosen for generating the sample. Thus, there
is no doubt that the accuracy of this solution is suÆcient. Nevertheless, it is
indeed questionable whether it makes sense to �nd those parameters by GAs
when there exists a simple procedure to �nd an exact solution. Therefore, this
example | and also the follwing | should rather be seen as an illustration
of the power of GAs, and not as a typical practical application.

It is not surprising at all, that bigger populations in general result in
better outcomes. Unfortunately, this is achieved at the cost of more memory
and more computing time as well. Another conclusion that may be drawn
is that mutation does not a�ect the qualitiy of the solution in this example.
As already mentioned this is due to the smoothness of the function and the
uniqueness of the optimum, which is the only local optimum within the whole
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learning domain. Probably the most important result concerns the crossover
operator. It seems that heuristic crossover is the most appropriate one for the
given problem. Heuristic crossover assumes that given two di�erent individ-
uals in the search space a move along the connecting line extrapolating the
edge of the more successful of the two results in even better solutions. This
assumption obviously is ful�lled in the case of least squares estimation. How-
ever, this is not a typical problem for applying genetic algorithms. Therefore,
the superiority of heuristic crossover cannot be seen as a general property of
this operator.

3.2 Functions with multiple maxima

The function

y = sin(x1�) + sin(x2�)�
x1(x1 � 5) + x2(x2 � 5)

100
(3.4)

has nine local maxima within the region 0 � x1; x2 � 5 (see �gure 3.2). These
maxima are listed in table 3.4.
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Figure 3.2: A function with 9 local maxima

The goal of this section is to test the GAs ability to �nd the global maxi-
mum even when there are several local maxima almost as good as the global
one. Therefore, 3 initial random populations each containing 40 individuals
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x1 x2 y
0.5 0.5 2.045
2.5 0.5 2.085
4.5 0.5 2.045
0.5 2.5 2.085
2.5 2.5 2.125
4.5 2.5 2.085
0.5 4.5 2.045
2.5 4.5 2.085
4.5 4.5 2.045

Table 3.4: Local extrema

were generated independently. Despite the fact, that this is a maximiza-
tion problem (in contrast to the previous example), roulette wheel selection
would still require a simple transformation to omit negative values. However,
ranking selection can be implemented straight forward, and | as already
mentioned | it reduces the amount of computations because the selection
probabilities are only computed once at the beginning. Thus, again only
ranking selection with four di�erent parameters was examined.

Considering the results of the previous example, only arithmetic and
heuristic crossover were applied. If heuristic crossover is done according to
equation (2.4), then a random number � 2 [0; 1] is used to de�ne the stepsize.
If the pair of strings taken to create an o�spring have a big distance within
the learning domain, this may lead to big jumps resulting in an individual far
away from the pro�table regions explored by its parents. To overcome this
problem, the random numbers were generated from a uniform distribution
over the interval [0; �max] with �max = 0:5; 0:8; and 1.

Table 3.5 lists all the parameters that were used for running the GA.

parameter values
size of population ps 40
selection parameter q 1.1/ps, 1.2/ps, 1.3/ps, 1.4/ps
type of crossover arithmetic, heuristic
stepsize heuristic crossover �max 0.5, 0.8, 1.0
crossover probability pc 0.4, 0.6, 0.8, 1.0
mutation probability pm 0, 0.001, 0.002

Table 3.5: Simulation parameters

Each particular parameter set was applied three times for each of the
three initial populations. In total this leads to 1728 independent simulations.
Further, in each simulation 80 generations were created. The optimal solution
(x1; x2; y) = (2:5; 2:5; 2:125) was found 364 times (21.06 % of the simulations).
Moreover, in 1515 cases (87.67 %) the best solution found was above 2:085+�,
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with � being the smallest real number that can be seen to be greater than
zero by the computer (actually � was 2:2204e� 016). If a solution was found
leading to a value y > 2:085 + �, this means there is at least one individual
in the neighbourhood of the optimal solution, since the other local optimas'
peaks lead to results of at most 2:085.

Within 80 generations the optimal solution was only found with heuristic
crossover, but never with arithmetic crossover. With a stepsize �max = 1 and
the selection parameter q = 1:2=ps the optimum was found when pc = 1:0
and pm = 0:001 or pm = 0:002. Under �max = 1 and q = 1:3=ps or q = 1:4=ps
the optimum was always found. Further, when the stepsize �max was chosen
to be 0:5 or 0:8 then the optimum was found with all parameter settings
listed in table 3.5. The best solutions found with arithmetic crossover are
listed in table 3.6

x1 x2 y q pc pm
2.5683 2.4763 2.1022 1.3/ps 0.8 0.002
2.5627 2.4343 2.0844 1.2/ps 0.8 0.001
2.5529 0.5040 2.0713 1.1/ps 0.4 0.002

Table 3.6: Best solutions found with arithmetic crossover

The iterations leading to the best two solutions in table 3.6 did not con-
verge within 80 generations. Thus, with some more iterations perhaps also
arithmetic crossover may have found the optimum in these two cases. The
third best solution is in a neighbourhood of one of the wrong local maxima
and, moreover the GA already converged | i.e. most of the individuals were
concentrated at a small region around the local optimum. Thus, it is very
unlikely that further generations would have improved the outcome signi�-
cantly.

This motivates to guess that for the given problem heuristic crossover is
the method of choice. The stepsize �max should be small (i.e. signi�cantly
below 1:0), the selection parameter q should be between 1:3=ps and 1:4=ps
(at least when the population size is 40), and the mutation probability
should be signi�cantly above 0:0.

Explanations:

� Arithmetic crossover fails because it is very unlikely that the global
optimum is between the parents.

� Moving into the direction of the better individual helps to explore new
and more successful regions. Heuristic crossover with a high crossover
probability forces the GA to move towards better solutions (due to the
smoothness of the examined function).

� The mutation operator prevents the GA from converging to a local
optimum.
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� Small stepsizes avoid movements too far away from the optimum.

Figure 3.3 shows four intermediate stages during the convergence of the
GA towards the optimal solution. The chosen paramters are �max = 0:8,
q = 1:4=ps, pc = 0:8, and pm = 0:001.
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Figure 3.3: Convergence to the global optimum

The �rst graph shows the situation at the initial state. The individuals are
distributed over the whole quadratic area 0 � x1; x2 � 5. The second graph
shows the situation of the 13th generation. The GA has already detected
the two local optima (0:5; 2:5) and (4:5; 2:5). In the third graph (generation
27) many individuals have moved to the center of the quadratic area, due
to a change caused by the mutation operator. Finally, the third graph shows
generation 30, when all the individuals already moved into the neighbourhood
of the global optimum at (2:5; 2:5). The succeeding generations are needed
to converge closer to the optimum.

Conclusion: The GA is able to �nd the best solution even when there
are several local optima given a suÆciently big population spread over the
whole learning domain, well adjusted genetic operators, and a reasonable
mutation probability.

The following examples will illustrate the GAs capabilities to train clas-
si�er systems.
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condition action

000 000 (0 ! 0)
001 010 (1 ! 2)
010 100 (2 ! 4)
011 110 (3 ! 6)
100 001 (4 ! 1)
101 011 (5 ! 3)
110 101 (6 ! 5)
111 111 (7 ! 7)

Figure 3.4: Rules performing the bit-shift operation

3.3 Training a simple classi�er system

In this numerical example of a classi�er system (CS) trained by a genetic
algorithm (GA) the CS is required to perform the simple bit-shift operation
(a1; a2; a3) ! (a2; a3; a1) on the set f0; 1g3. Since there are 23 = 8 possible
vectors, and each of them requires a unique response, the eight rules given
in �gure 3.4 are necessary for this bit-shift.

Because there are no opportunities for generalization, that means there is
no possibility to set up one rule that covers several possible input scenarios,
the don't care symbol # may be left out in this section. Thus, we could start
with an initial population of classi�ers containing only 0 and 1. Although
there should not be any # symbols in the �nal CS which always produces the
right outcome, it is nevertheless possible that inserting some # symbols into
the initial population and also allowing them within intermediate iterations
may help to train the CS.

Let us assume that the apportionment of credit assigns the number of cor-
rect digits contained in the chosen action to the rule that caused the output.
This means for instance that the classi�er 001 011 gets assigned a 2. Then
the condition part of the classi�er 11# 111 is ful�lled twice (inputs 110 and
111). Therefore, it has a higher chance to be chosen than classi�ers without
any #. Moreover, it gets assigned a 2 or a 3, which results in a very high
�tness level. If the selection operator of the GA allows two reproductions in
the mating pool, crossover or mutation may produce the two correct classi-
�ers 110 101 and 111 111 during the following iterations. The simulation will
show whether the learning domain f0; 1g6 or f0; 1;#g6 is more successful.

Like in the previous examples, again the learning process is started with a
random initial population. Here, each individual in the population is a string
containing six components stemming from one of the alphabets given in the
previous paragraph. Each rule gets assigned a one as initial �tness value. To
evaluate these rules, each possible input is processed by the classi�er system.
When there are several rules matching an input, a roulette wheel selection
mechanism is used to select a rule. The weights depend on the �tness, which
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is equal at the beginning. Thus, if ps indicates the size of the population and
fi the �tness of the i-th rule, the selection probability of this rule becomes

pi =
fj

psP
i=1

fj

:

After selecting a rule its message is compared with the desired output
(a2; a3; a1) and the number of correct digits is stored in the variable cb (correct
bits). Consequently, this value is used to update the �tness according to the
formula

fi(t) = �
cb

disc
+ (1� �)fi(t� 1) : (3.5)

The variables � and disc are used to adjust the 
uctuation of the �tness
during the evaluation process. The �tness increases (decreases) when cb=disc
is greater (less) than fi(t � 1) and it reaches an equilibrium when these
expressions are equal. Thus, the parameter disc can be used to determine
which results lead to an increase of the �tness right from the beginning
and which lead to a decrease. For example with an initial �tness of 1 and
1 < disc < 2 the �tness of the rules with at least two correct bits in the
action part increases and the �tness of rules with at most one correct digit
decreases. Choosing disc > 2 leads to a decrease of the �tness even when
two bits are correct. Thus, in the next cycle those rules that have never been
tested are preferred compared to those that have been tested but only two
bits are correct. Finally, the factor alpha determines the speed of the change.

Before the genetic algorithm is invoked to update the rule base, the whole
set of possible inputs is proceeded rp times by the classi�er system. In order
to omit redundant numerical computations rp should be chosen as small as
possible. On the other hand, it is not desireable to produce results depending
too much on random selections. Therefore, rp has to be chosen suÆciently
large such that the rules' �tness levels can converge towards their equilibrium
level fi =

cb
disc

. Since � in
uences the speed of the convergence signi�cantly,
it is important how many iterations are required in the worst case, when � is
very small. In the numerical examples �-levels of 0.2, 0.4, and 0.6 were tried.
Hence, � = 0:2 becomes the worst-case scenario | with respect to the speed
of the convergence towards the equilibrium. Table 3.7 shows how often a rule
has to be chosen to get a �tness level of 1 + 0:95

�
cb
disc

� 1
�
. That means the

actual �tness has already performed 95% of the possible convergence. Close
to the equilibrium the changes become extremly small such that a certain
di�erence to the equlibrium must be tolerated.

Ignoring the zeros, which occur when the initial �tness equals the equilib-
rium, these results indicate that � is the only parameter in
uencing conver-
gence velocity, while disc and cb only a�ect the level of the equilibrium. This
also holds true for other error tolerances. In a setup of ps rules not containing
any don't care symbols and eight di�erent input signals there are on aver-
age ps=8 rules handling the same input signal. Therefore, to avoid random
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� 0.2 0.4 0.6
disc 1 1.5 1.7 1.8 1 1.5 1.7 1.8 1 1.5 1.7 1.8
cb = 0 14 14 14 14 6 6 6 6 4 4 4 4
cb = 1 0 14 14 14 0 6 6 6 0 4 4 4
cb = 2 14 14 14 14 6 6 6 6 4 4 4 4
cb = 3 14 14 14 14 6 6 6 6 4 4 4 4

Table 3.7: Number of required iterations

results within the weights of the rules, rp should be chosen approximately
ps=8 times the value in table 3.7.

Now, there follow some remarks about the implemented genetic algo-
rithm. Roulette wheel selection and ranking selection (with selection parame-
ter q = Q=ps, see also section 3.1) are used. After selection simple crossover is
applied with probability pc �gfactor. Finally, mutation is done with probabil-
ity pm � gfactor. The expression gfactor is used to accomodate the crossover
and the mutation probability during the learning process. If G is the total
number of generations and j the index of the current generation then gfactor
is computed according to

gfactor =
�
1�

j

T

�b

This feature enables the system to slow down the convergence at the
beginning and avoid high 
uctuations at the end of the learning process. A
similar method is usually applied in simulated annealing. The exponent b is
a shape parameter. Its e�ect is shown in �gure (3.5).

In table 3.8 the considered numerical parameters and types of operators
are listed.

Using several but not all possible combinations of these parameters and
repeating each setting at least three times led to 8034 simulation runs. Within
each generation the rate of correct bits in the outputs is computed | i.e. 1
is optimal. To avoid that sudden changes of the rule base due to crossover or
mutation in
uence the comparison too much, the sum of these rates within
the last ten generations is considered to compare the results. The best results
obtained are given in table 3.9 | 10 being the optimal outcome. The popu-
lation size is always 100 since the experiments with ps = 40 have not been
successful. Moreover, inserting strings containing don't care symbols (#) did
not deliver any acceptable outcomes. Thus, in this particular example gener-
alization is useless since the task that has to be performed is so speci�c that
handling several inputs with one rule is impossible. As a result, the learning
domain under consideration is f0; 1g6. Parameter settings that appear twice
in the table indicate two di�erent simulation runs with that parameter set-
ting | i.e. these combinations of parameters are the most interesting ones
since the good results do not depend too much on chance.
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Figure 3.5: The generation factor

operator/parameter values
don't care symbols # yes, no
selection operator roulette wheel, ranking
size of population ps 40, 100
number of generations T 50, 100, 120, 150, 170
number of cycles rp 3, 5, 7, 12, 15, 20, 30, 35, 40, 80, 100, 120
�tness update factor � 0.2, 0.4, 0.6
discount factor disc 1, 1.5, 1.7, 1.8
selection parameter Q 1.1, 1.2, 1.3
crossover probability pc 0.001, 0.002, 0.003, 0.02, 0.05,

0.1, 0.2, 0.3, 0.4, 0.6
mutation probability pm 0, 0.001, 0.002, 0.003
shape parameter b 0, 0.05, 0.3, 0.5, 0.7, 1, 1.5

Table 3.8: Simulation parameters
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result # selection T rp � disc Q pc pm b
10.000 no ranking 150 100 0.2 1.7 1.3 0.1 0.003 1.5
10.000 no ranking 150 100 0.2 1.7 1.3 0.2 0.002 1.5
10.000 no ranking 150 100 0.2 1.8 1.3 0.1 0.001 1.5
10.000 no ranking 150 100 0.2 1.8 1.3 0.2 0.003 1.5
10.000 no ranking 150 100 0.4 1.7 1.3 0.1 0.002 1.5
10.000 no ranking 150 100 0.4 1.8 1.3 0.2 0.001 1.5
10.000 no ranking 150 100 0.6 1.8 1.3 0.1 0.003 1.5
10.000 no ranking 150 120 0.2 1.8 1.3 0.2 0.001 1.5
10.000 no ranking 150 120 0.4 1.7 1.3 0.1 0.001 1.5
10.000 no ranking 150 120 0.4 1.8 1.2 0.1 0.001 1.5
10.000 no ranking 150 120 0.4 1.8 1.2 0.1 0.001 1.5
10.000 no ranking 150 120 0.4 1.8 1.3 0.2 0.001 1.5
10.000 no ranking 150 120 0.6 1.7 1.2 0.1 0.002 1.0
10.000 no ranking 150 120 0.6 1.7 1.2 0.1 0.002 1.5
10.000 no ranking 150 120 0.6 1.7 1.2 0.1 0.003 1.5
10.000 no ranking 150 120 0.6 1.7 1.3 0.2 0.002 1.5
10.000 no ranking 150 120 0.6 1.8 1.2 0.2 0.002 1.5
10.000 no ranking 150 120 0.6 1.8 1.3 0.2 0.001 1.5
9.9962 no ranking 150 120 0.2 1.8 1.2 0.1 0.001 1.5
9.9958 no ranking 150 100 0.4 1.7 1.2 0.2 0.002 1.0
9.9958 no ranking 150 100 0.6 1.8 1.2 0.1 0.003 1.0

Table 3.9: Best results
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From table 3.9 it follows that high values of rp are extremely important
to obtain good results. When rp is too small, the CS is not capable to �nd
exactly the desired rules to perform the bit{shift operation. Moreover, using
a parameter value of rp = 120 still improved the simulation results compared
to those obtained with rp = 100. The former appears in the list 12 times,
while the latter appears 9 times. Presumably a further increase of rp would do
even better. However, this was not tested since the computing time becomes
too long.

The shape parameter b = 1:5 clearly outperformed all other values that
have been tested. Thus, the curve in �gure 3.5 indicating the development
of the generation factor should be convex. That means the reduction of the
crossover and mutation probability is pretty high at the beginning and be-
comes more shallow at the end. This shows that only at the very beginning of
the learning processes reasonable high mutation and crossover probabilities
make sense. Later on, mutation and crossover tend to destroy the already
found good solutions. The further improvement of the performance of the
whole system is mostly due to the selection operator.

The factor �, responsible for the speed of the increase of the �tness may
take any value. All the values that have been tested (0.2, 0.4, and 0.6) appear
in the list with almost the same frequence. Those parameters that have not
been discussed so far seem not to play a major role either.

The development of the rate of correct bits during the learning process in
case of the parameters listed in the �rst row of table 3.9 is given in �gure 3.6.
It shows that beginning at generation 136 all the outputs are perfect. That
means the CS trained by the genetic algorithm contains all and only those
rules given in �gure 3.4. Due to the decreasing crossover{ and mutation{
probability the correct CS was not destroyed within further iterations.

We may conclude that an arti�cial agent implemented with a CS and ge-
netic operators is suitable to learn the required task. However, the successful
parameter sets listed in table 3.9 require either 120000(= 8 �150 �120) or even
144000(= 8 � 150 � 120) function evaluations. Comparing that with 729(= 36)
function evaluations that would have been required for total enumeration,
this method certainly is very uneÆcient. In the applications given in chapters
4 and 5 genetics based machine learning again is uneÆcient compared to full
enumeration. However, in those models direct evaluation of the rules is not
possible since the arti�cial agents lack information about the cost{functions
(chapter 4) or about the consumers preferences (chapter 5). Therefore, only
adaptive learning, for instance accomplished by CSs and GAs, can be taken
into consideration.

3.4 Classi�er systems with memory

The CS in the previous section was quite simple in the sense that it was com-
pletely memoryless. Its task was restricted to performing an input{ output
transformation. There are a lot of examples showing that this kind of CSs
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indeed work without any troubles (see for instance Goldberg, 1989, p.218�).
In this section we will have a look at a more tricky problem. Here it will
be examined whether a CS can learn to store an input ~x = (x1; x2; : : : ; xn),
and send it to the environment one time step later. This job is illustrated
schematically in �gure 3.7.

t
-~x cs

t + 1 cs -~x

Figure 3.7: A classi�er system with memory

In order to do that, it is necessary to implement internal messages. To
determine, whether a string is an internal message, an additional bit is re-
quired. In the following any string with a zero at the last position will be
considered to be a message coming from outside or an action to be posted
to the environment. On the other hand, strings ending with a 1 are con-
sidered to be internal messages. To simplify the notation the abbreviations
(~x; 0) := (x1; x2; : : : ; xn; 0) and (~x; 1) := (x1; x2; : : : ; xn; 1) will be used. The
whole process of storing an input signal ~x for one time unit and then posting
it is illustrated in �gure 3.8.

t
-~x detector - (~x; 0)

message list

- ~x; 0 k ~x; 1

rule base

?

t + 1 (~x; 1)

message list

- ~x; 1 k ~x; 0

rule base

- e�ector -~x

Figure 3.8: Storing a message for one time step

At time t the vector ~x enters the system via the detector which just adds
a 0 at the end to enable the rule base to proceed with the input. The input
(~x; 0) is stored in the message list and compared with the condition parts of
all rules. Given there is a rule (~x; 0 k ~x; 1), and it is chosen among all ful�lled
rules, an internal message (~x; 1) is produced and written into the message
list. Next, at time t this internal message might be chosen to activate the
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rule (~x; 1 k ~x; 0) which, in turn, sends the string (~x; 0) to the e�ector. Finally,
the e�ector removes the last bit and sends the signal ~x to the environment.

However, this job can only be performed in the described way, when the
needed pair of coupled rules is available. Moreover, another pair of coupled
rules, for instance (~x; 0 k ~y; 1) and (~y; 1 k ~x; 0) can do the same. Therefore,
both pairs might get assigned a high �tness during the learning process (per-
formed for instance by a genetic algorithm). Since both pairs do the right
job, this does not disturb at all. What really causes big problems, is the fact
that each single rule out of these two pairs may also be involved in a chain
producing wrong results. A few examples of possible combinations are listed
in table 3.10.

~x; 0 k ~x; 1 ~x; 1 k ~y; 0
~x; 0 k ~y; 1 ~y; 1 k ~y; 0
~y; 0 k ~x; 1 ~x; 1 k ~x; 0
~y; 0 k ~y; 1 ~y; 1 k ~x; 0

Table 3.10: Coupled rules leading to wrong outcomes

This results in assigning low �tness values to the involved rules when the
above chains are activated during learning. Hence, it is unpredictable whether
a rule required to perform the job of storing a message will be successful and
survive several iterations. As a result, the considerations done in the previous
example about convergence of a rule's �tness towards an equilibrium cannot
be applied here. The aim of this setction is just to brie
y sketch the problems
arising when classi�er systems are required to perform a time delay between
input and output, i.e. when memory is required. Since the economic models
in chapters 4 and 5 apply CSs without memory, this is not dicussed in more
detail, and simulation results are omited.
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Chapter 4

A model of new product

development

Managing the information 
ow within a big organization is a challenging task.
Moreover, in a distributed decision-making process con
icting objectives oc-
cur. In this chapter, arti�cial adaptive agents are used to simulate the process
of designing a new product. None of the agents knows all the relevant details.
EÆcient communication within a network of decision makers is required to
perform a complex task, which no one could do alone. The decision makers
are implemented as classi�er systems, and their learning process is simulated
by genetic algorithms. To validate the outcomes we compared the results
with the optimal solutions obtained by full enumeration. It turned out, that
the genetic algorithm indeed was able to generate useful rules that describe
how the decision makers involved in new product development should react
to the requests they are required to ful�ll.

4.1 Introduction

Designing new products is often a process that involves several departments
of a company. Moreover, the people dealing with all aspects of launching a
new product have varying educational backgrounds and, therefore, do not
speak the same technical language. In some organizations it can indeed be a
big challenge to manage the communication required to capture all aspects
of product development. However, nowadays decreasing product life-cycles
require an eÆcient communication in order to launch new products before
the competitors do it. An eÆcient information-
ow is an indispensable pre-
requisite for a high speed of innovation. In order to systematically produce
innovative solutions a company has to perform four tasks:

� collect good ideas

� keep them alive

� �nd new applications
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� test promising concepts

A collection of various case studies can be found in Hargadon and Sutton
(2000). A well-known technique for interfunctional planning and communi-
cations is the house of quality introduced by (Hauser and Clausing, 1988).

\The foundation of the house of quality is the belief that products should
be designed to re
ect customers' desires and tastes" (Hauser and Clausing,
1988). A brief summary of the model can be found in (Chase and Aquilano,
1995). The main idea is a conceptual map that helps two departments to
collect all the data that express the in
uence of the decisions of one group on
the problem of the other group. The information 
ow works like it is shown
in �gure 4.1.

MARKETING

��
��HHHH

- PARTS
DEPLOYMENT

��
��HHHH

- PROCESS
PLANNING

��
��HHHH

- PRODUCTION
PLANNING

��
��HHHH

Figure 4.1: Flow of information

In the �rst step the purpose of the house of quality is translating cus-
tomer attributes into engineering characteristics. Subsequently, the engineer-
ing characteristics are transformed into parts characteristics, which are then
used to generate the key process operations, which, in the last step, are the
basis of the production requirements. In all these steps data have to be com-
municated between di�erent departments. The House of Quality approach
helps them to talk together and is one of the most well-known instruments
of quality function deployment. The main question addressed is: \How do
we understand the quality that our customers expect and make it happen in
a dynamic way?" Quality function deployment is a systematic way to make
sure that customer requirements drive the design process. The �rst house is
shown in detail in �gure 4.2.

At the beginning of the process it is required to listen carefully to the
customers to learn as much as possible about their requirements. These at-
tributes together with their relative importances are then written into the
left room of the house. Afterwards the room on the right-hand side is used
to illustrate how customers experience the own product and the competitors
products in terms of the attributes listed on the left-hand side. In the next
step one has to think about the engineering characteristics (usually these are
technical data that can be measured easily) that have some in
uence on the
customer attributes. These technical features are written down in the room
below the roof. Then the room in the center allows to mark the relations
between engineering characteristics and customer attributes. There are dif-
ferent types of notations that can be used. Most of them have in common
that they indicate whether there is a weak or a strong connection, and if the
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Figure 4.2: The house of quality
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in
uence is positive or negative. When there is no relation, the according
�eld in the matrix is left empty. However, there are not only correlations
between engineering characteristics and customer attributes, but also among
the engineering characteristics. These connections are marked at the roof of
the house. Finally, the basis of the house is used to collect data about the
measures of the engineering characteristics | again we compare the own
product with the competitors products | the technical diÆculty, the im-
puted importance, the estimated costs, and the technical targets.

Marengo (1992) studied an organization which has to forecast the cus-
tomers' demands and to coordinate the production process at the same time.
While the former is easier when the organization can rely on a diversi�ed
knowledge base, the latter depends on a common body of knowledge. Simu-
lating this process with classi�er systems showed, that in a static environment
a centralized structure is sligthly advantageous compared to a decentralized
one, while in a periodically changing environment a centralized structure
completely fails. Another simulation model related to our work is given by
DeCanio et al. (2000). They examine organizational structures that di�er
in their connectivity. The best performing information structures under sev-
eral settings of cost parameters are identi�ed in comprehensive numerical
experiments.

In this chapter we will deal with the interaction within an organization
and, therefore, the company itself is interpreted as a complex adaptive sys-
tem. The groups involved in product development are the adaptive agents.
Not all the in
uences they are confronted with are internal, and the cus-
tomer's demand might change quickly. All the agents have to take their own
decisions and, certainly there is interaction among them. Thus, all of the
characteristics of a complex adaptive system described in section 1.2 arise.

The remainder is organized as follows. Section 4.2 explains the model and
the algorithms we used. In section 4.3 we present and interpret the simulation
results obtained with various parameter settings. Finally, in section 4.4 we
provide a summary of some possible extensions.

4.2 The model

The well-known house of quality is a management tool that helps to illustrate
the in
uence of abstract technical features on the customers' perception of
the product. Although the practical value of such a concept is out of ques-
tion, it is not obvious how such a communication scheme can be integrated
into a numerical simulation of an arti�cial �rm. For our attempt to simu-
late the behaviour of the individuals involved in the product design process
we translate the basic ideas of the house of quality to a quantitative level.
Hence, all the relevant information that is exchanged between the particular
departments is supposed to be encoded in a string of �xed length containing
only the digits 0; 1; 2; 3; and 4.
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4.2.1 The customer attributes

The customer attributes are the inputs of the �rst house. If we run our
simulation with strings of length 3, there are 125 (53) possible input vectors.
To initialize the customers' wishes we create all the 125 input strings, and
select 20 of them for the validation set. The remaining strings are used to
train the system while the validation data are stored for later comparisons
between di�erent simulation runs.

Obviously in case of a real product a vector of length 3 will never be
suitable of carrying all the characteristics required to describe the product.
However, since the algorithms we used do not take advantage of the struc-
ture of the functions that have to be optimized, increasing the size of the
vector only increases computing time without any qualitative changes of the
obtained results.

4.2.2 The decision making process

The messages created in the above section enter the �rst house | the market-
ing department, where the customer attributes are transformed to engineer-
ing characteristics. In our simulation this is done by a classi�er system. The
output | the engineering characteristics | is the input of the next house
| the parts deployment. Yet, another classi�er system uses this information
to decide about the parts characteristics. In the same way the third house
| process planning | transforms parts characteristics into key process op-
erations, and, �nally, these are transformed into production requirements by
the department of production planning.

For an introductory description of classi�er systems see (Holland, 1995,
p. 13�) or (Holland, 1976). Here, we use a very simple classi�er system with
only one condition part per rule and each message entering the classi�er
system alone. An application of more complex classi�er systems containing
more condition parts will be shown in chapter 5. A typical situation of our
model is illustrated in �gure 4.3, where '#' is the don't care symbol.

message rules actions

2 4 1 # 4 1 0 2 4
3 4 # 2 3 1
1 3 0 4 1 3
2 4 1 1 0 2
# 0 1 3 4 0

Figure 4.3: A typical decision situation

In this particular situation the �rst and the fourth rule are ful�lled by
the incoming message. Thus, we choose one of them randomly. However, in
most situations not all the ful�lled rules have the same chance to be chosen.
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We use a weight which depends on the strength gained in the past and on
the specivity of the rules. The specivity depends on the number of don't care
symbols appearing in the considered rule. Thus, in this example the fourth
rule is more strict than the �rst one.

Later, the selected rule posts its action part which, in turn, is the input
of the following house, where a similar decision making process is applied
again. Note, that each of the departments has it's own independent set of
rules.

A description of more general classi�er systems is given in (Geyer-Schulz,
1995), while (Holland, 1995) provides a survey of recent applications.

4.2.3 Creating new rules

If a message enters a house which does not ful�ll any of the available rules,
then a new rule has to be created. First, we compare the incoming message
with each rule. At those indices, where the rule entry does not match with the
message we compute the di�erence and derive the sum of all the di�erences
for each rule. Finally, we choose one of those rules with the lowest sum of
di�erences. The action part and the strength (see section 4.2.4) of this rule
are inherited by the new rule. The incoming message itself is used as the new
condition part.

4.2.4 Costs and �tnesses

Each decision taken by any department is assumed to cause two di�erent
types of costs. The �rst cost term represents those costs that originate from
implementing the chosen decision while, on the other hand, there are some
opportunity costs that arise from the di�erence between the actually chosen
output and the theoretical optimal output with respect to the input.

Implementation costs

The costs of implementation depend on the numerical values of each particu-
lar component of the output vector plus a term that represents the correlation
or synergy among the components. For instance, if the department chooses
the row vector ~x , then with certain cost parameters the implementation
costs may become

c1 = ~x ~b + ~x B ~x0 : (4.1)

The �rst term (~x ~b) in formula (4.1) represents the costs that stem from the
row \estimated costs" in the foundation of the house (�gure 4.2). The term
~x B ~x0 stands for the technical correlation among the components which are
noted in the roof of the house. Therefore, it makes sense to expect that in
the main diagonal and below it there are only zeros. The other entries may
be negative, if there are synergies that reduce the costs, as long as c1 remains
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nonnegative. A suÆcient but not neccesary condition to ful�ll c1 � 0 can be
given by the inequality

Bij � �
bi

4 (n� 1)
8i; j: (4.2)

Proof 1 From equation (4.1) it follows that

c1 =
nX
i=1

xi

0
@bi + nX

j=1

Bijxj

1
A :

All the entries along the main diagonal (i.e. all xij satisfying i = j) are equal
to zero, and we assumed xi 2 f0; 1; 2; 3; 4g. Thus, the condition given in (4.2)

guarantees that all the terms xi (bi +
nP

j=1
Bijxj) are nonnegative. 2

If the designers decide to split the product into rather independent moduls
there will be only a few entries in the matrix B. A highly integrated design,
on the other hand, leads to more nonzero entries in B. For a comprehensive
elaboration of modular product design and its impact on the organizational
structure see G�oppert and Steinbrecher (2000).

Opportunity costs

We assume that there might exist an aÆne transformation that assigns an
optimal output to each input,

x� = A xinput + a : (4.3)

That means x� is the best reply to the input xinput from a pure technical point
of view | not regarding any considerations about the costs and diÆculties
arising when this technically optimal decision is being implemented. This
input { output relation (xinput ! x�) is determined by the entries in the center
of the house. In order to obtain a feasible solution we have to check if each
component is in the intervall [0; 4] and reduce or increase those components
that are too big or too small. Finally, the distance between the chosen output
and the optimal output determines the opportunity costs,

c2 = �kx� � xk : (4.4)

The parameter � is �xed and it is used to adjust the in
uence of imple-
mentation and opportunity costs. Thus, we are able to control the relative
importance of c1 and c2. Note, that in our model an overshoot is considered
to be as bad as a shortfall. In most cases this might obviously make sense.
However, if we think about excessive precision this statement is not so clear.
In such a situation the costs might become too high and, therefore, it is
feasible to assign high opportunity costs to such a solution.
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Total costs and �tness

The total costs are the sum of implementation costs and opportunity costs,

c = c1 + c2 :

These costs are used to compute the �tness of the chosen rule. Higher costs
lead to a lower �tness and vice versa.

Local optimization

In an organization consisting of locally optimizing agents only those costs
arising from the particular department are considered for evaluating the �t-
ness. For simplicity we want to achieve �tness values in the interval [0; 1].
Therefore, we �rst compute the highest total costs possible,

�c = ~x ~b + ~x B̂ ~x0 + � � jj~xjj;

with ~x = (4; 4; 4)0, and B̂ containing the absolute values of the entries of B.
The parameter � determines the weight of the opportunity costs. Then we
obtain the �tness

f =
�c� c

�c
: (4.5)

Global optimization

If the agents' aim is to minimize the company's total costs, then also the
impacts of their decision on the other departments have to be taken into
account. If we denote the highest possible cost in the i-th house with �c(i),
and the costs occuring in the i-th department with c(i), then the �tness value
of the rule recently chosen in the j-th department becomes1

f =

4P
i=j

�c(i) � f i�jb �
4P

i=j
c(i) � f i�jb

4P
i=j

�c(i) � f i�jb

: (4.6)

The only di�erence to formula (4.5) is that we consider a weighted sum of
all the costs in the recent house plus all the following houses. The factors
fb in the above formula are used to adjust the trade-o� which has to be
made between local and global optimization. A sel�sh, suboptimizing decision
maker will choose fb = 0, while a decision maker only interested in the success
of the company as a whole will choose fb = 1. Nevertheless, not all the costs
occuring in subsequent steps are caused by the decision at step i. Thus, we
expect that choosing a level of fb somewhere between 0 and 1 will yield the
best results.

1In formula (4.6) c(i) and �c(i) express costs or boundaries for costs in house i, while
f
i�j
b means that the weight fb is taken to the power (i� j).
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Strength - apportionment of credit

While training the classi�er system, all the �tnesses gained by a rule dur-
ing a particular iteration are cumulated. Thus, rules which are chosen more
frequently also gain a higher strength. After processing all the inputs of the
training set through the system, the strength is updated according to

strength = (1� �) oldstrength+ � newstrength : (4.7)

This is done several times. In our simulation we de�ned the variable rp,
determining how often the whole set of data has to be processed through the
system within one generation.

4.2.5 The genetic algorithm - rule discovery system

After rp iterations a genetic algorithm is used to adapt the rules in the
classi�er system. More details about training a classi�er system using genetic
algorithms can be found in chapters 2 and 3, and for instance in (Goldberg,
1989). Our aim is to �nd rules that enable the departments to �nd a \good"
response to every input.

Selection

In order to select those rules that we use to generate the next population we
rank all the rules with respect to their strength received in the past. Then
we choose the best 50%. Thus, the successful rules of the last period always
occur again in the next period. However, at the beginning we start with
a very small population. Thus, during the start we choose all the rules in
order to increase the number of individuals. A small example of the selection
process is given in �gure 4.4.

The rules that are selected cannot be changed by the following crossover
operation but only by the mutation.

Crossover

First we build pairs with the selected individuals (rules and actions). Then a
crossover mask is generated to create two new individuals. Finally, we assign
the average �tness as starting �tness value to the new rules. The crossover
probability � is 1, i.e. the crossover process always takes place. The example
in �gure 4.5 illustrates the crossover operator, when it is applied to the �rst
and the third rule out of the pool of selected rules (recall �gure 4.4).

Mutation

The last operator in our genetic algorithm is the mutation. The aim of this
operator is to avoid converging towards a local minimum. Therefore, we �rst
create mutation masks containing only zeros and ones. The probability of
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population

rules actions strength

# 4 1 0 2 4 0.75
3 4 # 2 3 1 0.67
1 3 0 4 1 3 0.84
2 4 1 1 0 2 0.34
# 0 1 3 4 0 0.82

selecting the 3 �ttest rules

rules actions strength

# 4 1 0 2 4 0.75
1 3 0 4 1 3 0.84
# 0 1 3 4 0 0.82

Figure 4.4: Selecting the rules

crossover mask

1 1 0 1 0 1

new individuals built with # 1 and # 3

rules actions strength

# 4 1 0 4 4 0.785
# 0 1 3 2 0 0.785

Figure 4.5: The crossover operator
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ones is the mutation probability �, which is between 0:001 and 0:004 in our
simulation. Then we create the random strings containing only 0; 1; 2; 3; and
4. Finally, we replace the old contents of our population with the random
numbers with probability �, as it is shown in �gure 4.6.

mutation mask

0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

new population

rules actions

# 4 1 0 2 2
1 3 0 4 1 3
# 0 1 3 4 0
# 4 1 0 4 4
# 0 1 3 2 0

Figure 4.6: The mutation operator

Afterwards the second phase of the mutation operator takes place. If we'd
�nish our genetic search as described until here, as a result of the mutation
operator the number of don't care symbols would decrease from one genera-
tion to the next one. To avoid this we apply a special mutation only to write
new don't care symbols into the existing rules. This works exactly like the
general mutation described above. Another e�ect of having an extra muta-
tion operator only for don't care symbols lies in the fact that this enables us
to control the speci�ty of our rules. The parameter determining the proba-
bility of writing a don't care symbol into the population is called dp. In our
experiments we tried values between 0 and 0:003.

4.2.6 Brief model summary

Summarizing our model is based on the following assumptions:

� All the relevant information is encoded in vectors ~x 2 f0; 1; 2; 3; 4g3.

� The agents take one unique decision at each time step in response to a
unique and known input signal.

� The costs are a polynomial function of order 2 of the input and output
vector.
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� The agents do not know the cost functions but receive unbiased infor-
mation about the recent costs.

� In response to this information the agents may update their rule{base,
i.e. we assume that the examined �rm is a learning organization.

4.3 Simulation Results

The objective of the departments is to �nd replies that yield low costs. As a
�rst approach the �tness of a rule is assumed to depend only on those costs
that arise in that particular department. That means, all the departments try
to �nd a strategy that minimizes their own local costs without considering
the indirect e�ects of their decision. However, it would also be interesting
what happens if the �tness assigned to a certain rule is also in
uenced by
the costs in the subsequent departments. The numerical parameters used for
these simulations are listed in table 4.1. In total there are 432 (3 � 3 � 3 � 4 � 4)
possible combinations that we use for our experiments.

variable description values
� strength update factor 0.1, 0.2, 0.3
rp CS cycles before invoking GA 1, 2, 3
despop number of classi�ers (population size) 36, 72, 108
� mutation probability 0.001, 0.002, 0.003, 0.004
dp probability of inserting a # 0, 0.001, 0.002, 0.003

Table 4.1: Simulation parameters

The generations from 1 to 40 are used to train the classi�er system in
all the four houses. Therefore, the 105 input messages of the training set
are used. From generation 41 to 55 we use the remaining 20 messages to
check if the classi�ers are capable to deal with new inputs which they did
not experience during the training period. If we observe the development of
the average costs in each department over time when the decision makers
only get information about their own costs, the time series may look like in
�gure 4.7. The values at the abscissas indicate the generations. The vertical
lines at generation 40 mark the change from training data to validation data.
The according set of simulation parameters is given in the lower right corner
of the �gure.

The graph in the �rst row on the left-hand side shows the situation in
the �rst house. The dashed line shows the number of don't care symbols
within the rule base. This number increases dramatically at the beginning
of the learning process and quickly stabilizes at approximately 150. That
means at the beginning the more general rules are more likely to be chosen,
and so their frequency within the population increases. Since the population
consists of 72 classi�ers, each of them on average contains about two don't
care symbols. That means in the �rst step of the process | when the data
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Figure 4.7: Product development - simulation results
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from the marketing department are used for parts deployment | very general
rules are applied. The thick solid line shows the actual costs. Beginning at
a level of 23.8 they decrease until 12.5 at generation 40 (end of the training
period). Now the inputs of the validation set must be handled by classi�ers
trained with the training set. This results in a modest increase of the costs to
13.1. During the following generations the system adopts to the new inputs,
which results in a decline of the costs to 12.3. Since the changes within the
last 15 generations are very modest, we can conclude, that the system gained
during the �rst 40 generations is general enough to be able to handle new
inputs. The thin solid line shows the minimum costs that can be achieved with
the given input and cost structure. Minimum means we assume the decision
makers know the cost function and can choose their response such that the
minimum costs arise. Those costs were computed with full enumeration. The
cost structure is the same for all 60 generations, while the input is modi�ed
once, between generation 40 and 41. This results in a small step in the graph
between generation 40 and 41.

The graph in the �rst row on the right-hand side shows the same for
the second house. The inputs for the second house are the outputs of the
�rst house. Therefore, in contrast to the situation described in the previous
paragraph, the inputs change during the learning period as the rule base in
the �rst house changes. As a result, the number of don't care symbols is more

uctuating than before. The number of possible inputs is less or equal to the
number of rules in the �rst house. Therefore, within each generation at most
72 di�erent inputs are possible. Thus, the second house is confronted with a
smaller variety of inputs, which results in a smaller frequency of don't care
symbols, i.e. the rules are more speci�c. The change from generation 40 to
generation 41 is extremely small now, because the signals delivered by the
�rst house do not change completely when the set of input data is changed.

The second row in �gure 4.7 shows the same for the third and fourth
house. The results are similar to those in the second house. Finally, the
picture in the third row shows the cumulated actual and minimum costs of
all the four houses together. The number of don't care symbols was divided
by four before plotting. As a result, the dashed line indicates the average
number of don't care symbols in the four houses.

If we look at �gure 4.7, we can see easily, that the algorithm is indeed
capable of �nding better rules in terms of cost reduction. The minimum costs
of the �rst house do not change, because the input remains the same. On the
other hand, the minimum costs of the other three houses change, because
they depend on the output of the previous department as suggested in �gure
4.1. In some situations the minimum costs even increase as time elapses due
to the suboptimizing behaviour of the preceding departments.

The reason why the cost reduction in the �rst house is smaller than in
the other houses lies in the fact that the �rst house has to �nd a policy for
105 di�erent inputs with a classi�er system containing only 72 di�erent rules.
With this classi�er system it can only produce 72 di�erent outputs, which
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facilitates the others' decision problems. To analyze this e�ect in more detail
we ran the simulation with population sizes of 36, 72, and 108 individual
rules in each classi�er system. Unfortunately doubling the population size
also means doubling the required computing time.

Certainly, it would be possible to implement a classi�er system which
always �nds the optimal solution by increasing the population size until one
rule for each possible input is available. However, real-world individuals must
be able to react in situations never encountered before. Therefore, the adap-
tive agents in the simulation are required to �nd responses to many di�erent
inputs with a limited set of rules. In turn, the purpose of the classi�er systems
is �nding a generalization among the encountered inputs, and establishing a
simple policy with satisfying results.

If we analyse the behaviour after the training period | i.e. from gen-
eration 41 to 55 | we �nd out, that this requirement is ful�lled. The de-
partments get completely new inputs, and the costs remain reasonable small,
moreover, only moderate adaptions are made in the sequel. To judge the suc-
cess of di�erent sets of parameters we compare the cumulated costs during
the validation period. The best ten parameter settings in terms of low costs
are listed in table 4.2.

cumulated costs � rp despop � dp
492.1223 0.3 1 36 0.001 0.002
538.7303 0.1 3 36 0.003 0.002
548.9550 0.1 1 72 0.001 0.002
549.6529 0.2 1 36 0.003 0.001
554.4548 0.1 1 36 0.001 0.001
560.4413 0.2 1 36 0.001 0.003
561.8771 0.1 2 36 0.001 0.002
568.5375 0.2 3 36 0.002 0
571.3693 0.2 1 36 0.004 0.003
572.6556 0.1 1 36 0.003 0.003

Table 4.2: Cumulated costs during validation

At the �rst view it seems surprising that classi�er systems with only 36
rules outperform setups with 72 or 108 rules. Maybe the bigger populations
would require more iterations (higher rp) before invoking the genetic algo-
rithms, and more generations. However, the ranking in table 4.2 does not
consider how well a system learns the training data, but only how well it
can get along with the new data during validation. Therefore, the smaller
systems, which are forced to generalize while learning the training data, lead
to better results when new inputs arise.

By comparing the di�erent results it turns out, that a high level of the
strength update factor � (in particular in combination with a high rate of
repeats rp) results in very �ssured cost curves (see �gure 4.8). Thus, the
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genetic algorithm does not always move to lower costs as time elapses. The
same holds for high mutation probabilities � and dp.
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Figure 4.8: Product development - simulation results

Table 4.2 lists successful sets of parameters. Now let's have a look at the
single parameters. In table 4.3 for each parameter value the minimum and the
maximum cumulated costs during the validation period are listed. Moreover,
the ratio maximum

minimum
and the average cumulated costs are listed.

When the max/min{ratio is high it means that the results in this row
are not predictable when only the value of the parameter under consider-
ation is known. In such a situation the other parameters or chance have a
high in
uence on the result. This is the case when � = 0:3 (ration = 2.78),
despop = 36 (2.78), and � = 0:001 (2.75). A very small max/min{ratio, on
the other hand, appears when � = 0:1 (1.64), rp = 1 (1.8), and rp = 2 (1.89).

Yet, predictability alone has no value. What is also of great importance is
the level of the costs. The lowest minimum costs appear in the rows � = 0:3,
rp = 1, despop = 36, � = 0:001, and dp = 0:002. The highest maximum
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parameter value minimum maximum ratio average
0.1 538.7 884.2 1.64 703.3

� 0.2 549.7 1120.7 2.04 747.0
0.3 492.1 1366.0 2.78 852.7
1 492.1 884.2 1.80 715.9

rp 2 561.9 1061.8 1.89 742.1
3 538.7 1366.0 2.54 845.0
36 492.1 1366.0 2.78 732.8

despop 72 549.0 1258.5 2.29 775.0
108 644.1 1353.5 2.10 795.2

0.001 492.1 1353.5 2.75 751.3
0.002 568.5 1366.0 2.40 765.0

�
0.003 538.7 1304.8 2.42 784.2
0.004 571.4 1180.7 2.07 770.2
0.000 568.5 1366.0 2.40 761.5
0.001 549.7 1353.5 2.46 770.1

dp
0.002 492.1 1258.5 2.56 756.1
0.003 560.4 1355.0 2.42 782.9

Table 4.3: Minimum costs, maximum costs, max/min{ration, and average
costs for each parameter value

costs appear when � = 0:3, rp = 3, despop = 36, � = 0:002, and dp = 0:000.
Favourable are those numerical values that lead to low minimum costs and
small max/min{ratios. Such combinations can be found in the rows for � =
0:1 and rp = 1.

Another insight deliverd by table 4.3 is the change of the cumulated costs
when the value of a parameter is modi�ed. If we look at the minimum costs
in the �rst three rows we see there is a modest increase from � = 0:1 to
� = 0:1 and a sudden cost reduction when moving to � = 0:3. Looking
at the maximum costs shows that they increase monotonically. Thus, it is
diÆcult to estimate which values are optimal. The following three rows show
a tendency to higher costs when rp increases. Again this tendency is not
completely clear when we look at the minimum costs, which slightly decrease
from rp = 2 to rp = 3. For the other three parameters there is no clear
tendency either. What we can see immediately is that for rp = 1 and for
dp = 0:002 the minimum and the maximum costs are the lowest within their
category.

4.4 Possible extensions

As already indicated we would like to observe what happens if the informa-
tion set is enlarged or reduced. In economic terms this can be interpreted
as a change in the �rm's organization structure, or a change of the internal
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incentive system. The incentive is represented by the weigths fb in formula
(4.6). When fb = 0, the agents only consider their local costs. Thus, they
decide themselves to discard the information about the other departments.
When fb 2 (0; 1), the costs in the following departments is also considered
for the optimization, but with a smaller weigth. For example fb = 0:5 means
that the costs in the next department get assigned 0:5 times the weight of
the own costs, the costs in the next but one department get assigned 0:25
times the weight, and so on. Finally, fb = 1 means that all the costs have the
same weight. Thus, modifying the incentive scheme by changing the weigths
fb in
uences the information set considered by the agents. The performance
of such di�erent agents can then be observed in di�erent environments. For
instance, the inputs can be constant, changing periodically, or changing ran-
domly. Since the model analysed in chapter 5 operates with a more complex
classi�er system, such an analysis is left out here, but will be done in chapter
5. Moreover, it would be interesting to observe the changes of the reactions
to one particular input message and the related costs. Another interesting
aspect could be to compare di�erent learning algorithms or just have a look
at what happens when some of the genetic operators are added, changed, or
removed. Another possible extension would be to create a central classi�er
system responsible for all the decisions in the whole company.
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Chapter 5

A model of product placement

To launch a new product the marketing department has to decide about
the kind of customer attributes they would like to meet. In a heterogenous
market with di�erent customers' tastes and several competitors taking the
decision about product placement is rather complex.

Customers usually choose that product which best �ts their desire, as
indicated for instance by Kotler et al. (1996, p. 7) "They therefore want to
choose products that provide the most satisfaction for their money." To make
sure that one particular customer buys, a producer could decide to customize
his/her o�er according to the wishes of that customer. However, this might
lead to a product that no one else would like to buy. Certainly this is not
a very favourable situation for a supplier, except in case this one customer
has such a great purchasing power that indeed designing a product for one
particular individual can still yield a good pro�t. Some practical examples
for this situation are custom-made suits, paper-making machines, or power
stations.

To avoid dependence on one customer the producer could decide to place
her/his product such that the distance to most customers' requirement pro-
�les is as small as possible. Again, this might not always be the optimal
strategy. If all the competitors already try to launch such a mass product
that represents the average of all the customers' wishes, then o�ering an-
other average product might not lead to great success. Thus, for deciding
what kind of product to supply one has to be aware of the customers' desires
and the competitors' products as well. In the following we will elaborate on
a simulation model featuring many customers with equal purchasing power.

Similar investigations were done by Polani and Uthmann (1999). They
provide a distributed simulation environment that allows to insert di�erent
types of customer and �rm agents. The products may not be substituted for
each other. The customers have a demand for a certain bundle of goods and
buy them for the lowest price o�ered by the �rm agents. The �rms aim to
maximize their pro�t | i.e. the di�erence between turnover and costs. The
customers, on the other hand, gain a pro�t from the di�erence between the
maximum price they are willing to pay and the actual market price.
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However, in this chapter we will analyze how adaptive agents, who use
classi�er systems to take the product placement decision and learn by using
genetic algorithms, would place their products in a dynamic and heterogenous
market. Therefore, we assume there might be m customers and n suppliers in
a market of goods that may be substituted for each other1. The products are
assumed to have only two di�erent attributes (this assumption is made to
facilitate visualization) and each attribute can take 10 di�erent values. Each
�rm is allowed to o�er one particular product and each customer buys one
product. Thus, the consumers and the vendors both have 100 alternatives.
A typical situation with m = n = 5 (i.e. there are 5 customers who can
choose one out of 5 di�erent products) is illustrated in �gure 5.1, where the
xi-symbols denote the customers and the yj-symbols the suppliers.
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Figure 5.1: A typical market situation

5.1 A simple model

5.1.1 The market mechanism

After all the customers have declared their wishes and all the suppliers have
made their o�ers, the customers choose those products with the smallest
euclidian distance between the ideal product and the actual o�ers. In case of
two or more products with the same distance one of them is chosen randomly.
If we denote ~xi the i�th customers wish and ~yj the j�th vendors o�er, then
the decision ai of the i�th customer might be

ai = arg min
j2f1:::ng

n
k~xi � ~yjk2

o
: (5.1)

To keep the model simple we make the following assumptions:

1. All the customers have the same purchasing power.

1In most markest it holds that m� n.
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2. All the producers have the same internal cost structur.

3. Whenever a product is chosen the vendor receives a �xed pro�t p.

4. Each product in the set f1; : : : ; 100g2 causes the same costs.

5. All the producers are capable to manufacture each possible product in
f1; : : : ; 100g2 in any quantity.

Thus, �j the pro�t of supplier j within one particular time period equals
p times the number of customers who decided to buy the product o�ered
by the supplier j, i.e. �j = p � #fijai = jg. In the example in �gure 5.1
consumers x1, x2, x3, and x4 would buy the product o�ered by �rm y2 and
consumer x5 would buy the product of �rm y4. As a result �rm y2 makes a
pro�t of 4 p, �rm y4 gets p, and the other �rms get no pro�t.

5.1.2 The buying agents

At the initial state of our simulation the preferences of the customers are
placed randomly somewhere in the twodimensional set. In this simple model
we assume that the customers' wishes do not change as time elapses. Later
on, in section 5.3 we will also observe markets where the customers' tastes
change.

5.1.3 The selling agents

Like before we use a uniform random distribution to de�ne the initial o�ers
of all the suppliers, and collect the data in the 2� n matrix

S =

 
y11 y21 : : : yn1
y12 y22 : : : yn2

!
:

We will observe two classes of agents at the supply side of our arti�cial
market.

First class agents

The �rst class of selling agents are using classi�er systems as described in
chapter 2. We use classi�er systems with a condition part containing at least
three and at most �ve conditions. In the following we use the variable ncond to
refer to the number of conditions. The incoming messages are the data about
the o�ered products of all the sellers in the last period plus an additional
gene which contains �j, the recent success of the o�ers. Thus, Mt the list of
incoming messages at time t becomes

Mt =

0
BB@

y11;t�1 y12;t�1 �1t�1
...

...
...

yn1;t�1 yn2;t�1 �nt�1

1
CCA : (5.2)
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Certainly it does not make sense to make a decision based on the information
about only one competitor. Therefore, in this model the rules contain several
conditions and, hence, only those rules are ful�lled that are activated by
several suppliers.

The genetic algorithm

Selection

The selection operator has a very high in
uence on the dynamics of the
population. It is used to determine which individuals' o�springs may occur
in the next generation, and which get discarded. In the present model we
use a ranking procedure. First, the rules have to be ordered according to
their �tness values. Then, those rules belonging to the best 80% are selected,
and the others discarded. Finally, those rules belonging to the best 20% are
written into the list a second time. This increases the chance of the very
successful rules to remain in the rule base of the next time step.

Crossover

After selecting the rules we produce o�springs by either copying the rows of
the present rule-base into the new one, or by combining two rules. First we
build pairs of rules randomly. After that with a probability of � = 0:5 we
create new rules by combining the strings, otherwise both strings remain.

Mutation

At the beginning of the iteration process it is very important to avoid striving
to a local optimum. Therefore, a mutation operator is used to place random
numbers somewhere into the population. This happens with a probability
of �, which we assigned the values 0, 0.001, and 0.002. In order to control
the strictivity of the rule-base we use another mutation operator, which only
writes don't care symbols (#) into the condition part of the rules. This is
done with a probability of dp.

Second class agents

The second class of selling agents are the simpler ones. They just make small
random movements discarding any available information about the market.
The purpose of these agents is just to �nd out if the agents using classi�er
systems are indeed capable to �nd intelligent strategies, i.e. to outperform
the second class agents.

If we have n1, the number of �rst class agents, and n2 = n�n1, the number
of second class agents, then the 2� n2 matrix �S2 with all its components
uniformly distributed on f�1; 0; 1g determines the movements of the second
class agents. The decisions of the agents in class i are collected in the 2� ni

83



matrix Si, which leads us to

St =
�
S1
t ; S

2
t

�
=
�
S1
t ; S

2
t�1 +�S2

t

�
: (5.3)

This in turn is the transpose of the �rst two columns of the matrix M in
equation (5.2) for the next time step t + 1.

5.2 Simulation results

Typical time series resulting from the previously described simulation are
shown in �gure 5.2. We use setups with m = 50 customers, n1 = 5 �rst class
selling agents, and n2 = 5 second class selling agents. Assuming p = 1, i.e.
each sale is worth one monetary unit, the total sales in the market add to
P = mp = 50.
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Figure 5.2: Simulation results

In the graph in the �rst row on the left-hand side the average pro�ts
of the �rst class agents are plotted as a solid line and the average pro�ts
of the second class agents are indicated by a dashed line. Since the total
pro�t available in the market is 50, an average pro�t over 5 agents of 10
monetary units means that those 5 agents get all the sales. At the beginning
of the simulation the market shares di�er only slightly, but in the sequel the
share of the intelligent agents increases. Finally, after 24 generations, the
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�rst class agents occupy the whole market, and their average pro�t becomes
P=n1 = 10. This shows that the learning process induced by the genetic
algorithm succeeded in producing useful rules. Moreover, we can conclude,
that a decision need not to be based on all the information available. In the
present simulation illustrated in �gure 5.2 the classi�er systems contain 3
conditions. Thus, the decisions taken by the �rst class agents are based only
on information about 3 di�erent suppliers.

On the right-hand side we see the frequency of don't care symbols (#) in
the classifer systems of the �rst class agents. At the initial state only about
40% of the entries in the condition parts are #, but later on their share
increases signi�cantly until it stabilized slightly above 60 %. Thus, we can
conclude that the very general rules are the more successful ones, and thus
survive the selection process.

The graph in the second row shows how often it happend that some of the
�rst class agents had no rule ful�lled. In that case their decision had to be
taken randomly. This curve always remains between 0 and 5. Since rp = 10,
the classi�er systems are activated 10 times within one generation. Thus, an
average number of randomly taken decisions of at most 5 means that in the
worst case every second decision was taken randomly.

In total we ran 648 experiments. In table 5.1 all those parameters are
listed, whose value was �xed in all the simulations.

� crossover probability 0.5
m number customers 50
n number of suppliers 10
n1 number of 1st class agents 5
n2 number of 2nd class agents 5
P cumulated pro�t 50
p pro�t obtained when selling to one customer 1
srate survival rate used by the selection operator 0.8
T number of generations 30

Table 5.1: Fixed parameters

In table 5.2 all those parameters are listed, which got assigned di�erent
values. In some of the experiments the general mutation operator also could
produce #, thus leading to the expressions f(�) in the row describing the
parameter dp in table 5.2.

In all the experiments the intelligent agents (i.e. those using classi�er sys-
tems rather than random walk) outperformed their competitors. To compare
the tested parameter settings quantitatively we derive the pro�t gained by
the �rst class agents during the last 10 generations. Thus, 500 is the best re-
sult that can be achieved. In table 5.3 all those sets of parameters are listed,
that actually led to a pro�t of 500 for the intelligent agents from generation
21 to generation 30.
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psize size of the populations of rules in the CSs 40, 80, 160
ncond number of conditions in the CSs 3, 4, 5
rp number of repetitions before invoking the GA 5, 10, 20
� factor of �tness updates 0.1, 0.2
� mutation probability 0, 0.001, 0.002
dp probability of # used by the mutation operator 0; 0:001; f(�);

0:001 + f(�)

Table 5.2: Variable parameters

psize ncond rp � � dp
40 3 20 0.2 0.001 0.001 +f(�)
40 4 10 0.2 0.000 0.000 +f(�)
40 4 20 0.1 0.000 0.000 +f(�)
40 4 20 0.2 0.001 0.001 +f(�)
80 4 20 0.2 0.000 0.000 +f(�)
80 4 20 0.2 0.002 0.001 +f(�)
80 5 10 0.2 0.001 0.001 +f(�)
80 5 20 0.1 0.001 0.000 +f(�)
160 4 20 0.2 0.002 0.000 +f(�)
40 3 20 0.2 0.000 0.000
40 4 20 0.1 0.000 0.001
40 4 20 0.2 0.001 0.000
40 5 20 0.1 0.002 0.001
80 3 20 0.1 0.000 0.001
80 3 20 0.2 0.000 0.000
80 5 20 0.1 0.001 0.001
160 3 20 0.2 0.001 0.001
160 3 20 0.2 0.002 0.001
160 5 10 0.2 0.002 0.001
160 5 20 0.1 0.000 0.001
160 5 20 0.2 0.001 0.000

Table 5.3: Best performing parameter settings
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From table 5.3 it follows, that choosing rp = 5, i.e. iterating the clas-
si�er systems �ve times between two calls of the genetic algorithm, failes
completely and rp = 20 performs signi�cantly better than rp = 10. Thus,
we can conlude that the classi�er systems need about 20 or more iterations
to produce stable deterministic results. This corresponds perfectly with the
�ndings in section 3.3.

While, rp = 10 occurs in the list only in combination with ncond = 4
or ncond = 5, rp = 20 also occurs in combination with ncond = 3. Since
ncond is the number of conditions, it determines how many strings containing
information about one particular supplier can be taken into consideration
by one individual classi�er. That means classi�er systems that carry out
more iterations (rp), i.e. they follow a more deterministic search, require less
information to produce successful decisions. From a practical point of view
this means that managers who are better in interpreting information about
their own and their competitors sales need less information to take the right
decisions. This is certainly a very trivial statement, but is shows that the
simulation results of this model are consistent with common expectations.

Looking at the parameters psize, �, �, and dp shows that all the tested
values are more or less equally successful. Consequently, no meaningful in-
terpretations with respect to these parameters are possible.

5.3 An extended model

In this section we examine the importance of information about the market
and the exploration of this information under di�erent environmental con-
ditions. This is achieved by inserting two new types of selling agents into
the simulation framework described in section 5.1. The �rst class and second
class agents are the same like before.

The �rst new type is some kind of superior agent. Like the �rst class
agents, these superior suppliers also use classi�er systems to take their de-
cisions. However, the input is not the information about the own and the
competitors' sales, but instead they know exactly the positions of the cus-
tomers. Although they do not know the recent desires of the customers but
only their desires of one time step before this may be a reasonable compet-
itive advantage. The term superior refers to the direct observation of their
customers which is in contrast to the indirect information of the �rst class
agents.

Another additional type of agent included in this extended model applies
an extremely simple strategy. It observes the sales of all the competitors
in the previous period | i.e. the input is the same as for the �rst class
agents | and then it moves to the position of the most successful agent. In
economic terms this means that this supplier never tries any new products
but always imitates products that have sold well a short time ago. Such a
behaviour can for instance be observed in the textile industry. A few weeks
after the fashion shows where the designers present their new collections some
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very similar products already can be found in the shelfes of the cheap retail
chains. Another example of such an imitating strategy is the car industry.
While some decades ago each brand and perhaps even each type had its own
and very particular body, nowadays many cars of di�erent brands look very
similar.

The second extension of this marketing model refers to the behaviour of
the customers. While in the simple model in section 5.1 the demands of the
customers are assumed to be static, here we will investigate three di�erent
scenarios.

1. In the �rst scenario the customers' wishes are initialized with random
numbers and then remain constant forever.

2. In the second scenario there are two completely di�erent sets of cus-
tomers' demands that are computed initially before the learning process
starts. Then, the environment switches periodically between these two
states. This change is carried out at the end of each cycle of the classi�er
system. Thus, the environment changes rp times within one generation
of the genetic algorithm.

3. Finally, the third scenario is based on a random walk. Again the de-
mands of the customers are initialized with random numbers. Then,
their movement follows a random walk with small steps. Both compo-
nents may be increased or decreased by one. Thus, the demand side of
the market is not completely static, but changes slightly. If the changes
were too big, it would not make sense for the suppliers to build decision
rules based on their experience.

In mathematical terms we can say that the demand side is represented
by a 2�m matrix

D =

 
x11 x21 : : : xm1
x12 x22 : : : xm2

!
:

The initial stateD0 is a 2�m matrix with all the components uniformly
distributed on the set f0; : : : ; 100g. The state Dt at any time t can be
given as

Dt = Dt�1 +�Dt; (5.4)

where �Dt is a 2 � m matrix with all its components uniformly dis-
tributed on the set f�1; 0; 1g. Hence, regions that are very pro�table
at time t�1 can become unfavourable within one time increment. This
random walk is also done for every cycle of the classi�er system.

To keep the simulation small we include n0 = 3 superior agents, n1 = 3
�rst class agents, n2 = 3 second class agents, and n3 = 1 imitating agent.
All the simulation parameters that were �xed in section 5.2 remain in this
version. Moreover, based on the �ndings of the previous section we also �x
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psize = 40, ncond = 4, rp = 30, and � = 0:2. The only variable parameters are
the mutation probability and the probability of inserting a don't care symbol.
We use �; dp = 0; 0:0005; and 0:001. For simplicity the same parameters are
applied for the superior agents and for the �rst class agents. Since there
are 3 � 3 = 9 di�erent parameter sets and 3 di�erent scenarios we get 27
di�erent variants. To exclude random results each of these variants is run 5
times. This leads to 135 independent simulations. An example for the time
series obtained from such a simulation in case of a static environment and
� = dp = 0 is given in �gure 5.3.
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Figure 5.3: Simulation results of the extended model

The graph in the �rst row shows the average pro�ts earned by the four
di�erent groups of marketers. Here and in the remainder of this section a
solid line always indicates the superior agents, a dashed line the �rst class
agents, a dash-dotted line the imitating agent, and the dotted line the second
class agents. In case of the imitating agent this is actually not an average
pro�t but a total pro�t because there is only one supplier of that type.

Like in the simple model the market share of the second class agents
vanishes quickly. The market share of the superior agents and the �rst class
agents is approximately the same. Thus, in this setting it does not make a big
di�erence whether the wishes of the buyers can be observed directly. Although
it is an advantage to know the demands of the customers it does not lead to
better decisions when the classi�er system is limited to rules containing only
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four conditions. The �rst class agents use information about the suppliers and
their sales. The position of a very successful supplier allows conclusions about
the positions of several customers sice high sales only happen when there are
many customers in the neighbourhood. The superior agents, on the other
hand, base their decision on information about four customers. Increasing
the number of conditions would presumably improve their competitiveness.

The most remarkable di�erence to the previous model can be found when
looking at the pro�t of the imitating agent, which is signi�cantly higher than
the competitors' pro�ts. However, if there were several agents applying this
strategy, they would be at the same position at each time step. As a result,
they would have to share their sales and the average pro�t would be lower
than the average pro�ts of the agents using classi�er systems. Moreover,
later it will be shown that the imitating agent is not that competitive in
every environment.

The graph in the second row illustrates the pro�ts of each particular
agent. It turns out that the imitating agent does not only sell better than
the average learning agent but it even outperforms all its competitors. In
this particular simulation beginning at generation 6 the sales of the imitating
agent are always greater or equal than the sales of each individual competitor.

The graph on the rigth-hand side of the third row shows how often it
happened that no classi�er had all its conditions ful�lled. In such a situtation
the selling agent concerned places its product at a random position. Again
the solid line represents the superior agents and the dashed line the �rst class
agents. The solid line cannot be seen because it is always zero. The dashed
line moves around a level of 25. The explanation why these curves di�er so
much is pretty simple. Both types of agents | superior and �rst class |
have the same number of classi�ers and conditions in their rule-base. While
the inputs of the superior agents are the positions of all the 50 customers,
the inputs of the �rst class agents are the positions and the sales of the
10 suppliers. A bigger amount of inputs certainly increases the chance that
at least one classi�er has all its conditions ful�lled. Nevertheless, in some
simulations the superior agents also had to apply random decisions. This is
illustrated in �gure 5.4 showing the results obtained in a static environment
with � = 0 and dp = 0:001. Anyway, the average number of no match for the
superior agents was always much lower than for the �rst class agents.

In the graph on the left-hand side of the third row the frequencies of the
don't care symbols are plotted. The solid line represents the classi�ers of
the superior agents and the dashed line the �rst class agents. It turns out
that the �rst class agents' rule bases contain more don't care symbols, which
means they apply more general rules than the superior agents. This again is
due to the smaller supply of input messages. This result was obtained in all
the simulations.

For getting a more general view of the results �gure 5.5 shows the aver-
age pro�ts of the four types of agents in the three di�erent environmental
scenarios. Now average does not only mean an average over all the agents of
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Figure 5.4: Simulation results of the extended model

the same type but also an average over all simulations of the same scenario.
Therefore, the curves become smoother.

In the static scenario the imitating agent performs best. The suprerior
and �rst class agents make a lower pro�t but are both at approximately the
same level. The second class agents make almos no pro�t.

If the demands change periodically, the sales of the imitating agent fall
below the sales of the superior and the �rst class agents. This is due to the
sudden change of the demands in every single time step. The imitating agent
always moves to a position that was excellent in the previous period and will
be excellent again in the following period. Moreover, the superior agents now
perform better than the �rst class agents. Thus, in this environment direct
information has a higher value.

Finally, when the customers follow a random walk, the competitiveness
is inverted. Both types of learning agents loose a big part of their market
share and they even fall behind the second class agents, who were the losers
in the other two scenarios. Again the level of superior and �rst class agents
is nearly the same.

Figure 5.6 exhibits the average number of don't care symbols within the
classi�ers and how often the learning agents take random decisions because no
rule is ful�lled. The only thing remarkable is the solid line in the graph on the
right hand side in the third row. This curve di�ers signi�cantly from the other
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Figure 5.5: Average sales in three di�erent scenarios

two scenarios. This means that the classi�er systems of the superior agents
learn the recent situations very quickly but fail when they are confronted
with a new set of demands.
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Figure 5.6: Average don't cares and no match in three di�erent scenarios
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Chapter 6

Summary and outlook

The goal of this work is to introduce complex adaptive systems as a val-
ueable tool for modelling economic phenomena that cannot be controlled
by means of equilibrium based analytical models. Special emphasis is ded-
icated to learning classi�er systems and genetic algorithms, which are used
to implement and train the rule base of the adaptive agents in two economic
models.

Chapter 1 starts with a brief discussion about situations where analyti-
cal models | an approach of economic modelling which is also well-known
under the term greek letter economics | do not succeed in illustrating the
processes going on in reality. Further, the main ideas and characteristics of
complex adaptive systems are illustrated. As an example exhibiting the re-
cent economic changes, the second industrial revolution and its result | the
homo informaticus | are described. Finally, the increasing importance of
knowledge management (which plays a major role in the models in chapters
4 and 5) is elaborated.

The following chapter 2 provides detailed information about classi�er sys-
tems and genetic algorithms. The construction of the components of various
types of classi�er systems is shown. The problem of apportionment of credit,
which becomes diÆcult to handle when rule coupling occurs, and possible
methods for solving it are discussed. Genetic algorithms are introduced as
a possible method of improving the rule base of a classi�er system. Several
di�erent genetic operators can be found in the literature. Section 2.2 pro-
vides a comprehensive survey of methods that can be applied for selection,
crossover, and mutation. Those methods that are applied in the examples
in chapter 3 and in the models in chapters 4 and 5 are discussed in detail.
The chapter is concluded with a general summary of machine learning. This
section includes some thoughts about gaining knowledge, an overview of pop-
ular ways of representing machine learning problems and search strategies,
and a general classi�cation of learning methods.

Chapter 3 contains three examples pointing out the range of possibilities
provided by the methods explained in chapter 2. The �rst two examples
only deal with gentic algorithms, while the following two examples are about
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classi�er systems combined with genetic algorithms.

Beginning with section 3.1 it is shown that genetic algorithms can quickly
�nd the optimum of a smooth function with a reasonable big area of well
performing feasible solutions in the neighbourhood of the optimum. It is also
shown that a deliberate choice of the parameters determining the dynamics
of the genetic algorithm has a high in
uence on the speed of the convergence
and on the quality of the solution as well.

The diÆculty of the task that has to be handled by the genetic algorithm
is increased in section 3.2. Now the maximum of a function with several local
maxima not too distant from the global optimum has to be found (see �gure
3.2 on p. 49). It turned out that in this example the choice of the genetic
operators and their parameters has to be done more carefully than in the �rst
example. In particular the optimum was not found exactly within 80 genera-
tions when arithmetic crossover was applied, while when heuristic crossover
was applied the optimal soultion was found in 42 % of the simulations (again
within 80 generations).

In section 3.3 a classi�er system equipped with an initial rule base that has
been �lled with random numbers has to generate those conditions and actions
that are required to perform the simple task of shifting the components
of a vector ~a 2 f0; 1g3 to the left. Thus, the input (a1; a2; a3) should lead
to the output (a2; a3; a1). Before the simulation parameters are �xed, some
considerations about the required number of cycles of the classi�er system
within one generation of the genetic algorithm are formulated. Moreover, a
popular technique for modifying the probability of crossover and mutation
during the simulation is explained. This enables the genetic algorithm to
move very quickly within the search space at the beginning of the process
to avoid a rapid convergence toward a suboptimal local optimum. Later on,
when the genetic algorithm is supposed to be already in the neighbourhood
of the global optimum, the movement is damped to stabilize the search such
that the already found solutions do not get discarded again. Based on these
�ndings more than 8000 simulations | each containing 150 generations of
rules | are undertaken. In 18 simulations the system succeeded in �ning the
correct rule base within 140 generations and produced only correct responses
during the remaining 10 generations.

The special problem of classi�er systems with memory is given attention
in section 3.4. The memory can only be implemented by using internal mes-
sages and rule coupling. There arises the problem that one rule can lead to
a correct response in combination with a certain other rule but the same
rule can also result in a wrong response in combination with another rule.
Therefore, assigning strengths to the rules in a meaningful way becomes very
tough. Since the economic applications in the chapters 4 and 5 do not make
use of classi�er systems with memory the aim of this section is not to solve
this problem in detail. For the sake of completeness this section provides some
re
ections concerning the problems that may arise when learning classi�er
systems are applied in other situations, but simulation results are left out.
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Chapter 4 is devoted to a simulation of a �rm that designs a new prod-
uct. Managing the communication between the involved departments may
become a challenge in some cases. Thus, Hauser and Clausing (1988) devel-
oped a communication scheme which they called the \House of Quality". The
model introduced in this chapter is based on that communication scheme. It
is assumed that the decision making process is distributed among four con-
secutive layers. The decision taken at one layer in
uences the problem at
all the following layes. Moreover, each decision causes implementation costs
and opportunity costs. The latter measures how well the solution meets the
requirements. Minimizing only one of these two cost components does not
lead to an optimal outcome. In the simulations each of these four decision
makers is represented by a classi�er system. To examine the parameter space
432 simulations with di�erent sets of numerical parameters are done. A sta-
tistical analysis shows which numerical values should be chosen to quickly
generate a well-performing rule-base (see table 4.2 on p. 76 and table 4.3 on
p. 78).

Finally, chapter 5 provides a simulation of a market of products that can
be substituted for each other. There are four types of agents that compete
in placing their products in the market | also the agents of the same type
compete among each other. Two out of the four types are learning agents
that are modelled by a classi�er system. One group of learning agents base
their decisions on the desires of the customers, the other group on the o�ers
and the sales of all the vendors. Another group of sellers places their products
following a random walk and one agent just imitates the o�er of the previously
most successful supplier. These four groups of sellers are tested in three
di�erent environmental scenarios | static, cyclic, and random walk. In the
�rst and in the last scenario the imitating agent is the most competitive
one, while in the periodic scenario the learning agents making use of the
information about the customers perform best.

The models in chapters 4 and 5 assume very simple products. In chapter
4 it is supposed that in every stage of the decision making process all the
relevant information can be encoded in a vector ~x 2 f0; 1; 2; 3; 4g3, and in
chapter 5 the whole product is identi�ed by a vector ~y 2 f0; : : : ; 100g2. The
purpose of these restrictions is to keep the model simple in order to obtain the
simulation results quickly. Due to technical progress the computing power of
standard personal computers increases rapidly. Therefore, in the near future
it might be possible to blow up the learning domains. Thus, it will become
possible to simulate realistic market situations and insert data about real
products. Thus, the results could be the basis of decision support systems
helping decision makers involved in designing and releasing products in a
competitive situation.
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