
FORTSCHRITTSBERICHT
SIMULATION FBS 3

Johannes Plank

State Events in Continuous
Modelling and Simulation

ISBN Ebook 978-3-903347-03-8
ISBN Print 978-3-901608-53-7

DOI: 10.11128 / fbs.03

ARGESIM

DISSERTATION

State Events in Continuous Modelling

and Simulation

Concepts� Implementations and New Methodology

ausgef�uhrt zum Zwecke der Erlangung des akademischen Grades eines

Doktors der technischen Wissenschaften

eingereicht an der Technischen Universit�at Wien

Technisch Naturwissenschaftliche Fakult�at

von

Dipl� � Ing� Johannes Plank

Vierthalerstra�e �

A � ��	
 Braunau am Inn

Matr� Nr� 		����

geboren am ���
�� �
�
 in Braunau am Inn

Wien� im J�anner �

�

Abstract

This thesis deals in a comprehensive way with state events (events depending on

states) in continuous modelling and simulation.

Starting from systems which are described by ordinary differential equations state

events are introduced by means of simple examples.

A classification of state events in four classes is presented, where events that come

up from similar origins or have similar effects on the proceeding of a simulation

get combined.

Furthermore, methods are developed and discussed for inserting and describing

state events in mathematical models and/or simulators.

Based on this methodology and on a Model Interconnection Concept a completely

new concept, the Meta Model Concept, is introduced and described.

The aim of this concept is to simplify modelling and the handling of state events

in continuous simulation.

An essential aspect of the Meta Model Concept is the inclusion of the experiment

level to the description of state events.

The transfer of the events from the model level to the experiment level and also

the description of state events as separate model components support among

other things the reusability of simulation models or model components and also

the installation.Therefore the modelling of events becomes much more simple.

This concept enlarges the description possibilities of state events and allows dy-

namic model structures and other complex dynamic model/experiment connec-

tions.

In addition, a state of the art report on the handling of state events in modern

simulators is given.

The application of the methods and the Meta Model Concept is shown with

concrete examples.

Deutsche Kurzfassung

Diese Dissertation beschäftigt sich in umfassender Weise mit State Events (zus-

tandsbedingte Ereignisse) in der kontinuierlichen Modellbildung und Simulation.

Ausgehend von mit gewöhnlichen Differentialgleichungen beschriebenen Systemen,

werden anhand von einfachen Beispielen State Events eingeführt.

Es wird eine Klassifizierung von State Events in vier Klassen präsentiert, in denen

Ereignisse zusammengefasst sind, die durch einen ähnlichen Ursprung, bzw. deren

Auswirkungen auf den Simulationsablauf in gleicher Weise charakterisiert sind.

Weiters werden Methoden entwickelt, mit denen State Events in mathematischen

Modellen und/oder in Simulatoren eingebaut und beschrieben werden.

Basierend einerseits auf diesen Beschreibungsmethoden und andererseits auf einem

Modellverbindungskonzept, wird ein völlig neues Konzept, das Meta Model Con-

cept, vorgestellt und beschrieben.

Ziel dieses Konzeptes ist sowohl die Modellierung, als auch die Behandlung von

State Events in der kontinuierlichen Simulation zu vereinfachen.

Wesentlicher Punkt des Meta Model Concepts ist die Einbeziehung des Experi-

ment Level in die Beschreibung von Events.

Durch die Verlagerung der Ereignisse weg von der Modellebene auf die Experi-

mentebene wird unter anderem die Wiederverwendbarkeit von

Simulationsmodellen bzw. Modellkomponenten unterstützt, aber auch der Ein-

bau, also die Modellierung von Ereignissen stark vereinfacht.

Dieses Konzept erweitert nicht nur die Beschreibungsmöglichkeiten von State

Events, sondern erlaubt auch dynamische Modellstrukturen und andere komplexe

Modell/Experiment-Verbindungen auf dynamischer Basis.

Ergänzt werden die Ausführungen durch einen State-of-the-Art Report über die

Behandlung von State Events in modernen Simulatoren und die Anwendung der

Methoden und des Meta Model Concepts auf konkrete Beispiele.

Acknowledgement

This thesis was worked out at the Department of Simulation Techniques at

the Technical University Vienna, Austria under the supervision of a.o.Univ.Prof.DI

Dr.techn. Felix Breitenecker. I want to express my thanks to him for the

fruitful discussions, the good co-operation, the joint study trips and his in-

volvement.

Furthermore, credits to my colleagues at the department and outside who

have supported me and my work.

Contents

� Motivation and Introduction �

� Foundations �

��� The Modelling Process �

��� Simulators ��

����� Attempts for Standardisation � � � � � � � � � � � � � � ��

����� Numerical Integration Methods � � � � � � � � � � � � � ��

��� Experiment ��

����� Interpretation �	

� Events ��

��� Events �

��� Events and Discontinuities ��

� State Events ��

��� Introduction ��

��� Classi�cations for State Events � � � � � � � � � � � � � � � � � �

��� Description ��

��� Handling ��

�

CONTENTS �

����� Detecting �	

����� Locating �

����� Passing ��

����� Restarting ��

� State Events in Simulators � State of the Art �	

��� ACSL �

��� SIMULINK ��

����� SIMULINK �� �c ��

����� SIMULINK ��
 ��

��� ESL �

��� MOSIS ��

��� SIMNON ��

��� SLIM �

��� ANA ��x ��

��	 DYMOLA ��

��
 ModelMaker ��

 Event Methodology � Description of Methods ��

��� �All�in�one� � Method �

��� �Discrete Section� � Method � � � � � � � � � � � � � � � � � � � 	�

��� �Concatenated Runs� � Method � � � � � � � � � � � � � � � � � 	�

��� �Component Exchange� � Method � � � � � � � � � � � � � � � � 	�

��� �Sequential Models� � Method � � � � � � � � � � � � � � � � � � 	�

��� �Extended Experiment� � Method � � � � � � � � � � � � � � � � 	

CONTENTS �

� Event Methodology � Examples and Case Studies ��

��� Bouncing Ball �
�

����� �All�in�one� � Method � SIMNON � � � � � � � � � � � �
�

����� �Component Exchange� � Method � SIMNON � � � � �
�

����� �Sequential Models� � Method � SIMNON � � � � � � �
�

��� Block on a Rough Surface �

����� �Discrete Section� � Method � ACSL � � � � � � � � � � �

����� �Concatenated Runs� � Method � SIMNON � � � � � � �
�

��� Constrained Pendulum �
�

	 The Meta Model Concept ��

	�� The Model Interconnection Concept � � � � � � � � � � � � � � � �
�

	�� The Extended Model Interconnection Concept � � � � � � � � � �
	

	�� The Meta Model Concept ���

	���� Formalised Description � � � � � � � � � � � � � � � � � � ���

	���� Assessment of the New Concept � � � � � � � � � � � � � ���

	�� Application of the Meta Model Concept for Events � � � � � � ��

	���� Bouncing Ball ��

	���� Looping Pendulum ���

	���� Constrained Pendulum � � � � � � � � � � � � � � � � � � ���

	���� Block on a Rough Surface � � � � � � � � � � � � � � � � ���

	���� Pilot Ejection ���

	���� Reconditioning Plant ��

	�� Other Application ���

	���� Repeated Linearisation � � � � � � � � � � � � � � � � � � ���

CONTENTS �

	���� Integration Algorithms � Sti� Systems � � � � � � � � � ���

	�� Implementation of the Meta Model Concept � � � � � � � � � � ���

Bibliography ���

Index ��

Chapter �

Motivation and Introduction

The �eld of continuous system simulation� though a young discipline has

undergone big changes in the last few years�

Firstly� the basic tools� the computers were developed very rapidly� Now they

are capable of an amount of computing power that most of us did not dream

of a few years ago� That is why some numerical methods that were formerly

said to be too costly are now implemented and applied with no hesitation�

Even new methods can be developed with less constraints concerning the

costs�

Nowadays modern simulation languages o�er a big variety of algorithms to

deal with simulation models� Therefore� specialists are able to build up

sophisticated models that correspond to more and more complex systems�

The demands to simulation languages are raised parallel to these facts � I

only want to mention headwords like modular modelling or object orienta�

tion and model libraries� That would support the reusability of models or

components of models�

In this situation state events get a new status� In modelling electrical or

mechanical systems one will easily come across the need to use state events

in this model and will also demand the corresponding statements and algo�

rithms� Applying more complex structures and algorithms should be possible

�

CHAPTER �� MOTIVATION AND INTRODUCTION 	

in a user friendly way� On the other side� the simulation languages are re�

quired to o�er an environment that supports user robustness and does not

react too sensitively if not all of the possible errors are blocked
 including

those that arise due to numerical reasons�

Furthermore simulation models should correspond with the represented

real system not only in view of the results but also of the structure of the

description� Models that are constructed according to this requirement are

much more clearer to read and� obviously� also to be built up� Since it is

often impossible to �nd a single physical representation of complex systems�

state events can help to achieve this�

These four main requirements� the

� reusability and the

� correspondence with the real system �as far as possible� concerning the

models or model components and the

� user friendliness and

� user robustness concerning the applied algorithms

are in some way the cornerstones of the considerations and re
ections that

led to this thesis and should be kept in mind�

This thesis gives a classi�cation of state events� I worked it out in order

to put together state events coming up due to similar reasons and causing

similar problems for the numerical algorithms�

This thesis de�nes a new methodology of handling state events which is based

on a comprehensive review of the state of the art of event description in nowa�

days simulators� I worked out six di�erent methods of handling state events

After presenting and discussing these methods I will illustrate them by giv�

ing two case studies that are modelled according to the presented methods in

di�erent simulation languages� Consequently� I show that di�erent methods

CHAPTER �� MOTIVATION AND INTRODUCTION �

can be implemented in one simulation language as well as one special method

in di�erent simulators�

These investigations show that some of the �grown� methodologies are in�

su�cient for modern concepts and consequently as the main result of this

thesis a meta model concept for state events is presented� This completely

new concept that breaks to some extent with some traditions in continuous

system simulation as it merges experiment and modelling level shows a new

and comfortable way of modelling and simulating state events� It also of�

fers to cope with other techniques as consecutive linearisation of models and

handling of partly sti� models�

Structure of the Thesis

Chapter � deals with foundations of continuous system simulation� I present

this topic at the beginning of this thesis in order to explain what I mean by

talking of e�g� parameters�� � � as there is no standardised vocabulary in this

�eld�

In chapter � I introduce events and from chapter � on I concentrate on state

events� This chapter contains a classi�cation and furthermore I discuss the

description and handling � including some numerical algorithms � of state

events�

The next chapter shows how state events are used and handled in modern

simulation languages� After a presentation of the possibilities I illustrate

them with a model of the example of the constrained pendulum in each sim�

ulation language�

Chapter 	 focuses on the methodology of state event handling and shows six

suitable methods� How case studies can be modelled by applying di�erent

methods will be presented in the subsequent chapter�

In chapter � I show how these methods can be applied for modelling concrete

examples in simulators� It is also shown that di�erent methods can be used

for modelling the same example in the same simulation language�

CHAPTER �� MOTIVATION AND INTRODUCTION �

Finally� I present my newmeta model concept in chapter �� explain its features

and discuss the upcoming advantages and disadvantages�

In order to make the problems� phenomena� methods�� � �more evident� simple

examples� well known benchmarks and case studies are presented�

Furthermore� I discuss the possibilities to implement the new concept in

di�erent simulators�

Chapter �

Foundations of Modelling and

Simulation

This chapter deals with the foundations of numerical continuous system sim�

ulation� I do not want to present a basic course in simulation but discuss

some fundamental principles�

��� The Modelling Process

As neither exact de�nitions nor strict regimentations constrain the large �eld

of simulation� it is quite di�cult to come to a readily comprehensible discus�

sion�

Therefore� I try to de�ne the terms concerning the �eld of simulation used in

this thesis and explain the principles of simulation in the way I understand

it� in order to come to a common language and being precisely understood�

Simulation corresponds to very old and commonly used methods to solve

problems� In brief� it is the transition to analogue models� �nding a solution

and trying to apply this solution to the initial problem� The reasons why we

apply simulation and do not search for solutions on the original systems are

supposed to be su�ciently known�

�

CHAPTER �� FOUNDATIONS ��

Simulation is the imitation or reproduction of real systems in order to make

experiments on it without touching the process� But what is a �real system��

Following Zeigler in his monograph on modelling and simulation �	�� p� ���

let us de�ne a system as �some part of the real world� which is of interest��

And then� �The system may be natural or arti�cial� in existence presently

or planned for the future��

We pass a series of abstractions from reality to simulation� The de�nition

above contains already the �rst step of abstraction� when we speak of a real

system� we have to isolate it from its environment� We therefore divide the

�real world� � this constitutes again a term worth of long discussions� but

here we understand it in the usual way � in three parts�

the system the part we are interested in

the system boundary the factors that in
uence or are in
uenced by the

system

the environment everything else

This step as well as the following require a large amount of knowledge� expe�

rience and skill because just here the reduction of the real world starts� We

have to be aware that everything we neglect in one of the steps cannot be

part of the simulation later�

That means that we have to decide before beginning this process what kind

of results we want in the simulation runs� Therefore� the parameters we want

to observe or change must not be part of the environment�

It is necessary to reduce the system and neglect parts of it because it is always

impossible to know all the in
uences of a particular system� Furthermore�

we have to try to keep the model small and clear so that we can handle

it� Another reason is to take the time the computer needs for the dynamic

calculation into account� This time is a very important factor concerning the

costs�

CHAPTER �� FOUNDATIONS ��

In this actual step we have to de�ne the system boundary according to our

experience with the system�s behaviour and also to the question we put to

our simulation� i�e�� what output we are interested in�

In the next step� our task is to build up a physical model of the system� We

reduce the system to standard physical components that can be described by

some known laws� This is comparable to the building of a model by using

parts out of a box of bricks� This representation of the real system can then

be described in a written model� In other words we describe the system by

a combination of fundamental physical laws� In general� these are Newton�s

laws for mechanical models and Kirchho��s laws for electrical models� At

the end of this step we get a set of mathematical equations that describe the

real system under certain constraints satisfactorily accurate�

The next task is to simplify the obtained set of equations and to prepare it

for the use within a simulation language�

The topics of the next chapter are the characteristics of simulation languages

and how the description of the model has to be prepared so that a simulation

language can handle it�

��� Simulators

In the early days of simulation simulation languages supported the modelling

of systems� Later� simulation packages were developed for the modelling of

more complex systems� They were then extended with some features for

simulating and called simulation environments� Roughly spoken� we can

subsume these terms under simulator� A simulator can be de�ned as a kind

of higher level programming language or simply a software tool that provides

special functions for model implementations� mathematical functions for dy�

namic calculations and facilities for experimentation and for post�processing

the obtained results�

Nowadays� the market o�ers a large variety of commercial� experimental and

good simulation languages� Some of them were developed in the late 	��s and

CHAPTER �� FOUNDATIONS ��

since then have been su�ering of historical constraints
 others were invented

only a few years ago and are still trying to produce not only system crashes�

Seriously� there are a lot of good working simulation languages on the market�

Some of them are designed for special use� others are more general purpose

simulation tools�

All the simulators I am discussing here are capable of dealing with continuous�

time models� The models are built up by the use of ordinary di�erential

equations �ODEs� that are describing the behaviour of the system we want

to simulate in the state space� These ODEs represent initial value problems

�IVPs�� whereas boundary value problems �BVPs� are used only by means

of optimisation�

Usually� the ODEs have to be transformed to a set of �rst order ODEs� The

independent variable is mostly the time t� The right side of the equation also

denotes the structure of the system that includes the dimension of the state

space� If we change the �right sides� we also change the structure�

�x � f�x� u� t�

�x�t�� � x�

The model description in a simulation language always consists of two parts��

At �rst we have a structural or topological description of the model� This is

a set of statements or blocks de�ning functions�

According to the description of the structure of the model simulation lan�

guages can be classi�ed in two groups�

� equation�oriented

� block�oriented

�A detailed description can be found in ���� p����

CHAPTER �� FOUNDATIONS ��

This classi�cation is in some way of historical origin� The two groups can be

characterised by two di�erent ways of thinking� On the one hand� there are

the mechanical engineers and physicists who are traditionally used to deal

with equations� On the other hand� the electronical engineers who prefer

to divide systems into functional blocks and connect them via input�output

ports�

The second part is the description of the parameters� We distinguish between

three classes of parameter types�

�� model parameters�

�a� constants� quantities that never change the value

�b� parameters� quantities that are constant during a simulation run

but that may be changed between the runs

�c� initial values

�� integration parameters� parameters which control the numeric integra�

tion

�a� integration algorithm

�b� step size

�c� start and stop of the simulation

�d� additional values when using variable step size adjustment

�� output parameters�

they are especially important in models of control engineering�

�a� output values� speci�es which quantities should be given out

�b� output interval

�c� output form� curves� numbers� � � �

�d� output device� display� printer� plotter� hard disk� � � �

CHAPTER �� FOUNDATIONS ��

�e� output environment� Sometimes there are additional statements

beside the simulation results necessary� e�g� a legend for a plot� a

title� page numbers� axes and their labelling� � � �

�f� output format

����� Attempts for Standardisation

Di�erent simulation languages may use di�erent shapes of model descriptions

what makes writing and reading a very costly task� That is why already in

the very early stadium of the development of simulation languages the Sim�

ulation Council �Sci� founded the Committee for Continuous System Simu�

lation Languages �CSSL� in ��	� that worked on standardisation� In ��	�

they came out with the CSSL�Standard �CSSL�	�� �	���

The three aims of the CSSL�	� standard are

� a standardised user interface � for the unskilled user

� a
exible model interface � for the expert

� an expandable computer interface � for the future

The �rst was achieved by a clear� obvious form of model description state�

ments� with operators capable of handling most problems including di�er�

ential equations �with user hidden procedures�� a complete set of problem�

oriented diagnostics for both compilation and runtime errors� sorting algo�

rithms� � � �

The second aim requires a CSSL acting as an adjunct to an arbitrary procedu�

ral language so that the user can extend the set of operators by programming

his own�

Unable to �foresee the exact path that would be taken� �	�� p����� the com�

mittee demanded to provide the possibility for
exible expansion�

CHAPTER �� FOUNDATIONS ��

In addition� already in those days the CSSL�	� de�ned structural elements

such as the separation of INITIAL� DYNAMIC and TERMINAL regions in

the model description as well as macros�

�� years later some new attempts were made for a new standardisation� the

so�called CSSL���� But this CSSL��� never left the level of recommendations�

The main innovations of these recommendations as proposed by Crosbie and

Hay in ���� are

� the separation of experiment and model

� submodel features

� features for describing and handling discontinuities and

� segment features

The third item is the most interesting for us� It proposes to include con�

ditional statements and numerical routines for detecting discontinuities and

ensuring accurate numerical integration across it�

By proposing submodel features the CSSL��� anticipates already the devel�

opments of model modularity and also object oriented descriptions�

Apart from the �CSSL languages� like ACSL� ESL� MOSIS we can �nd high

developed alternative languages like SIMULINK or SIMNON� For detailed

information I refer to e�g� �����

A recent attempt for standardisation is VHDL�AMS���� � an extension of

the Very High Density Logic �VHDL� standard� a modelling standard for the

description of logic electronic circuits� by means of �analog components and

signals�� i�e� ODE model parts�

At �rst this attempt claimed for generality� but in fact just tends to a stan�

dardisation in electrical�electronical applications or almost only in electronic

applications�

CHAPTER �� FOUNDATIONS �	

����� Numerical Integration Methods

The core of a simulation language is the built�in algorithms for numerical

integration of ODEs� As the system is described with sets of ODEs� the state

variables are calculated by using numerical methods� Here the term algorithm

is used in contrast to method to di�erentiate between the theoretical method

and its implemented respectively programmed form� the algorithm�

There are two di�erent groups of numerical integration methods�

� one�step�methods

� multi�step�methods

Both methods apply � as we can deduce from the names � a step�by�step

method� The approximate solution is updated with every integration step�

One�step�methods only include the information from the actual integration

step in the next step� The actual values of the state variables serve as the

�exact� initial values for the next step�

On the other side� multi�step methods use the information of two and more

former steps for the next�

Nowadays� there are a lot of di�erent and e�cient methods for the integration

of sti� systems� e�g� the famous Gear�methods� Although they can also be

seen as implicit single or multi�step methods� they should be mentioned in a

separate� third group�

� methods for sti� systems

For a detailed information I recommend for instance Lambert�s book on

methods of numerical integration ��	� where the reader can �nd the descrip�

tion of almost all the methods implemented in modern simulation languages�

CHAPTER �� FOUNDATIONS ��

��� Experiment

Running a simulation is what we usually call making an experiment� As

declared above� simulation is de�ned as a method of solving problems� In

other words� we try to gain knowledge about the model that is applicable to

the real world� The question is how to get this knowledge and the obvious

answer is �in making experiments� with the model�

When experimenting with a model one has to keep in mind that the model

is not valid for all possible experiments� Therefore� Zeigler de�ned in his

monograph �	�� the experimental frame� the set of experiments a model is

valid for�

An experiment in its simplest form is just to calculate the ODEs over a

certain period of time with a certain set of parameters �initial values����� in

order to gain knowledge about the system behaviour that means to observe

the output parameters as well as the internal ones over the simulated time�

A series of experiments on the same model is called a study � In a study

we change di�erent parameters� e�g� the initial values� the step�size� the

integration algorithm� � � � and can observe the di�erent results� Then the

interpretation of the correspondence between results and parameter changes

can start�

In the traditional CSSL languages these kinds of experiments have to be

implemented in the INITIAL�DYNAMIC�TERMINAL structure or started

interactively at runtime level and are therefore� more or less� the only possible

ones�

In the CSSL��� the authors already had a di�erentiated view of experiments

in mind when they proposed the separation of the model description and the

experiment description� As we can read in the proposals of Crosbie and Hay

in ���� p����� the experiment is seen as a special unit that can be performed

upon di�erent models and � also the other way round � a model should be

allowed to be subject to di�erent experiments�

The most general point of view is given by the concept of Breitenecker and

CHAPTER �� FOUNDATIONS ��

Solar ����� �An experiment is the performance of a certain method with a

certain model� and a �method is an operation or algorithm which de�nes an

action using a model �whatever can be done with a model ���

This de�nition includes the very important �eld of optimisation and lineari�

sation in the term experiment and also enables the data exchange between

model and method so that very sophisticated methods can be developed

and applied� Here� the ordinary integration of the ODEs is seen as a basic

method�

This de�nition also serves as a basis for the �Extended Experiment method�

that I propose in chapter 	�

����� Interpretation

At this point we come back to where we started from� After modelling a real

system and making experiments with this model we hopefully get simulation

results� Now the gathered information has to be interpreted in context with

the real system�

Simulation Result

Real System

Mathematical Model
Experiment

Modelling Interpretation

Figure ���� The Simulation Process

At the end of this short overview �gure ��� shall illustrate the process of

CHAPTER �� FOUNDATIONS ��

simulation� starting from a real system we build up a model with which we

can make experiments� Then we have to interpret the results and transfer

them to the real system�

Chapter �

Events

In this chapter I will introduce the term event and its meaning in continuous

system simulation� Furthermore� I will deal with the di�erences between

time and state events� and so I come to the centre of interest of this thesis�

the state events�

Finally� I will shortly discuss the di�erence between event and discontinuity�

��� Events

Modern simulation techniques more and more use events� This is the result

of technical developments as well as of the fact that the simulated systems

nowadays are getting very complex� But at �rst I should try to de�ne what

an event is�

When we look at the CSSL�	� standard we do not �nd the term at all�

This can be seen as a �drawback of too early a software standardisation� as

Cellier writes in ���� ���� p����� And in fact we can agree only by comparing

the abilities of the computers in those times and now and the consequential

di�erences in the demands�

A very general de�nition of the term event that is also very close to the term

used in natural language�

��

CHAPTER �� EVENTS ��

When something extraordinary is happening we call it an event�

As I am arguing in the �eld of continuous simulation I can de�ne an event

in a more concrete form in the following way�

An event occurs when the simulation run is stopped� sudden discrete changes�

which do not consume time� are carried out and the simulation is restarted

again�

Here� �discrete changes� characterises everything between the isolated change

of a variable to discrete subprocesses as part of the simulated system�

The type of the condition that triggers an event leads us to a fundamental

classi�cation�

time events are triggered at a certain time �periodically or isolated�

state events are triggered when a condition dependent on the state of the

system is ful�lled

An example for a time event is the regulation of a dynamic system by a

digital controller� At certain intervals the controller periodically transmits

new control inputs to the system�

A similar example can be formulated for state events when we consider again

a dynamic system and a controller� But here the controller changes the input

only when the state has reached a certain threshold� e�g� the water in
ow is

cut when the bottle is full�

In order to outline roughly a fundamental di�erence between the two groups

of events we can state that time events are mostly applied in context with

digital �discrete� controllers and with special input functions coming up from

control engineering�

On the other hand� time events are an instrument to build up discrete�time

models with continuous�system simulation tools�

In contrast to state events time events are much easier to handle as the

time when they are triggered is known in advance� The di�culties with the

handling of state events are discussed in the following chapters�

CHAPTER �� EVENTS ��

Taking in a very extreme point of view we could say that all the simulation of

the model itself is only composed of time events� Due to the use of numerical

integration methods we could interpret the dynamic calculation as a series

of time events� every integration step marks the time when the state of the

system is updated� But to my opinion this way of thinking leads us far away

from where we started�

The basis of the continuous system simulation is the identi�cation of systems

with continuous or steady processes that we describe with ODEs�

On the other hand� one can say that the interpretation of natural processes

as continuous is a simpli�cation coming up from Newton�s Physics�

So we have to keep in mind that the models we are considering when talk�

ing about general purpose simulation languages are �simple� mechanical or

electrical models� The term simple is used here to denote systems that deal

with �classical� masses� velocities� � � � � that we can describe with Newton�s

Physics su�ciently precise� Therefore� we also may talk of a continuous world

�Newton�s Continuum��

��� Events and Discontinuities

Although the two terms event and discontinuity are mostly used interchange�

ably in the specialist literature I would like to outline the big di�erence I see

between them and therefore dedicate a separate section to it�

As shown above in the de�nitions I have a very general idea of what I call

an event� Every event causes something to change� More concrete� it causes

a part of the model description or variables to change�

On the other side� there is the term discontinuity� When analysing this term

we get the result that it describes something that is not continuous � being

the di�erence to the term event and establishing also the constraint of that

term� Talking e�g� about a continuous input function that is changed by

an event we can obviously also call it a discontinuity in the function� But

CHAPTER �� EVENTS ��

on the other hand there are also events changing the model structure� In

this context we cannot use the term discontinuity as there is nothing that

could be discontinuous� On the contrary� looking at the point of change� the

function may be continuous or even di�erentiable� Even if we analyse the

simulation results� we can see that an event needs not force the solution to

be discontinuous�

Chapter �

State Events

In this chapter I will concentrate on state events� After an introduction I

will focus on a new classi�cation that I developed� This classi�cation will

then be taken as a basis and will be repeatedly referred to� Furthermore�

a methodology will be given for the description of state events including

concrete examples and applied methods� The next focus is the state event

handling presenting the four stages method and discussing each of the steps

in detail� I will give and discuss some numerical methods that are applied in

continuous simulation for �nding state events�

��� Introduction

In continuous system simulation we apply state events for di�erent reasons�

One aspect is the simpli�cation of models� In modelling real systems we

are often confronted with processes that go o� very quickly compared to the

dynamic of the rest of the system� In order to safe costs in development� these

processes are then not modelled as processes but as events� This obviously

also saves computing time�

As an example I will discuss the model of a bouncing ball� This is a very

simple but capable example to show special methods� so that we will take it

��

CHAPTER �� STATE EVENTS ��

repeatedly in this thesis�

Figure ���� The simpli�ed bouncing ball

The � very simpli�ed � motion of the ball can be described by the following

equation�

 x � �g

�x�t�� � �x�

x�t�� � x�

In a macroscopic view the ball may be seen as a concentrated mass point� Be�

sides� the model would become more real if terms modelling the air resistance�� � �

were added� but here we concentrate on the event and so this very simple

model will be su�cient�

But what happens when the ball hits the ground� Afterwards the equation

above is valid again� The process before is the crucial point� Obviously�

the process of hitting the ground and jumping back constitutes a continuous

process� The kinetic energy of the fall is gradually converted into elastic

energy and then the other way round� The simplest way is now to replace

the microscopical process of hitting the ground by an event� Here event

CHAPTER �� STATE EVENTS �	

means the stopping of the dynamic� inverting the direction of the velocity

including a damping factor �

�xnew � �� � �xold

and starting the calculations again� It is therefore the sudden � i�e� not

time consuming � change of the velocity �x to that value as if the microscopic

process of hitting had just gone o�� The microscopic view� where this process

is also modelled� is presented in the next section�

In this case the event is triggered when the ball touches the ground that is

when the height x equates zero�

x � �

When this condition becomes true depends on the dynamic calculations as

the height of the ball is one of the state variables�

A summary of the system governing equations and initial values�

state equation x � �g

initial values �x�t�� � �x�

x�t�� � x�

event condition function x � �

event �xnew � �� � �xold

Another aspect is the fact that it is often not possible to describe the be�

haviour of a real system by one single set of equations� In this case it is

necessary to decompose the system into subsystems� The di�erent subsys�

tems act exclusively� i�e� only one subsystem describes the system at a time�

The conditions which subsystem is valid have to be formulated in a corre�

sponding way�

As an example I mention here a simple pendulum� a mass hanging on a

string�

CHAPTER �� STATE EVENTS ��

ϕ

l

m

Figure ���� Mathematical pendulum

Reducing the model by the assumption that the mass is concentrated in a

point� the string is not elastic and has no resistance � � � we can formulate this

example with an ordinary di�erential equation of second order� where � is

the angular� g is the gravitational force� l the length of the pendulum and d

a damping factor�

m � l � � � �m � g � sin�� d � l � ��

Taking into account that the pendulum reaches � when looping � a point

where the centrifugal force is not big enough to tighten the string� the motion

of the mass gets the form of a free fall�

The very simpli�ed description of this motion in terms of ODEs is as follows�

 x � �

 y � �g

Here again� the model would become more real if we added the description

of the air resistance�� � �

The condition for the event is � as already mentioned above � the fact that

the centrifugal force is not big enough to tighten the string any more�

CHAPTER �� STATE EVENTS ��

Figure ���� Pendulum during free fall

The centrifugal acceleration minus the corresponding component of gravity

is calculated by�

f � ��� � l � g j cos� j

It is therefore a function of the state variable �� and the parameter l�

Here� the term event means the stopping of the dynamics� changing the

equations and restarting the dynamics again�

Now we have two sets of equations with corresponding conditions and trans�

formations�

state equation �

 � � �g

l
sin�� d

m
��

initial values

���t�� � ���

��t�� � ��

event condition function

��� � l � g j cos� j � �

CHAPTER �� STATE EVENTS ��

event� switch to state equation �

x � l � sin�

y � �l � cos�

�x � l � cos� � ��

�y � l � sin� � ��

state equation �

 x � �

 y � �g

initial values

�x�t�� � �x�

x�t�� � x�

�y�t�� � �y�

y�t�� � y�

event condition function

q
�x� ! y��� l � �

event� switch to state equation �

�new � ��
�
� arctan y

jxj
if x � �

�new � arctan jxj
y

if x � �

��new � y � cos�new ! y � sin�new

In the two examples described in the section above we were familiarised with

two very di�erent forms of state events� In the �rst example it was one state

variable that was changed and in the second it was the set of equations�

Therefore� we can see that events arise for very di�erent reasons and on the

other side their descriptions in the model may vary a lot� In the following

section I develop a classi�cation for state events� The classes then represent

events that join a common description�

CHAPTER �� STATE EVENTS ��

��� Classi�cations for State Events

Two Classes Approach

In a �rst attempt let us divide the state events into two di�erent classes as

we have already done in the section above�

Class � event� Change of �state� variables or parameters

Class � event� Change of equations

Combinations of these two classes can be subsumed in the second one� If we

want to classify the two examples given above� we put the bouncing ball in

the �rst class� a state variable is changed here� The pendulum is member of

the second class� as there is a structural change in the equations�

It is not easy to build up formal descriptions of the two classes� In the

�Change of equations� we can describe a system with n possible di�erent

equation changes as�

�x�t� �

���������
��������

f��t� x�t�� if condition �

f��t� x�t�� if condition �
���

fn�t� x�t�� if condition n

The indices given to the conditions and equations have nothing to do with the

sequence� the chronological succession� This depends only on the condition

that gets true or false depending on the calculated states� As I have already

mentioned above I obviously require that only one condition can be true at

a time�

It is more di�cult to give a general description of a system of the �rst class�

One possibility is to describe the phases before�after and at the event sep�

CHAPTER �� STATE EVENTS ��

arately� This is obviously a chronological description� too� For the event

�change of state variables� we can write�

x�t�� � x� the initial value

�x�t� � f�t� x�t�� until condition becomes true

x�t�new � g�x�tevent�� when condition is true

�x�t� � f�t� x�t�� after condition was true

In this description I require that the condition for the event is false again

after the changes are made� This proceeding can be seen as part of the

condition� That means that in the condition there exists a mechanism that

sets the condition false again� that changes the conditions or disables it after

the changes are made� Here the important thing is when the condition gets

true� whereas in the other class it is if a condition is true� There is another

important di�erence in the two classes� In the �rst class events are detected

with IF conditions� whereas the events in the second class occur due to a

WHEN condition�

This classi�cation can be seen as a very fundamental one� If we change a

parameter or a state variable in a simulation run� it is nothing else than what

we do if we start a new experiment with a certain model� In the initialisation

we set the values and then we start the calculations� So we can identify the

�rst class with starting a new experiment�

What about the second class� Changing equations cannot be part of an

initialisation process� This change is more profound because the model de�

scribes a completely di�erent process after the change� So we can say as

well that the change of the equations is also the change of the model� And

therefore� the second class represents an experiment with a new � or better

di�erent model�

From this point of view� a combination of the two classes is obviously sub�

sumed in the second one� When we start a simulation we clearly have to set

parameters and so there is no di�erence if we combine them�

CHAPTER �� STATE EVENTS ��

When we now examine this classi�cation in conjunction with the real system

more carefully� we realise that it is much too rough� Events are mixed up

in a class stemming from completely di�erent origins in the real system and

causing completely di�erent actions�

Four Classes Approach

In the two classes approach we put together parameters and �state� variables�

For instance� in mechanical systems we �nd them almost always in this com�

bination� When a parameter is changed in mechanical systems� it causes a

change of a state variable in most of the cases and therefore a discontinuous

solution�

Let us look again at the pendulum� This time we do not let it loop but put

in a pin�

lp

ls

ϕ ϕ
p

Figure ���� Constrained Pendulum

When now the pendulum reaches the pin at �p not only the parameter

�length� of the string is reduced but also the angular velocity has to be

changed due to the conservation of the momentum� The corresponding equa�

tions are�

lnew �� l � lp

CHAPTER �� STATE EVENTS ��

��new �� ��
l

l � lp

When the pendulum swings back again and leaves the pin� the equations are�

lnew �� l

��new �� ��
l � lp
l

Therefore� in this model a parameter and a state changes discontinuously�

In order to summarise the equations we can describe the model in the fol�

lowing way�

state equation

 � � �
g

l
sin��

d

m
��

initial values

���t�� � ���

��t�� � ��

event � condition function

� � �p � ��
p � �

event �

lnew � l � lp

��new �� �� l
l�lp

event � condition function

� � �p � ��

p � �

CHAPTER �� STATE EVENTS ��

event �

lnew �� l

��new �� �� l�lp
l

On the other hand� there are systems without that combination of changes

of parameters and state variables� For instance� a discrete controller may

provide an input to a continuous system which may change discontinuously

but does not cause any discontinuous changes of a state variable� Therefore�

a distinction of these two types seems to be reasonable�

The second class should also be split up into two classes� When examin�

ing corresponding examples we can realise that there are two very di�erent

classes� Besides� it must be taken into account that even profound changes

as those of equations need not cause discontinuous solutions�

The two di�erent types of what I subsumed in the two classes approach as

the change of equations are

�� the addition or the removal of components to equations that are needed

only under certain state conditions and

�� structural changes

The addition or removal of components is necessary for example when ad�

ditional forces start or stop acting in mechanical systems� As a concrete

model we can use here again the bouncing ball� This time we also model the

microscopic process of hitting� where the ball now may have a radius r � ��

This process of hitting can � with some constraints � be seen as a spring and

damper system� When the ball hits the ground the equation for x is added

up with the acceleration due to the spring force with spring constant k and

the damping force with damping factor c divided by the mass of the ball m�

 x � �g ! k � �r � x�
�

m
� c � �x

�

m

CHAPTER �� STATE EVENTS ��

Figure ���� Bouncing ball with hitting process

This component is valid only when the ball touches the ground� Otherwise

it is disabled�

Combining the equations we get the following system�

state equation�

 x � �g !

��
�

� if condition �

k � �r � x� �

m
� c � �x �

m
if condition �

initial values

�x�t�� � �x�

x�t�� � x�

�y�t�� � �y�

y�t�� � y�

event condition function �

�x� r� � �

event condition function �

�x� r� � �

CHAPTER �� STATE EVENTS �	

event� add or remove the component

An example for a structural change is the already mentioned looping pendu�

lum� Here the dimension of the state space changes� too� but the solution is�

nevertheless� continuous�

That is why I propose a classi�cation consisting of four classes�

Class� event� Change of parameters or input variables� e�g� discrete

controller

Class� event� Change of state variables� Change in one or more state

variables and arbitrary parameters� e�g� bouncing ball � macroscopic�

constrained pendulum

Class� event� Change of components of equations� Depending on states�

components are added or removed� e�g� bouncing ball � microscopic

Class� event� Change of the structure� Conditional switching between

di�erent sets of equations� e�g� looping pendulum

��� Description

The description of state events in the model always has to consist of two parts�

the description of changes that are caused by the event and the description

of the condition that triggers the event�

As you may guess� simulation languages are far away from any standard

concerning that theme� In order to illustrate this fact I give a comparison of

the di�erent ways of descriptions in the chapter �State Events in Simulators

� State of the Art� later on�

It is quite common for the description of the condition to formulate an equa�

tion that has its zeros if the event has to be triggered� This event condition

CHAPTER �� STATE EVENTS ��

function� is an algebraic equation of state variables�

"i�t� x�t�� i � �� � � � � m

If m � � we can also combine these functions

"�t� x�t�� � "��t� x�t��"��t� x�t��"��t� x�t�� � � �"m�t� x�t��

but for numerical reasons it may be better not to combine more functions to

a single function because this multiplication can lead to rapidly oscillating

functions that are very di�cult to handle�

Carver proposes in a paper on integrating over discontinuities ���� to trans�

form event condition functions to additional di�erential equations�

�xn�� �
d"

dt
xn���t�� � "�t�� x�t���

a method that has almost no evidence in commercial simulation languages�

As concrete examples and proposals for the description of events in simulation

languages and also some models will be discussed later� I will return to the

methodological level�

��� Handling

The process of handling events in a continuous system simulation run is

divided into four computational stages�

�� Detecting the possible presence of an event

�I prefer this term to discontinuity function in order to use a more general expression	

compare above
 Events and Discontinuities�

CHAPTER �� STATE EVENTS ��

�� Locating the event

�� Passing the event

�� Restarting the simulation

����� Detecting

The stage of detection is the most important of these four stages because all

of the following methods and algorithms are only started when it is detected

that in the recent interval a condition for an event is ful�lled� On the other

hand� the process of detection has to be very cheap as it must � or should �

be carried out at each step of the integration routine�

The simplest way to test if a condition of an event is ful�lled � here� if an

event condition function crosses zero � is to check if the sign of the function

has changed during the last interval�

Calling the beginning of the interval tb and the end te we assume an event if

S� � "i�tb�"i�te� � � � � i � m

It is easy to see that we can construct examples where this way of detection

fails� E�g�� if there are two zero crossings of the event condition function

within this interval �tb� te�� no event is announced�

A more sophisticated way is to include the �rst derivative of the event con�

dition function

�"i �
d"i

dt

and examine also

S� � �"i�tb� �"i�te�

CHAPTER �� STATE EVENTS ��

Now four situations arise� In case � we asume no zero crossing as the two

values �at the beginning and at the end of the interval� are both postive

or both negative and the gradients are both positive or both negative� too�

Therefore� we think that the event condition function starting and ending in

this interval at a positive �negative� value with positive �negative� gradients

simply increases �decreases��

In case � the gradients are again both positive or both negative� But here

the values at the ends of the interval have di�erent signs� So the function

can be assumed again as increasing or decreasing but � in contrast to above

� due to the di�erent signs of the values at the ends of the interval one zero

crossing may be assumed�

Now� in case �� the values at the ends of the interval have the same sign but

the gradients have di�erent signs� Therefore� we may take the function for

crossing the time axis for two times�

In case � the values at the ends of the interval again have di�erent signs

and we can assume � without taking the gradients into account � one zero

crossing�

case no� S� S� assumed zero crossings

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Here it is also very simple to show cases not covered by the four conditions�

If S� � � then only the number of zero crossings can vary� Due to the

continuity of the function there has to be at least one zero crossing� But

there may also be three or �ve� � � � A situation not covered by these cases is

for example when no zero crossing is announced in case � but the function

�rst increases then decreases� crosses zero� increases again and crosses zero

for a second time� So we have two zero crossings but none is noticed�

CHAPTER �� STATE EVENTS ��

Actually� this method of detection represents an interpolation�type method�

We use the information �the values of the function and the values of the �rst

derivative at the beginning and end of an interval� to make statements for

its behaviour in between�

The argumentation is that due to the step�by�step nature of digital integra�

tion the values are only available at discrete values of t and that is why the

precise instant at which the event occurred will never be known�

Another approach is given by methods that detect zeros in advance by ex�

trapolation and reduce the steplength before a zero crossing is passed� The

problem is that the extrapolation of the event condition function or of the

system states leads to a whole series of problems and gives no reliable results�

Therefore� the extrapolation algorithm would have to be strongly coupled to

the actual problem and we will get no useful algorithm for general purpose

simulation languages�

����� Locating

In the stage of locating we want to �nd the time when the event has to be

triggered more accuratly� Obviously� this intention is restricted as we apply

numerical algorithms and we are faced by accurracy constraints� In literature

we �nd di�erent approaches to locating but in practice there is only one type

of methods employed� the interpolation�type method� Therefore I will con�ne

myself to this type�

This method is a very simple routine to locate events and can be conjuncted

with every general�purpose integration routine � in some applications a vari�

able step method is required� The price for the simplicity is partly very

serious problems that may falsify the following evaluations�

Here an event is detected by noting a change of sign in at least one of the

event condition functions "i in the evaluated interval�

The proposed subsequent actions and their main disadvantages are�

CHAPTER �� STATE EVENTS ��

�� assume that the event occurred at the end of the actual interval

The timing�error may seriously a�ect the following evaluations espe�

cially if more than one event has occurred� So there is a very small

steplength necessary to locate the event su�ciently precise�

�� check the event condition function after each evaluation during an in�

tegration step and change the equations if necessary

This proceeding may cause a large error estimation and force the algo�

rithm to re�evaluate this step using a smaller steplength�

�� check the event condition function after the completed step
 if there

are events detected� repeat the evaluation with a shortened steplength

so that the integration step ends at the event
 interpolation gives an

approach to that value of t

An example of a simulation language that uses the third method is MOSIS�

Here the event condition function is evaluated after each integration step�

If a change of sign is detected� an iteration process is started� the modi�ed

regula falsi iteration� to locate the zero crossing� In the next section I will

describe this and other iteration processes for the location of roots�

As I have already mentioned above� it is quite possible that occurring events

are missed if the procedure decides to search for an event only when a change

of signs of the event condition function is referred on the boundary points

of an interval� E�g�� if two events �here two zero crossings� arise during

an interval the algorithm described above will not react and continue as if

nothing happened�

Nevertheless� in common simulation languages � provided that an event han�

dling algorithm is available � the detecting is only done by noting a change

of signs� If there is no event handling o�ered� then in most of the simulation

languages the event gets triggered after the integration interval in which the

condition became true�

CHAPTER �� STATE EVENTS ��

Numerical Methods for the Location of Roots

For locating the zeros of the event condition function there are several dif�

ferent algorithms available� In this section I will describe some of the most

used� Sometimes the algorithms get also applied in combinations� e�g� when

numerical problems are coming up it is sometimes better to swap to a dif�

ferent algorithm or when it is necessary to calculate good starting values for

more sensitive algorithms�

Assuming a continuous function f � �a� b� � � we know that the function

takes every value between f�a� and f�b� in the interval �a� b� at least once�

Therefore� if the signs of the two values at the boundary of the interval are

di�erent and f�a�f�b� � �� then we can conclude that there is at least one

zero crossing in this interval� i�e� there is at least one value c � �a� b� with

f�c� � � and c is named the root of the function�

An iteration process can now be started to locate the zero more accuratly�

Before going into details I want to remind that when these methods are

applied in continuous simulation we do never know the event condition func�

tion exactly� And we have to rely on the discrete points calculated by the

numerical integration algorithms� points that are �full� of numerical errors�

Continuous Binary Search

This method is� on the one hand� very simple but on the other hand it is

one of the methods which guarantee convergence� no matter what the initial

values look like� The only requirements are that they have di�erent signs� so

f�ta�f�tb� 	� � and the function f obviously has to be continuous but needs

not necessarily to be di�erentiable�

Beginning with the interval �ta� tb� we calculate the centre of the interval

tc �
ta ! tb

�

CHAPTER �� STATE EVENTS ��

t

Step 2

Step 3

Step 1

f(t)

t t

f(t)

t

f(t)

a

a c

c

b

b

Figure ��	� Continuous Binary Search

If f�tc� � � we have succeeded and can stop here� If not� we check whether

f�ta�f�tc� � �� In this case we start the next iteration step by regarding the

interval �a� c�� Otherwise f�tc�f�tb� � �� Then we have to do an integration

step with a reduced steplength to obtain f�tc� and continue with the interval

�c� b�� So the zero is encirceled within an interval that gets smaller and smaller�

The length of the interval after k steps is tb�ta
�k

�

Because of numerical reasons �limited length of the mantissa of machine

numbers� rounding errors� � � � � the length of the interval and therefore also

the accuracy cannot be unlimitedly increased� Therefore� we have to give a

condition when to stop the iteration�

CHAPTER �� STATE EVENTS ��

Newton�s Method

This method is founded on the fact that we can approximate a di�erentiable

function by a linear function� Therefore� the function f also needs to be

di�erentiable here at least in the neighbourhood of the zero�

Starting from the point �t�� f�t��� we construct a tangent that we intersect

with the time axis getting the next approximation point t�� Thus� we get an

iteration following

tn�� � tn �
f�tn�
�f�tn�

t1f()

t1

t2f()

t2 t

Step 2

Step 3

Step 1

f()t0

t0

Figure ���� Newton�s Method

CHAPTER �� STATE EVENTS ��

A very strict requirement that this sequence converges is that we have to

start su�ciently near to the zero� It is provable that there exists a domain

of attraction but it cannot be given explicitly� An obviously bad starting

point would for example be a point near an extremum of the function� in a

section where the function is quite
at� In comparing with the Taylor series

we can derive that the Newton�s method converges for good starting values

quadratically�

Regula Falsi � Method of False Position

The solution is approximated by a linear function between the boundary

values of the actual interval� Starting with the interval �t�� t�� we construct

a line through the two points �t�� f�t��� and �t�� f�t����

x � f�t�� !
f�t��� f�t��

�t� � t��
�t� t��

Then we intersect this line with the t�axis getting

t� � �f�t��
�t� � t��

f�t��� f�t��
! t�

Now we repeat the last integration interval with the reduced steplength t��t�

for getting the value of f�t��� If f�t�� � � we have found the zero� otherwise

f�t��f�t�� � � or f�t��f�t�� � � and we start the next step of the iteration

with the interval �t�� t�� or �t�� t��� respectively�

����� Passing

After the locating procedure the dynamic calculations are stopped and the

event is executed� That means that all the parameter changes� the changes

of the state variables of components and structures are carried out�

When no state event handling is applied the passing gets a di�erent meaning�

In this case the changes are taken without synchronisation with the integra�

tion algorithm� and this can also happen during an integration step� For this

CHAPTER �� STATE EVENTS �	

2f(t)

t1

f(t)1

t 2

0
t t 3

3f(t)

Step 3

t

Step 1

f(t)0

Step 2

Figure ���� Regula Falsi

reason the local error reports a large value� In this case the last step � the

step containing the event � is repeated until the local error is smaller than

the tolerance or the minimum steplength is reached�

����� Restarting

When restarting the dynamic calculations after an event one has to take care

that the condition for the event that we just passed may be still or again

ful�lled� A chattering e�ect would then be inevitable�

Another task before restarting is to check if the actions of the just passed

CHAPTER �� STATE EVENTS ��

event cause another event to be triggered� In this case we �rst have to proceed

this event and afterwards we have to check again if there are events to be

triggered� Then the dynamic calculations are started again�

Chapter �

State Events in Simulators �

State of the Art

In this chapter I will analyse the possibilities of the description of state

events and # when o�ered # the state event handling in di�erent simulation

languages� Obviously� my selection of simulation languages is not complete�

I have chosen general purpose simulation languages for continuous systems

that are in a way representative�

As not all of the presented simulators may be well�known I start every pre�

sentation with a short overview and will then focus on the state event possi�

bilities� Finally� I demonstrate the �event features� of the simulator with the

example �constrained pendulum�� The software comparison �Comparison ��

Constrained Pendulum�� published in EUROSIM � Simulation News Europe�

the journal of the Federation of European Simulation Societies ��	� starting

with no��� March ����� makes use of this model and solutions are given here�

This should illustrate the presented statements in a concrete model�

This comparison deals with the example of a simpli�ed pendulum that hits

a pin� I have already presented this model in section ��� in detail� therefore

I only give a short description here�

The motion of a simpli�ed pendulum can be described with a nonlinear ODE

of second order� The position of the pin is given by �p� When the pendulum

��

CHAPTER �� STATE OF THE ART ��

lp

ls

ϕ ϕ
p

Figure ���� Constrained Pendulum

hits the pin� the actions we have to carry out are to change the length of

the string and to change the actual velocity� When the pendulum leaves the

pin again� we have to shorten the string and slow down the motion� The

corresponding equations are

state equation

 � � �
g

l
sin��

d

m
��

initial values

���t�� � ���

��t�� � ��

event � condition function

� � �p � ��

p � �

event �

lnew � l � lp

��new �� �� l
l�lp

event � condition function

� � �p � ��

p � �

CHAPTER �� STATE OF THE ART ��

event �

lnew �� l

��new �� �� l�lp
l

The values of the parameter and the initial values can be gathered from of

the model descriptions and therefore I do not de�ne them here�

The resulting motion of the pendulum� the angle and the angle velocity is

shown in �gure ���� It is the result of an experiment done with DYMOLA�

Figure ���� Motion of the Constrained Pendulum

��� ACSL

ACSL ��� ��� short for Advanced Continuous Simulation Language� is presum�

ably one of the best�known simulation languages and is a typical example

for an equation oriented language� The development of ACSL was started

in ����� The basic structures follow very closely the CSSL�	� standard�

published in ��	� �	��� The main areas of application are time dependent�

CHAPTER �� STATE OF THE ART ��

non�linear di�erential equations and also transfer functions� ACSL is based

on FORTRAN �� and is available for a lot of di�erent computer architec�

tures� The model description that can also contain operators and statements

out of FORTRAN is �rst translated to a FORTRAN code and then com�

piled and linked� The experiments are then done at a special ACSL runtime

level� At this level there are also functions available for e�g� linear analysis

of the model �eigenvalues� steady states� � � � � and plotting results� Detailed

information can be found in the ACSL manual ��� and also in ����� a german

book on simulation with ACSL with very detailed information� The following

descriptions are based on Version ���

The state event speci�cation is done in ACSL with the SCHEDULE operator

in the form

SCHEDULE db �XZ� ecf

That means that the DISCRETE block called db is executed when the event

condition function called ecf crosses zero� The zero crossing can be speci�ed

by direction by using �XP� �crossing positive� or �XN� �crossing negative�

instead of �XZ� �crossing zero�� The SCHEDULE operators must be placed in

a DERIVATIVE section�

Now let us take a glance on how it works during simulation� Before ACSL

evaluates an integration step� all state variables are saved� After doing the

step without regard to any events� the event condition functions are evaluated

and tested if the sign changed using the following code�

IF�expr�expp �LT� � �AND� expp �NE� �� GO TO event

where expr is the current expression and expp the previous value� That

also means that when we start the integration step with an event condition

function exactly equal zero� no event is signalled� If an event is found dur�

ing the last integration step an iteration process according to regula falsi is

getting started with the time borders of the last integration step� as starting

CHAPTER �� STATE OF THE ART ��

interval� This iteration is continued until the interval has reached a minimum

length ml evaluated as follows�

ml � maxfmint� epmx
 lig

where mint is the minimum step size for the DERIVATIVE section ����E���

by default�� epmx is a machine�dependent fractional multiplier on time �i�e�

���E � � on a 	� bit CRAY machine and ���E � 	 on �� bit workstations�

and li the left border of the actual interval

Another possibility to describe state events is to use the IF�THEN�ELSE state�

ment� When using it� no state event handling will take place� When the con�

dition becomes true the event is triggered� But when this is done� depends

on the integration algorithm� As there is no synchronisation� the condition of

the event is checked at the points of evaluation of the integration algorithm�

Numerical problems may arise so that it has to be checked whether the state

change has already be done or not� If a step has to be repeated because

of a too large error� the event could be triggered again and again� So we

can state that this method is not suitable for step�size controlled integration

algorithms�

Constrained Pendulum � ACSL

This model was written by Breitenecker ����� As we can easily see the event is

here described with the SCHEDULE operator and a single DERIVATIVE section�

In this section we �nd the decision what action has to be taken by using a

logical variable swil that denotes whether the pendulum leaves the pin or is

just hitting�

PROGRAM Constrained Pendulum

LOGICAL swil� swnonlinear

CONSTANT pi�������	
���� pi��pi
�� �Calculate fractions of PI

pi�
�pi
�
� mpi
��pi

�mpi���pi��mpi�
��pi�
� mpi
���pi

�

CHAPTER �� STATE OF THE ART ��

INITIAL

CONSTANT l��� m����
� d���
� g�	���� lp���� �Pendulum parameters

CONSTANT phi������ dphi���� phip���
 �Default initial values

� Determine initial position of pendulum

ls�l�lp� signphip�SIGN���phip�� signphi��SIGN���phi��

la�RSW��phi��phip��signphip �GE� ���ls�l�

la�RSW�signphip �NE� signphi��l�ls�

END �of INITIAL

DYNAMIC

DERIVATIVE � ���Dynamics of pendulum����

phim�RSW�swnonlinear�SIN�phi��phi� �Nonlinear or linear

ddphi���g
la��phim��d
m��dphi

dphi�INTEG�ddphi�dphi���

phi�INTEG�dphi� phi��

SCHEDULE hit �XZ� �phi�phip��

END �of DERIVATIVE

DISCRETE HIT �Change of Velocity and Length

swil��phi�phip��SIGN����phip� �GE��� �Position before hit

la�RSW�swil�ls�l�� dphi�RSW�swil�dphi�l
ls�dphi�ls
l��

END �of DISCRETE HIT

TERMT �t�GT�tend��Stop on time limit��

END �of DYNAMIC

END �of PROGRAM

��� SIMULINK

SIMULINK ��� ��� is an extension to MATLAB ��� 	� ��� The models in

SIMULINK are de�ned with graphic block diagrams� The blocks are taken

out of libraries and connected by lines� In these blocks the user can also

include MATLAB functions� The experiments can be made either by using

the SIMULINK menus or by entering commands in the MATLAB command

window� Like in ACSL� special analysis tools are built�in� The versions we

CHAPTER �� STATE OF THE ART ��

used for this thesis are MATLAB �� �c and SIMULINK �� �c� Some new

features of SIMULINK �� ��MATLAB �� � will be discussed later on�

����� SIMULINK �� �c

SIMULINK does not o�er event handling directly� Events are �simulated� by

means of �old and antique analog computational techniques�� Consequently�

in SIMULINK there are only a few blocks which allow to describe state

events� in the NONLINEAR�Nonlinear Library�

� SWITCH�Block

� RESET�Integrator

in the SINKS�Signal Sinks Library�

� STOP�Block

� Hit�Crossing�Block

Figure ���� SIMULINK �� �c Blocks for handling state events

With more details�

SWITCH�Block

This block switches depending on the second input between the �rst and the

third input�

RESET�Integrator

CHAPTER �� STATE OF THE ART ��

If the second input is equal to �� the �rst input is integrated� If the second

input is not equal �� then the state will be reset to the third input�

STOP�Block

It stops the simulation when the input is 	� ��

All these blocks are not synchronised with the integration algorithm� So

there is no state event handling o�ered here� Therefore� it may happen very

often that an event is totally missed� In order to avoid this missing there are

three possible actions to take�

� to minimise the maximum steplength or the error tolerance � this leads

to long computing times and is not e�ective as the algorithm is forced

to achieve the high accuracy also in intervals where no events take place

� to save the data during the dynamic calculation and to do an interpola�

tion by using the capabilities of MATLAB and starting the calculations

again � a handmade state event handling� not really user�friendly

� to use the HIT�CROSSING�Block � this block forces the integration

algorithm to decrease the steplength as it �Places discontinuity into

integrator which slows the simulation down��� The events are produced

by using the RESET�integrator where the result of the integration is

fed back to the second input� the control input� This method is quite

strange and I do not really recommend to use it� On closer examination

we meet here the peculiar situation that the simulation language does

not o�er a numerical algorithm for state event handling but wants the

user to add a �tricky� block to his model which violates extremely the

integration algorithms�

Constrained Pendulum � SIMULINK �	 �c

In this example we can see how di�cult it is to build up WHEN events with

more or less IF event blocks� So we had to combine them with a MEMORY�
�This declaration is shown when the block is unmasked�

CHAPTER �� STATE OF THE ART �	

Block and a RELATIONAL�Block� A model with explicitly de�ned param�

eters is shown in �gure ����

Besides� the logic of the event condition consists of more blocks than the

description of the pendulum itself�

Figure ���� Constrained Pendulum � SIMULINK �� �c

����� SIMULINK �� �

In comparison with SIMULINK �� �c we meet in SIMULINK �� � among

other things some fundamental improvements and some new or enhanced

blocks� The most important are shown in �gure ��� and ��	 and discussed

here�

Figure ���� Some new or enhanced SIMULINK �� � Blocks

CHAPTER �� STATE OF THE ART ��

� New Connections�Blocks were inserted� which may replace complicated

connection lines� with the Goto�Block and the From�Block we can con�

nect di�erent blocks without using lines� The corresponding variables�

which end in a Goto�Block� can be de�ned as local or global� According

to this de�nition we can pick�up these variables in a subsystem or all

over the model with a From�Block� where only the name of the variable

has to be assigned� Therefore� the models can be designed more clearly�

� There are blocks� which have no inputs and outputs� Two special blocks

for handling subsystems can be found in the Connections Library�

� the Enable�Block

� the Trigger�Block

If one of these blocks or both of them are placed in a subsystem� then

corresponding inputs will appear on top of the subsystem icon repre�

senting control inputs� The Enable�Block enables the subsystem� when

the input signal crosses zero and while it remains positive� With the

Trigger�Block the subsystem is executed once when the input signal

crosses zero� The direction of the zero�crossing when the subsystem is

triggered can be chosen as raising� falling or either� A combination of

the two blocks assigns a subsystem that is triggered only if it is also

enabled�

The combination of Subsystem�Blocks and Enable or Trigger�Blocks

results in a new type of block� a conditionally executed subsystem�

� The Integrator�Block includes and replaces the RESET�Integrator�Block

as it o�ers a variety of settable parameters� like an External reset and

an Initial condition source�

The External reset can be chosen as none� raising� falling or either�

Using the �rst option we get an ordinary Integrator�Block� With the

other options we can assign a resettable integrator� where the direction

of the zero�crossing that triggers the reset� can also be speci�ed� Like

CHAPTER �� STATE OF THE ART ��

in the version �� �c� no numerical algorithm will be started to locate

the event more accurately�

The Initial condition source can be assigned as internal or external�

Choosing an external source� an additional input will appear on the

Integrator�Block�

The di�erent icons of the Integrator�Block in SIMULINK �� � can be

seen in �gure ��	� Integrator� is the ordinary Integrator�Block� In�

tegrator� shows the icon when the option External reset	 rising and

Initial condition source	 external is chosen� when we change the Exter�

nal reset to falling� the result is Integrator�� Finally� Integrator� shows

the icon when the option either is used�

Figure ��	� The Integrator�Block in SIMULINK �� �

� Also in SIMULINK �� � we can �nd a Hit�Crossing�Block� We can as�

sign di�erent parameters� the Hit crossing o
set and the Hit crossing

direction� The output � if selected � is � when a hit crossing is de�

tected and � otherwise� The Hit�Crossing�Block is synchronised with

the integration algorithms� Therefore� this block is reasonable even if

no output port is shown� The numerical algorithm for the detection is

not documented�

Constrained Pendulum � SIMULINK �	

The constrained pendulum can be modelled much more easier in the new

version� SIMULINK �� �� This is mainly due to the zero�crossing capabilities�

CHAPTER �� STATE OF THE ART ��

Therefore� we could replace the complicated logic in the SIMULINK �� �c�

model� �gure ���� with conditionally executed subsystems in combination

with a resettable Integrator�Block� The model is shown in �gure ����

Figure ���� Constrained Pendulum � SIMULINK �� �

��� ESL

ESL ���� the European Simulation Language is again an equation�oriented

language� based on FORTRAN ��� It was developed at the University of

Salford� England� on behalf of the European Space Agency� In ���� a spec�

i�cation of the CSSL�	� standard was worked out� the CSSL��� standard�

that never became a real standard as the involved groups did not come to an

agreement� The main features of the proposal like modularity� separation of

model and experiment� hierarchical structures� segments� � � � have then been

realised in ESL since ����� By the way� ESL allows the user to use ODEs of

order higher than one�

State event handling is o�ered in ESL in a considerable e�ciency�

The description of the state event condition is done in ESL by a relational

statement between real variables with �� �	�
�
	� The event is assumed to

CHAPTER �� STATE OF THE ART 	�

occur when the relation changes from false to true or vice versa� The use of

equality and inequality is not allowed in this statement as �the possibility

of two quantities being exactly the same is remote� �cf ��� p�	������ So we

can use here the usual state event condition function on one side of the

relation and on the other simply �� This anticipates the internal process that

translates a given relation between A and B to

" � A�B

Before explaining the algorithmic part of the event handling we have to take

a glance at the error handling� The accuracy an event is handled with is

state dependent controlled by DISSERR �default value� �������� The band

of tolerance is then de�ned for crossing from negative to positive with the

interval

��� DISSERR
max�A�B��

and for the other direction with the interval

��DISSERR
max�A�B�� ��

If the relation is �	 or
	 then � is element of the �rst or the second

interval� respectively�

When now a �zero��crossing is detected a locating procedure is started� A

line given by linear interpolation using the two values of " is intersected

with the centre of the band of tolerance� This gives a new steplength� After

recalculating the actual interval and " still not being within the band of

tolerance� the locating procedure is repeated� from now on using quadratic

interpolation�

The accuracy is restricted also by a minimum steplength mint depending on

the computer precision �eps��

abs�t�
 eps
 ��

CHAPTER �� STATE OF THE ART 	�

If t is smaller than the de�ned communication interval CINT then abs�t� is

replaced by abs�CINT � in the formula above�

The description of an event in a model can be made in three di�erent ways�

For correct handling it has to be included in the DYNAMIC region�

�� The description can be made with a logical assignment�

L��	 A
 B

L
�	 A� C �	 ���

�� or with an IF clause

y�	 IF A
 B THEN y� ELSE�IF A � C �	 ��� THEN y

�� or by using a WHEN statement

WHEN A
 B THEN

y �	 y�

WHEN A � C �	 ��� THEN

y �	 y

END�WHEN

What are the di�erences between these three types� The �rst two statements

work according to the level�triggering principle� The assignments are carried

out every time the DYNAMIC section is executed�

The WHEN statement is only executed when the logical expression changes

from false to true� So it represents an edge triggered statement� And only

the WHEN statement starts the event handling� Another feature is that the

WHEN statements are not getting sorted and the events are therefore handled

in the sequence they are written in when it should happen that two or more

occur at the same time�state�

�A� B� C are assumed to be real variables

CHAPTER �� STATE OF THE ART 	�

Constrained Pendulum � ESL

As this example deals with an edge triggered event I describe the events with

a WHEN statement� In the INITIAL section I initialise the actual length la by

using an IF statement�

study

model cpendel���real� phi��phip���

constant real� g
	���� pi
������	
��

real� m� l� la� lp� pphi� d�

initial

�� parameters for pendulum

m�����
� l������ lp������ d����
� pphi����
�

�� initial values

phi��phi��

phi��phip��

�� determine initial length

la��IF �phi�SIGN�pphi����pphi�SIGN�pphi�� THEN l�lp

ELSE l�

dynamic

phi������g
la��SIN�phi���d
m��phi��

WHEN �phi�SIGN�pphi����pphi�SIGN�pphi�� THEN

la��l

phi���phi���l�lp�
l�

WHEN �phi�SIGN�pphi����pphi�SIGN�pphi�� THEN

la��l�lp�

phi���phi��l
�l�lp��

END�WHEN�

communication

plot t� phi� phi�� tstart� tfin� ��� ��

CHAPTER �� STATE OF THE ART 	�

end cpendel�

�� experiment

real� phi�
���� pphi�
����

tstart����� tfin������ cint������ algo��rk��

cpendel���phi�� phip���

end�study

��� MOSIS

MOSIS ���� ���� the Modular Simulation Language� was � and is still being

� developed at the Department of Simulation Techniques at the Technical

University Vienna� Austria� It is an all�purpose compiling language following

the CSSL�	� standard� MOSIS is based on C and o�ers special features for

modular development of simulation models and parallelisation on MIMD

multiprocessor systems with distributed memory� But it can also be used on

single�processor systems� The models are built up in an equation oriented

language� then the description has to be translated� compiled and linked�

Before starting an experiment in the runtime command window� an instance

of the model has to be created� which then can be executed�

The state event handling facilities are similar to those of ACSL� In MOSIS

we �nd a statement for this purpose containing several parameters�

sevent�condition� crossing�type� discrete block� enable�

The discrete block consists of the actions that are carried out when the

event gets triggered� the condition is a logical expression� There are three

di�erent values for the crossing�type�

type � � detection of crossings from negative �� �� to positive �� ��

� of crossings from positive to negative

� of general zero crossings

When the value of the condition function is equal to zero at the beginning of

CHAPTER �� STATE OF THE ART 	�

an integration interval� there will be no event triggered as no zero crossing

occurrs�

The parameter enable enables or disables the sevent statement� If it is

equal to zero the event is disabled and will not be handled�

After the detection of a zero crossing �simply by noticing a change of signs�

a modi�ed regula falsi iteration process is started� This iteration will proceed

until the length of the interval containing the state event is smaller than the

parameter severr� The default value for severr is �E � �

The di�erence to the regula falsi is a precaution of numerical problems� When

at the ends of the interval the condition function results in strongly di�erent

absolute values� the regula falsi will get into troubles� Due to the limited

length of the mantissa of machine numbers the sum of the two values can

happen to be equal to the bigger value� In this case� the regula falsi will fail

and therefore MOSIS switches to continuous binary search� This method is

slower but will work correctly�

Constrained Pendulum � MOSIS

In this model� written by Schuster and Breitenecker �	��� we �nd an appli�

cation of the sevent statement� The description is very similar to that in

ACSL�

ccode

� double sign�double x��double x
�

� if�x
��� return x�� else if�x
��� return �x��

else return �� � �

model pendulum�� �

const PI�������	
�����

double l�����m����
�d���
�g�	����

double phi������dphi����phip���
�lp�����

double ddphi�la�ls�signphip�signphi��

int swil�iter�linear�

iteration� model type

CHAPTER �� STATE OF THE ART 	�

state phi�dphi�

double sign�double�double��

preinitial�iter�linear���ialg��� tend�����

initial � ls�l � lp�

signphip�sign���phip�� signphi��sign���phi���

la���phi��phip��signphip �����ls�l�

la��signphip��signphi���l�ls� �

dynamic �

derivative �

 �linear� determines model type

dphi����g
la���linear�phi�sin�phi���

� �d
m�� dphi� dphi��

phi��dphi�phi�� �

sevent�phi�phip�
�hit��

 state event sched�

terminate�iter �dphi������ �

discrete hit �

printf��state event hit� t�!���g"n��t��

swil���phi�phip��sign���phip������

la�swil�ls�l�

dphi�swil��dphi�l
ls���dphi�ls
l�� � �

��� SIMNON

SIMNON ��� ���� Simulation of Non�linear Systems was developed at the

Department of Automatic Control� Lund Institute of Technology� Sweden�

for solving di�erential and di�erence equations and for the simulation of

dynamic systems�

SIMNON is one of the few languages that do not follow the proposals of the

CSSL�	� standard and that are commercially successful� The model descrip�

tion can be made with modules� thus complex systems can be decomposed

and therefore the description becomes very clear� The model is then built

up as an interconnection of these subsystems that consist of di�erential or

di�erence equations�

CHAPTER �� STATE OF THE ART 		

When a system gets activated� SIMNON translates the statements into a

Pseudo�code for the �SIMNON machine�� a hypothetical computer� When

everything is correct� this code is sorted and is �nally translated into machine

code� This code allows a very e�cient simulation�

There are three di�erent systems for the model description�

�� continuous system for di�erential equations

�� discrete system for di�erence equations

�� connecting system for describing the interconnections between the sys�

tems

Experiments can be made by entering the corresponding commands in the

command dialog window� These commands can also be packed together into

a macro�

For handling state events SIMNON is o�ering only few possibilities and no

numerical algorithms� There are only two statements that allow the de�

scription of state events in the model� an IF�THEN�ELSE statement and the

conditional termination CTERM� The IF statement is used in the equations

like in the following example�

dx � IF x � x� THEN equ� ELSE equ

As there are no numerical algorithms to handle events the calculations are

continued until the condition becomes true and then the actions are carried

out�

A nice possibility for describing state events is given by the combination

of the CTERM statement with an experiment macro� When the condition

for the conditional termination is ful�lled� the simulation is stopped and the

further action can be de�ned at the experiment level and being automatically

controlled with a macro�In a macro we can describe complex experiments

with the command language that permits the activation of several systems

CHAPTER �� STATE OF THE ART 	�

for doing sequential runs� It is also possible to do some evaluations on this

level in order to initialise the next experiment with parameters depending on

the �nal values of the results of the last run�

In principle� here two models which are terminated conditionally are used�

At experiment level it is switched between these models in sequential manner�

The same technique can be used in MATLAB�SIMULINK where at MAT�

LAB �� experiment level� we can switch between models and calculate the

events in MATLAB itself �this method is only necessary in case of more

complex events��

ACSL o�ers also a runtime environment� ACSL MATH ��� where the same

strategy can be used � but it is more e�cient to use the state event handler�

ACSL MATH is an environment that allows to start ACSL models� As there

is a big variety of mathematical functions provided and it is possible to start

experiments� we can use it for running models sequentially� In between of

the runs we can calculate the new parameters and initial values out of the

�nal values of the previous run� The commands can also be put together in

a script �le�

A constraint is given as we may load only one model at a time�

Constrained Pendulum � SIMNON

I built up this model by a combination of a macro and CTERM statements�

The conditions for the event can be found at the end of the model� As I have

to formulate the condition for being handled of this level triggered statement�

I introduced a logical variable hit� If hit is true� the pendulum has hit the

pin and so it is clear what actions have to be taken when the simulation is

stopped�

The macro consists of two main parts� �rstly� the activating of the system�

assignment of the parameters and a �rst simulation run�

In the second part there is the simulation loop� the model conpend gets

CHAPTER �� STATE OF THE ART 	�

reinitialised with conditions depending on the actual state and the simulation

is restarted�

CONTINUOUS SYSTEM conpend

STATE phi phip

DER dphi dphip

TIME t

dphi�phip

dphip��g�sin�phi�
l�d�phip
m

hit � �

pphi����
���

g � 	���

l � �

m � ���

d � ��

st��if pphi � � and not hit then cterm�phi � pphi� ELSE

st
�if pphi � � and hit then cterm�phi � pphi� ELSE �

st��if pphi � � and not hit then cterm�phi � pphi� ELSE �

st��if pphi � � and hit then cterm�phi � pphi� ELSE �

END

MACRO MACPS

syst ps

init phi � ���
��

init phip � �

par pphi � ���
���

par d � ��

par l � �

plot phi phip

simu � �� �����

label restart

CHAPTER �� STATE OF THE ART 	�

disp phi
dphi phip
dphip t
Time

disp st�
t� st

t
 st�
t� st�
t�

write �restart�

if t�� eq � goto hit

if t�� eq � goto hit

if t
� eq � goto leave

if t�� eq � goto leave

label hit

let newphip��dphip�
���

par l � ���

par hit � �

init phi � dphi�

init phip � newphip�

simu Time� ��

goto cont

label leave

let newphip��dphip�����

par l � �

par hit � �

init phi � dphi�

init phip � newphip�

simu Time� ��

label cont

if Time� LT �� goto restart

end

��� SLIM

SLIM ���� stands for Simulation Language for Introductory Modelling and

was developed by D�J� Murray�Smith at the Department of Electronics and

CHAPTER �� STATE OF THE ART ��

Electrical Engineering� University Glasgow� Scotland� It has been designed

as an inexpensive teaching tool intending to provide an introduction to some

principles of continuous system simulation� SLIM is again a simulation lan�

guage following the CSSL�	� standard and is based on FORTRAN ��� In

contrast to ACSL it does not compile the model but translates and interprets

it� Although it was developed for the use on PC�DOS based environments

it has already been ported to other operating systems without di�culty�

The description of a model is made in an ASCII text using a manner similar to

that of FORTRAN� For state events we can �nd no special handling tools and

therefore we are forced to program especially the state changes �directly��

A common solution is the use of the IF statement for checking the event

condition function� The event itself is �programmed� by some tricky jumping

in procedural code in order to change parameters� states�� � � The following line

shows an example of an IF statement with the meaning� if the arithmetic

expression is negative then go to label ��� if it is zero go to label �� and if it

is positive then go to label ���

IF �A�B����
����

Used in a DERIVATIVE section the IF statement is evaluated only after a

successfully �nished integration step�

These labels can also be used for reinitialising the model and starting exper�

iments from within the model or also for conditional termination�

Constrained Pendulum � SLIM

The model was written by Murray�Smith ����� Due to the labeling the model

is not really easy to read� The logic for the event occupies much more lines

than the description of the dynamics� As we can see� there are several aux�

iliary variables necessary for this conditional jumping for indicating the dif�

ferent states�

CHAPTER �� STATE OF THE ART ��

C Setting flags to indicate phase of motion

IF�X���PHIP�����

 MARK���

MARK����

AL�ALI

GOTO �

� MARK�

MARK��

AL�ALS

� CONTINUE

� T�T�

DYNAMIC

DERIVATIVE

DERIV��X

DERIV
���G
AL��SIN�X����D
AM��X

X��INTEG�DERIV��X���

X
�INTEG�DERIV
�X
��

C Check whether angle of string has reached

C critical angle PHIP

IF�X��PHIP�
��
����

C Applies where the length is ALS �short�

� MARK�

GOTO �

C Applies where the length is ALI �long�

�� MARK���

�
 DERIVATIVE END

C Output T� X� and X
 to file �and screen�

TYPE T�X��X

C Test for time reaching TMAX

IF�T�TMAX��������

C Test whether pendulum has reached the

C critical angle PHIP from either direction

�� IF�MARK�MARK����������

C Applies if the pendulum shortens

CHAPTER �� STATE OF THE ART ��

�� T��T

X
��X
�ALI
ALS

MARK��

MARK�

X���PHIP

AL�ALS

GOTO ��

C Applies if the pendulum lengthens

�� T��T

X
��X
�ALS
ALI

MARK����

MARK���

X���PHIP

AL�ALI

GO TO ��

�� DYNAMIC END

�� GOTO �

�
 STOP

END

��	 ANA ��x

ANA �� x � we used ANA �� ����� � ���� is a simulation package for system

analysis� simulation of linear� non�linear and switching systems but also for

dealing with fuzzy and neural networks systems� It was developed at the

Technical University Vienna� Austria� at the Institute for Electrical Control

Engineering�

ANA �� x is a graphical block�oriented language� The built�in libraries are

especially designed for electrical control systems� But the user can also pro�

gram his own blocks in the model description language ANAmdl and expand

the libraries�

ANA �� x o�ers for the description of state events the SWITCH statement� Here

CHAPTER �� STATE OF THE ART ��

we can de�ne several CASES� states the system can take� The condition and

the corresponding action get de�ned by using the ONRISE � DO statement�

We have to note that this statement de�nes the condition for changing the

state and not for remaining in it� The actions are carried out when the

condition becomes true� The actions are put into a PROCEDURE section that

gets called�

In the built�in libraries we can �nd a graphical MULTIPLEXER block that uses

this construct� The block has three inports� u�� u
� u� and one outport y�

Depending on the third input which is compared with a threshold parameter

k either the �rst or the second input is passed to the outport� This behaviour

is decribed by

y � u� � abs�u�� � k

y � u
 � abs�u�� �� k

During the simulation the ONRISE condition gets permanently checked� Be�

fore an event gets triggered� i�e� a PROCEDURE section is proceeded� the event

gets located more accurately by a continuous binary search iteration process�

I can subsume that the applied method is similar to the SCHEDULE statement

and the DISCRETE sections of ACSL and o�ers good possibilities for describing

state events�

Constrained Pendulum � ANA �	x

This template block was written by Goldynia ����� The events are described

with ONRISE statements and two PROCEDURE sections�Like in ACSL� this ex�

ample can be described very easily in ANA �� x�

BLOCK COMP��

OUTPUT

Phi �#rad$ angle��

CHAPTER �� STATE OF THE ART ��

Omega �#rad
s$ angular velocity��

PARAMETER

l � � �#m$ length��

m � ���
 �#kg$ mass��

d � ��
 �#kg
s
rad$ damping��

Phi� � PI
� �#rad$ start angle��

Omega� � � �#rad
s$ start angular velocity��

lp � ��� �#m$ distance of pin��

phip � �PI
�
 �#rad$ angle of pin��

STATE

phi �#rad$ angle��

omega �#rad
s$ angular velocity��

VAR

g DISCRETE �gravity��

ls DISCRETE �shortened length��

la �actual length��

state DISCRETE�

SIM

SWITCH state

CASE �� la � l� ONRISE phi � phip DO SetState
�

CASE
� la � ls� ONRISE phi �� phip DO SetState��

ENDSWITCH

phi �� omega� omega �� �g
la�SIN�phi� �d
m�omega�

Phi � phi� Omega � omega�

ENDSIM

PROCEDURE SetState
�

 shorten the length

state �
� omega � omega�l
ls� STORE ALL�

ENDPROCEDURE

PROCEDURE SetState��

 enlarge the length

state � �� omega � omega�ls
l� STORE ALL�

ENDPROCEDURE

INIT

g � 	���� ls � l � lp� state � ��

phi � Phi�� omega � Omega��

CHAPTER �� STATE OF THE ART ��

ENDINIT

ENDBLOCK COMP��

��
 DYMOLA

DYMOLA ����� the Dynamic Modeling Language is an equation�based object�

oriented modelling environment� The equations need not be formulated ex�

plicitly� This is done by a symbolic model transformation� Therefore� the

same model can be used in di�erent systems with di�erent causalities� Large

models may be decomposed hierarchically into submodels that are connected

via cuts� Once the model is written� the user can decide in what format his

description should be put out�

DYMOLA itself is a modelling language using symbolic methods for deriving

the mathematical model� DYMOLA�s output are model descriptions in some

languages� DYMOLA supports now ACSL� DESIRE� SIMULINK� SIMNON

and obviously DYMOSIM� the genuine simulator of DYMOLA�

The description of state events in DYMOLA can be made in di�erent ways�

The �rst possibility is to use if statements that are really recognised as

events and then can be correctly translated� In case the event condition

function is zero� a special algorithm is built in to detect also this special

�crossing�� When the function then leaves zero� no zero crossing will be

announced� In this case� DYMOLA shifts the thresholds by a small value

in the order of the smallest machine number
 if there is a zero crossing in

the positive direction� then the shift is also in the positive direction and vice

versa� The if statement cannot be used for changing the states�

Changes of the model structure and jumps of state variables can be de�

scribed by using the when � then � endwhen statement� so�called instanta�

neous equations� Like in ESL� this statement gets evaluated only when the

condition becomes true�

In the when construct we may reassign state variables with an init statement�

CHAPTER �� STATE OF THE ART �	

This special statement is necessary as every variable may be assigned only

once in a model�

When we now choose ACSL as the target language� all these constructs would

be translated to SCHEDULE statements and DISCRETE sections�

Constrained Pendulum � DYMOLA

In this description I used both constructs of DYMOLA for events� an if

statement and a when equation since the initial length of the string of the

pendulum has to be determined and then � during the simulation run � the

change between the two lengths is also taken over by this statement� The

when equations are necessary for changing the state variable�

The usage of the when equation in this example is not so easy� The problem

is that in DYMOLA the fact that every variable may only be assigned once

holds also for the init statement� Here the velocity has to be reassigned after

each of the two possible events hitting or leaving the pin� So I introduced the

auxiliary variables a and b which notice a change of the length and trigger

the reassignment�

model cpend �� ������ ����� ����� �����

�� window ���� ���� ���	 ���� �

parameter l�� lp���� g�	��� m����
 d���
 pphi����

local phi� ��� phip��� la a��� b��� neu���� neu���

la � if phi��pphi� � pphi��
 then l�lp else l

der�phip��m�la%�g�m��sin�phi�%�d�la��phip��

der�phi� � phip

b�la

when phi��pphi� � pphi��
 then

neu � phip��l�lp�
l

endwhen

when phi��pphi� � pphi��
 then

neu��phip�l
�l�lp�

endwhen

CHAPTER �� STATE OF THE ART ��

when a�b or b�a then

init�phip�� if phi��pphi� � pphi��
 then neu� ELSE neu

new�a��la

endwhen

end

��� ModelMaker

ModelMaker is a block�oriented simulation language for PC for solving alge�

braic equations and �rst order ODEs� ModelMaker has a very capable event

block that o�ers a lot of features� After entering the state event condition�

one can also enter a tolerance within which the event is triggered� Then the

actions that are to be taken are given� What is most surprising here is the

way the event itself can be handled� there are buttons to set the event active

or inactive when the simulation run starts� When it is set inactive� another

event can activate it� Another decision has to be taken whether the event

should be reactivated after it was triggered� With that button one can switch

between edge and level triggered events as we have mentioned it above�

Another possibility to describe events is given by the conditional de�nition

of compartment� variable� de�ned value and �ow blocks� The unconditional

de�nition is also the default value but we can formulate several conditions

and corresponding equations that are then evaluated dependent on which

condition is true� If more conditions are true at the same time� then the

�rst in the list becomes valid and the corresponding equation is taken for the

evaluations�

On the algorithmic side it looks quite di�erent� The applied algorithms often

do not trigger the event even if it should be recognised� It seems that the

corresponding state event handling algorithms are not implemented well�

CHAPTER �� STATE OF THE ART ��

Constrained Pendulum � ModelMaker

On the right side of the graphical representation of the model ��gure ���� we

can �nd the model parameters� like mass� length of the string� � � � as de�ned

values� The two rectangles at the top are compartments that contain the two

�rst order ODEs of the pendulum equation� The two circles at the bottom

represent the state events� component events� one for hitting the pin� the other

for leaving it� Getting the information for triggering from the compartment

x� the position� they are linked to the velocity y and can therefore change it�

The actual length of the string can be changed via the links to the de�ned

value ls� short for �length of the string�� And ls transfers the value to the

compartment y�

Figure ���� The Constrained Pendulum � ModelMaker

Chapter �

Event Methodology �

Description of Methods

In chapter � events were classi�ed due to their nature� Chapter � has shown

that in various simulators di�erent methods are used in describing these event

classes�

In general� there are a lot of possible approaches for modelling systems with

state events� In order to characterise the approaches which are partly �well

constructed� and partly �grown� I worked out six di�erent methods that I

will present and discuss in this chapter�

After the description of these methods I will discuss their nature from the

viewpoint of simulation methods� from the aspect of model development and

also from a numerical point of view�

��� �All
in
one�
 Method

In the All�in�one method we describe the whole system in a single model� a

large monolithic block� We put everything into this only description� all the

equations� the event condition functions� the events themselves� � � �

��

CHAPTER �� DESCRIPTION OF METHODS ��

Model

Equations

Event Conditions

Events

Parameters ...

Figure 	��� The All�in�one Method

Aspects of Simulation Methodology

From the simulation methodological point of view we are in some sort of a

dilemma� On the one hand� this method represents the most natural one�

Starting from a real system we represent it in one single model� The simulated

system is therefore seen as an indivisible unit that is represented in one model�

This causes on the other side a quite considerable problem� The model is

valid only for a certain real system� Therefore� it is almost not possible to

reuse the model for simulating other systems�

In addition� it is very confusing to �read� these models as everything gets

mixed up in the description� It is very di�cult to extract the logical structure

of such a model and also the accompanying equations�

Aspects of Model Development

From the modelling point of view the all�in�one method is a very di�cult

task to do� The model must contain the system description that � if we have

a structural variable system to simulate � consists of at least two di�erent

sets of model equations�

The description of the event condition often leads to a very sophisticated

logical structure� Especially in block�oriented simulation languages the de�

CHAPTER �� DESCRIPTION OF METHODS ��

scription of the logical structure can be bigger than the model itself� This

fact can easily be veri�ed�

The description of the event leads to another problem� For modelling struc�

tural variable systems there are di�erent possibilities to deal with the state

variables� on the one hand� we can initialise the state space with the highest

dimension occurring in the model and use only that amount of state vari�

ables that we need for the moment� On the other hand� we can use two or

more state variable sets in parallel� During simulation we have to swap to

the actual valid one and force the others to be �silent��

The requirements to the simulation language in terms of the system descrip�

tion are not very high� We need logical statements that allow us to de�ne

the logical structure and express the event condition� We need facilities that

allow us to swap between di�erent sets of equations or to change components

of the equations� Furthermore� there must be access to the state variables

and parameters to rede�ne them during the runs�

Numerical Aspects

The requirements to the numerical algorithms of the simulation language are

quite high� We require for good simulation results that the numerical algo�

rithms are working closely together with all the elements used in the model

description� This means especially the logical statements that indicate the

existence of a state event� In order to achieve a good simulation result� the

numerical algorithms should react on the existence of these logical state�

ments� If this is not the case we have to minimise the step size from the

beginning of the calculations in order to achieve a certain accuracy or we

have to add special integration control algorithms�

Conclusion

In terms of clarity of the simulated model this method is not really capable�

The consequence is therefore a bad maintainability� Furthermore� there is

CHAPTER �� DESCRIPTION OF METHODS ��

no support to reuse the model� Finally� we meet here a di�cult numerical

situation concerning the synchronisation of the integration algorithms and

the state events�

��� �Discrete Section�
 Method

In the Discrete Section method the description of the condition of the event

and �nite jumps of parameters and variables are separated from the rest of

the model description� The condition is described with separate statements

and the event is becoming a structural element�

Model

Equations
Parameters ...

Event Conditions

Event 1

Event 2

Figure 	��� Discrete Sections

Aspects of Simulation Methodology

In this method we notice a parallel to the process of abstraction when mod�

elling a real system� The event description is here � at least partly � sepa�

rated from the system description in its own structural elements� In other

words� we can separate state events of the class one and two of the four

classes approach completely from the system description� The events of the

CHAPTER �� DESCRIPTION OF METHODS ��

classes three and four must remain � like in the method above � in the model

description and there cause the same problems�

Aspects of Model Development

A step towards structured modelling is presented in this method� Here we

describe the event condition in separated structural components� In order

to activate them there is an explicit event condition description� Further�

we meet a separated description of events of class one and two� These are

the types of events de�ned as discrete changes of parameters and state vari�

ables� Accordingly� these discrete changes are moved to discrete sections� a

term that reminds us of CSSLs� And in fact we �nd this method mostly in

languages of this type� The corresponding blocks in modern block oriented

languages like SCICOS ���� are �zerocrossing blocks� for the condition and

event driven blocks like the �selector blocks� and resetable integrators for

the event description�

Numerical Aspects

Due to the description in separate elements it is possible to apply special

numerical algorithms for the event �nding and for synchronisation� We can

call this proceeding event handling�

Conclusion

What is remarkable here is the step towards structured programming as we

use special statements for the event condition description that activate the

corresponding event� This method is designed especially for class one and

two events� Other types have to be handled like before or they are trans�

formed to parameter changes� When dealing with changes of components or

with structural changes we can describe the system with a single system of

equations� where parts of it are enabled or disabled by parameter changes

like in the following equation�

CHAPTER �� DESCRIPTION OF METHODS ��

�x � a � f�t� x� ! b � g�t� x�

a� b � f�� �g

From the modelling point of view� this is a falsi�cation of the �real� situation

and should only be applied when there are no other possibilities�

��� �Concatenated Runs�
 Method

With the Concatenated Runs method or Stop
n
Go method we describe a

method that stops the dynamic calculations� reinitialises certain parameters

and starts the calculations again�

Model

Equations
Parameters ...

Model

Equations
Parameters ...

Experiment - Level

IF Condition THEN STOP

Calculate
 new Initial Values

IF Condition THEN STOP
Calculate
 new Initial Values

Figure 	��� The Stop�n�Go Method for two runs

Aspects of Simulation Methodology

To be precise� the Stop�n�Go method starts new experiments and those se�

quential experiments sum up to the one big experiment of the system we

CHAPTER �� DESCRIPTION OF METHODS ��

are simulating� The event condition here is translated in a conditional ter�

mination statement� The event itself is again separated
 here it is not only

separated from the rest of the model description but also separated from the

simulation runs as the events are passed in between of two runs�

The events can therefore also be placed on the experiment level� This method

is again especially applicable for events of class two and three� The events

of these classes are completely separated here� We can say that the �real�

process that we replaced by an event in this method is represented as an

interruption of the process followed by the jump in a parameter or state

variable�

Aspects of Model Development

Due to the separation it is easier to concentrate on the model description

in the narrow sense� The description of the condition is reduced to the

conditional termination statement� If more than one event has to be included

we have to give some additional information which condition stopped the

actual run or we have to de�ne more locations in the model description

from that the model is restarted so that the correct consequent actions � the

events � are worked o�� On the other side� we have to be aware that here the

model description and the simulation control � like starting an experiment �

is mixed up�

Numerical Aspects

The simulation program has to assure that these termination statements are

triggered with su�cient accuracy� For the solution of the �series of� initial

value problems we need no additional numerical features�

Conclusion

This method is again especially applicable for the class two events and class

three events and is a extension of the Discrete Section method� When the

CHAPTER �� DESCRIPTION OF METHODS �	

event is described on the experiment level we can say that the experiment

takes over some parts of the model description� This idea is developed further

on in the next chapter�

��� �Component Exchange�
 Method

In the Component Exchange method an event is passed by exchanging com�

ponents of the model�

Model

Component1

Component2

Component1

Component2

Model

Figure 	��� Component Exchange

Aspects of Simulation Methodology

This method marks a �rst step towards modular modelling� In contrast to

the Discrete Section method described above the events of class � and � here

get separated from the model description� The event condition obviously has

to be checked permanently but there are two di�erent methods for applying

the results�

At �rst there is the permant event method� The condition is checked and

decides which component to take� The other reminds to the Discrete Section

method� here the event condition switches the component �on� or �o�� via

e�g� a parameter� Therefore� the latter method is also something like a type

shift method as it transfers an event of class three to class two event� a

proceeding that is not recommended by the author�

CHAPTER �� DESCRIPTION OF METHODS ��

The two methods are also realisations of level and edge triggering� Looking

at the �rst one� here the event is always triggered when a certain level is

passed� In the second method the component gets switched �on� when the

level is reached� and switched �o�� when the level is left again�

Aspects of Model Development

In the model description the event� or rather the part that includes the event�

is separated of the rest� Only the event conditions must remain in the �model

body�� Especially� handling events of class three and four is very easy here�

This model structure also supports the maintainability and reusability as the

di�erent components can easily be exchanged to other ones in order to build

up new models on the same body�

Numerical Aspects

Again� in contrast to the Discrete Section method the numerical treatment

is not as easy because these components do not cause discrete changes but

they supply the model with continuous data and so they have to be part of

the dynamic calculations when they are triggered�

Conclusion

This method o�ers an easy maintainability of the model� The component

exchange marks a step toward modular modelling� We will meet this method

in a modi�ed version again later when we present the Model Interconnection

Concept and its extensions�

��� �Sequential Models�
 Method

In the Sequential Model method di�erent models are sequentially simulated

and they build up the system in this way� We start the simulation with

CHAPTER �� DESCRIPTION OF METHODS ��

one model� When a condition for an event is ful�lled the calculations are

stopped� new initial values are calculated and the next model is started�

Model

Equations
Parameters ...

IF Condition THEN STOP

Calculate
 new Initial Values

Model

Equations
Parameters ...

IF Condition THEN STOP

Calculate
 new Initial Values

Model

 IF Condition 1 THEN Model 1

 IF Condition 2 THEN Model 2

 1 2

Figure 	��� Two Sequential Models

Aspects of Simulation Methodology

The model description is here completely split into at least two parts that are

sequentially processed� If the di�erence between these models is only a change

of parameters or a reinitialisation it may be subsumed in the Concatenated

Runs method�

Here� we state again the mixture of model description and experiment de�

scription as this method represents a concatenation of di�erent simulations�

In this case it is indeed more profound due to the fact that this is not only

a concatenation of experiments but of experiments with di�erent models�

CHAPTER �� DESCRIPTION OF METHODS ��

Aspects of Model Development

The event conditions have to be placed right on top of the model description

in order to take the decision which model to take �rst�

As the models are completely separated they could also be taken out and

simulated on their own� On the other side this method is not very economical�

as even if there are similar parts in the models this fact is not made use of�

Numerical Aspects

The requirements to the numerical algorithms are very low� Only the basic

event capabilities are inevitable�

Conclusion

The big advantage of that method is that the models almost do not have to

be adapted when simulated sequentially� The organisation of the simulated

models can also be done out of a macro and can therefore be placed nearer

to the experiment� Nevertheless� we can go further as I will show with the

next method�

��� �Extended Experiment�
 Method

All the event condition descriptions are separated from the model in the

Extended Experiment method� They are now part of the experiment� Ex�

periment here means more than only applying the basic method integration�

The extension of the experiment is that it has also to handle the events� The

actual running model is being observed and if a state reaches a threshold� i�e�

when the condition for an event is ful�lled� the simulation run stops� The

experiment decides which model to take next� calculates new inital values or

parameter values and continues the simulation�

CHAPTER �� DESCRIPTION OF METHODS ��

Equations
Parameters ...

Equations
Parameters ...

Start Model 1 IF Condition1 THEN STOP
Calculate Initial Values and Start Model 2

IF Condition2 THEN STOP

Model 1

Experiment Level

Model 2

Figure 	�	� An Extended Experiment with two models

Aspects of Simulation Methodology

Events are completely separated from the models� The model is reduced to

a very basic level� The experiment is seen as an active part of the system�

as it controls the simulation run depending on the results given by the dif�

ferent runs� A new requirement is that the experiment must be capable of

calculating� because in this method the experiment must put the new initial

values for the next run at disposal of the actually valid model�

Aspects of Model Development

This method has the big advantage that the model description is completely

reduced to one part of the system� On the one hand� the reusability aspect

is here realised perfectly� On the other hand� the description of the resulting

model is divided into the model description� the event description and the

connection description� The last two are part of the experiment description�

Numerical Aspects

As the experiment stops the calculations of the integration algorithm� one

part of its tasks is the state event �nding procedure� The subsequent actions

after stopping can therefore be

CHAPTER �� DESCRIPTION OF METHODS ��

� Restarting the same model at the level before the last integration step

with a shortened step length�

� Triggering the event at the begining or end of the last integration in�

terval�

� Applying special interpolation routines for the evaluation of the �nal

values out of the values the integration algorithm provided�

Conclusion

I think that this method is the most interesting one� The reasons will be

given later� as I focus on this method or rather its fundalmental ideas� when

I present the Meta Model Concept�

Chapter 	

Event Methodology � Examples

and Case Studies

In this chapter I will illustrate the methods presented in the previous chapter

by investigating examples� benchmarks and case studies in di�erent simula�

tion languages� I will also show that in some simulation languages di�erent

methods for describing state events can be used� Furthermore� not all of

the presented methods can be realised with every simulation language or

example�

	�� Bouncing Ball

As the �rst example I present model descriptions of the bouncing ball �mi�

croscopic view� with a spring damper system� A more detailed description

of this example can be found in section ����

The motion of the ball is simpli�ed modelled with an ODE of second order�

When the ball hits the ground the elastic deformation is modelled by a spring

and damper system� An additional force is then applied to the ball� the force

of the spring with spring constant k and the damping force with damping

factor c� The values of the parameters can be gathered from the model

��

CHAPTER 	� EXAMPLES AND CASE STUDIES ��

descriptions� The corresponding equations are given in the following way�

state equation�

 x � �g !

��
�

� if condition �

k � �r � x� �

m
� c � �x �

m
if condition �

initial value

�x�t�� � �x�

x�t�� � x�

�y�t�� � �y�

y�t�� � y�

event condition function �

�x� r� � �

event condition function �

�x� r� � �

event� add or remove the component

Figure ���� Bouncing ball with hitting process

CHAPTER 	� EXAMPLES AND CASE STUDIES ��

����� 	All
in
one	
 Method � SIMNON

The following model is written in the simulation language SIMNON and is

taken out of the SIMNON distribution �����

CONTINUOUS SYSTEM BOUNCEQ

� Version� ���

� Abstract�

� Description� Bouncing ball demo

� Revision� ���

� Author� SSPA Systems� Gothenburg� Sweden

� Created� �		�����
�

state y v� Height and speed

der dy dv

dy�v

dv��g%f
m � Newton II

f�if y�r then fspring%fdamp else �

fspring��r�y��k

fdamp��c�v

c� �
 � Damping factor

g� 	��� � Gravitational acceleration

k� ���� � Spring constant

m� �� � Mass

r� ��� � Radius

y� � � Initial height

v� � � Initial velocity

END

So we here can �nd the description of the state event with an �ordinary�

IF � statement� No special algorithms get used here� the evaluation of the

statment is carried out only at every integration step�

CHAPTER 	� EXAMPLES AND CASE STUDIES ��

The same example can be modeled in the same language applying the Com�

ponent Exchange method�

����� 	Component Exchange	
 Method � SIMNON

Here I use the Connecting System that links two Continuous Systems� the

�rst system is the model with the equations for the falling ball� the second is

the component containing the force coming up from the hitting process� If

the ball hits the ground the component is linked� otherwise the input is set

to ��

Here� I used the same parameters as in the model above�

CONNECTING SYSTEM BallCon

sd#ballequ$� IF x#ballequ$ � r THEN sd#ballcomp$ ELSE ��

h#ballcomp$�h#ballequ$

v#ballcomp$�v#ballequ$

r#ballcomp$�r

r�����

END

CONTINUOUS SYSTEM BallEqu

INPUT sd

OUTPUT h v

STATE x y

DER dx dy

dx�y

dy��g%�
m�sd

h�x

v�y

g�	���

m����

CHAPTER 	� EXAMPLES AND CASE STUDIES �	

END

CONTINUOUS SYSTEM BallComp

INPUT h v r

OUTPUT sd

fs��r�h��k

fd��c�v

sd �fs%fd

k�����

c���

END

����� 	Sequential Models	
 Method � SIMNON

A third possibility is presented by applying the Sequential Models method�

The system description is split up into two di�erent models� The �rst� BALLF�

consists of the description of the fall and the second� BALLSD of the spring

and damper system combined with the fall equations�

The macro �le BALLFSD takes over the control of the experiment that means

the initialising � here only the passing of the �nal values of parameters to

the initial value settings � and also the starting of the correct model�

The parameters are again the same as in the �rst example and therefore are

not commented in the following description�

CONTINUOUS SYSTEM BALLF

state y v

der dy dv

time t

dy�v

dv��g

st�CTERM�y�r�

g� 	���

CHAPTER 	� EXAMPLES AND CASE STUDIES ��

r�����

y� �

v� �

END

CONTINUOUS SYSTEM BALLSD

state y v� Height and speed

der dy dv

time t

dy�v

dv��g%�
m���r�y��k�c�v�

st�CTERM�y�r�

c� ��

g� 	���

k� ����

m� ��

r�����

y� �

v� �

END

MACRO BALLFSD

let sconst�����

let dconst���

let height����

let veloci����

let mass����

let radius�����

let time���

let ftime����� �simulated time

let dist�height���radius

newplot

axes H � ftime� V � height��

IF dist LE � GOTO hit

CHAPTER 	� EXAMPLES AND CASE STUDIES ��

label fall

syst ballf

par r#ballf$� radius

init y#ballf$� height��

init v#ballf$� veloci��

store y#ballf$ v#ballf$

plot y#ballf$

simu time� ftime� �����

disp y#ballf$
height�

disp v#ballf$
veloci�

disp t#ballf$
time

write �y�� height�� �v��veloci��

if time� GE ftime� goto ende

label hit

syst ballsd

par c#ballsd$� dconst

par k#ballsd$� sconst

par m#ballsd$� mass

par r#ballsd$� radius

init y#ballsd$� height��

init v#ballsd$� veloci��

store v#ballsd$ y#ballsd$ t#ballsd$

plot y#ballsd$

simu time� ftime� �����

disp y#ballsd$
height� v#ballsd$
veloci� t#ballsd$
time

write �y�� height�� �v��veloci��

let dist�height���radius

IF dist GT � GOTO fall

label ende

END

CHAPTER 	� EXAMPLES AND CASE STUDIES ��

	�� Block on a Rough Surface

The system of the block on a rough surface is a well�known benchmark� A

detailed description and a solution can be found in the ACSL manual ���

p� A���� ���

The example deals with a block resting on a rough surface� A spring is

attached on the one side to the block and on the other side to a moving

point� Therefore� the spring gets extended or compressed so that a force is

applied on the block and causes its deceleration or acceleration�

Figure ���� Block on a Rough Surface

We start when the block rests� When the force applied to the block exceeds

the breakout force bf � the block starts to move� Due to the friction the

blocks gets slower again until it is grabbed� Now it sticks until the breakout

force is reached again and it starts to move again� We denote the sum of

the applied forces with f� and the Coulomb friction with f�� f� depends on

whether the block moves or is stuck� When it moves f� represents a sliding

friction� when not� f� cancels all other forces�

state equations

 x � �f� ! f��
�

m

initial values

�x � �x�

x � x�

CHAPTER 	� EXAMPLES AND CASE STUDIES ���

Figure ���� Velocity and Sum of Forces

event condition function

j f� j �bf � �

event� reinitialise the velovity and reassign the sliding friction

The exact equations and parameters can be gathered from the solutions�

Figure ��� shows the velocity and the sum of forces calculated by the SIM�

NON model�

����� 	Discrete Section	
 Method � ACSL

The �rst model taken from ��� p�A���� �� is using the SCHEDULE statement in

combination with the powerful DISCRETE section� In this DISCRETE section

all the parameters are reassigned� They have to be kept constant until the

section gets scheduled again� This method seems to be convenient for this

example�

CHAPTER 	� EXAMPLES AND CASE STUDIES ���

PROGRAM � friction test

�������������������models a block sliding on a rough

� surface under the action of a force applied through a

� spring� the spring force must exceed a breakout coulomb

� friction force in order to start to move� once it starts

� to move the frictional force has a value equal to the

� sliding friction in a direction opposing the motion

�������������������define simulation environment

CINTERVAL cint � ���
�

ALGORITHM ialg � �

MAXTERVAL maxt � �����

MINTERVAL mint � ���e��

NSTEPS nstp � �

�������������������define global constants

PARAMETER �pi � ������	 �

INITIAL

�������������������give the states the initial cond values

RESET��NOEVAL��

END � of initial

DERIVATIVE

�������������������forcing function is displacement of

� free end of spring attached to body

CONSTANT xfa � ���� � freqf � ����

xf � xfa�SIN�
���pi�freqf�t�

�������������������sum of forces on body excluding friction

CONSTANT ksp � ����� � kbvd � �����

sumfb � ksp��xf � xb� % kbvd�xbd

�������������������force due to coulomb friction exactly

� cancels other forces when stuck

fbcf � RSW�stukb� �sumfb� fbsf�

�������������������acceleration of body

CONSTANT mb � ���

xbdd � �sumfb % fbcf�
mb

�������������������integrate for velocity and position

CHAPTER 	� EXAMPLES AND CASE STUDIES ���

xbd � INTVC�xbdd� xbdic� � CONSTANT xbdic � ���

xb � INTEG�xbd� xbic� � CONSTANT xbic � ���

�������������������define �phi� function for stick
unstick

fib � RSW�stukb� ABS�sumfb� � kbbf� xbd�

�������������������schedule the execution of the discrete

� block �stick� on a zero crossing

SCHEDULE stick �XZ� fib

�������������������specify termination condition

TERMT�t �GE� tstp� �Time Limit�� � CONSTANT tstp � ��		

END � of derivative

DISCRETE stick

�������������������handle coulomb friction

�������������������initialise stuck flags

INITIAL

LOGICAL stukb

stukb � xbd �EQ� ���

END � of initial

�������������������stuck flag toggles unless force exceeds

� breakout force on crossing zero

CONSTANT kbbf �
���

stukb � �NOT�stukb �AND� ABS�sumfb� �LT� kbbf

�������������������sliding friction opposes applied force

CONSTANT kbsf �
���

fbsf � RSW�stukb� ���� SIGN�kbsf� �sumfb��

�������������������reset velocity to exactly zero� you must

� know �xbd� is a state variable for this

xbd � ���

�������������������record status

CALL LOGD��TRUE��

�������������������define debug dump flag and condition

LOGICAL dump � CONSTANT dump � �FALSE�

IF�DUMP� CALL DEBUG

END � of discrete

END � of program

CHAPTER 	� EXAMPLES AND CASE STUDIES ���

����� 	Concatenated Runs	
 Method � SIMNON

In contrast to the preceeding model I use the Concatenated Runs method here�

When the block starts moving or stops� the same model gets reassigned with

new paramters and initial values and then it gets started again�

Since SIMNON o�ers only a CTERM statement for conditional termination

I had to introduce some more auxiliary logical variables so that the right

condition for stopping is taken� Another auxiliary variable was taken to

support the reassignment of the parameters in the MACRO since the command

level does not o�er the necessary capabilities for the calculations�

CONTINUOUS SYSTEM PUSH

STATE x y

DER dx dy

TIME t

�Spring

ampa�amp�SIN�
�pi�frequ�t�

�Sum of forces

sum�spc��ampa�x�%dc�y

�Coulomb friction

cf�IF stuck THEN �sum ELSE sf

�Motion of block

dy��sum%cf�
m

dx�y

�auxiliary variables for reassignment

hsf��SIGN�sum��sfc

hstuck�NOT�stuck� AND �ABS�sum��bf�

m � ��� �mass

sf � ��� �sliding friction

spc � ���� �spring constant

dc ����� �damping constant

sfc �
�� �sliding friction constant

amp � ���� �amplitude

frequ� ��� �frequency

CHAPTER 	� EXAMPLES AND CASE STUDIES ���

pi � ������	

bf �
�� �breakout force

stuck� �� �logical varibles

f � � �forward motion

b � � �backward motion

x � � �block position

y � � �block velocity

�conditions for termination

st��IF stuck THEN CTERM��ABS�sum� � bf�� ELSE

st
�IF not�stuck� and f THEN CTERM�y � �� ELSE �

st��IF not�stuck� and b THEN CTERM�y � �� ELSE �

END

MACRO PUSHMAC

syst push �activate system

store x y sum

plot x y sum

simu � � �do a first run

label restart

disp hstuck
stick sum
s y
y� hsf
h� t
time

�logic block for assignment of motion indicators

if stick� LT �� goto cont�

par stuck��

par f��

par b��

goto cont�

label cont�

par stuck��

if s� LT � goto cont

par f��

par b��

goto cont�

label cont

CHAPTER 	� EXAMPLES AND CASE STUDIES ���

par b��

par f��

label cont�

init y��� �reinitialise velocity

par sf�h�� �reassign sliding friction

simu � � �cont �restart simulation

if time� LT � goto restart

END

	�� Constrained Pendulum

In chapter � I discussed the solutions of the constrained pendulum� The

detailed description is given in section ���� The events in this problem� the

hitting and the leaving of the pin are both class two events �four classes

approach� as the parameter length and the velocity� a state variable have to

be changed�

The solutions can be classi�ed as follows�

ACSL�solution Discrete Section Method

SIMULINK�solution All�in�one Method

ESL�solution Discrete Section Method

MOSIS�solution Discrete Section Method

SIMNON�solution Concatenated Runs

SLIM�solution All�in�one Method

ANA ��x�solution Discrete Section Method

DYMOLA�solution Discrete Section Method

ModelMaker�solution Discrete Section Method

Chapter

The Meta Model Concept

The methods presented in chapter 	 are partly �grown� and partly �well

constructed�� It turns out that the event classi�cation is inconsistent with

respect to the possibilities of the implementation of the event description

methods in the simulator� and vice versa�

� Some methods can be implemented in one speci�c language�

� One speci�c method can be implemented in some language� but not in

all�

� Some modelling techniques �macroscopic� microscopic view� � � � � result

in one event class and a corresponding method�

� Some methods �which can be implemented� require a speci�c modelling

technique�

Therefore in this chapter I develop the Meta Model Concept�

After shortly describing theModel Interconnection Concept� I will present the

Extended Model Interconnection Concept that I developed in linking the Ex�

tended Experiment method �presented above� and the Model Interconnection

Concept�

��	

CHAPTER
� THE META MODEL CONCEPT ���

Then� based on this combination� the Meta Model Concept is developed� a

concept that I developed for the easy integration of state events in continuous

simulation models� With this concept I describe a completely new approach

to state events� suited not only for modelling tasks but also for runtime

control and even algorithmic matters�

�� The Model Interconnection Concept

The Model Interconnection Concept was developed by Schuster ���� and im�

plemented in the simulation language �MOSIS� ��Modular Simulation Sys�

tem� �����

�The main idea behind this concept is that a complex simulation model can

be built up from several smaller models that communicate with each other��

writes Schuster in his thesis ���� p� ���� The main parts are therefore the

model and the model links� The de�nition of �model� gets generalised so

that a model can be

� the mathematical�algorithmic description of a real system

� a test model �for evaluation or as data supply for other models�

� a constant or a �xed function or

� an interface to a real system �man in the loop� hardware in the loop�

The simulation model is then split up to such smaller autonomous �sub��

models� The communication between the models is strictly �xed as unidi�

rectional and takes place only at certain times �communication intervals��

The advantages of this concept are the support

� of parallel simulation methods

� of easy exchange of submodels in order to generate new models

CHAPTER
� THE META MODEL CONCEPT ���

� of coupling di�erent simulation languages and

� of modular development

From an object oriented point of view the model description can be seen as

a class de�nition� For the simulation an instance of this model has to be

created� in other terms an object that can communicate with other objects�

�� The Extended Model Interconnection

Concept

The starting point for the proposed extensions to the Model Interconnection

Concept is the Extended Experiment method� The main part of this method

is the transfer of the event from the model to the experiment level� The

event condition remains in the model description and is reduced to a single

statement� the conditional termination� The condition for the termination

here obviously is the state event condition� If it becomes true� the simulation

run is stopped and the experiment decides what to do next� So only the

calculation of the actual model is stopped� The simulation of the system

continues in some way� The term extended is here applied as the experiment

provides not only the parameters for the dynamic calculations but also takes

over the event passing and therefore a task of the model�

In this concept the event is replaced by di�erent actions� class one and

two events correspond to restarting the model after a reinitialisation with

parameters and initial values that are calculated depending on the �nal values

of the last simulation run� Class three and four events are replaced by starting

a simulation run with new models�

In this �rst step of linking the Model Interconnection Concept and the Ex�

tended Experiment Method I propose the following actions�

CHAPTER
� THE META MODEL CONCEPT ���

Class One Event� Change of Parameters and Input variables

Using the generalised de�nition of a model I put the di�erent parameters

in separate models� The model does not need to consist of only a constant�

If the parameter depends on other parameters or initial values� this model

can also consist of a function that evaluates the parameter value at the

beginning of an experiment and holds it constant throughout the run� This

model can therefore be seen as a CSSL model consisting only of either an

initial section or a discrete section with an in�nite sampling time� Thus�

the action of the experiment is to call the right parameter model PM after a

conditional termination� and afterwards to restart the calculations with the

new parameters� Here the experiment has to decide which parameter model

has to be taken next after a termination�

Equations
Parameters ...

Equations
Parameters ...

PM 1 PM 2

Model Model

CTERM CTERM

Experiment Level

Get
Parameter

Start Model Get new
Parameter

Start Model

Figure ���� Class one and two events

As an example let me mention here a cooking process� when we put a pot

of water on the stove� we apply the maximum of heat power� Therefore� we

start the parameter model HMAX and initialise the pot model POT with it�

Then the pot gets heated up very quickly� When the water has reached a

certain temperature� the dynamic calculations are stopped and then we will

apply a reduced heat power described in another parameter model HR� So

we reinitialise the pot model POT with the parameter model HR and start

the calculations again and so on�

CHAPTER
� THE META MODEL CONCEPT ���

Class Two Event� Change of State Variables

For this class of events the simulation run is stopped� the new values of the

state variables are evaluated as described above and the run gets started

again with a reinitialisation� Another possibility is that the new values are

calculated within the models in a �terminal section� after the conditional

termination statement has become true�

The advantage of the two methods above is that the calculations of the new

parameters and state variables for reinitialising are done in separate models�

Thus� we do not require the experiment level to be able to calculate� It has

only the task of starting the right model at the right time� Figure ��� shows

the proceeding with events of class one and two�

Class Three Event� Change of Components

The model is here again split up into di�erent submodels� The conditional

termination signals that a component of a model has to be changed� In this

case we simply link the new component and remove that one that is no longer

valid� After that the new constructed model is started again� A component

means here a function of state variables� The change is not as profound as

in the next class�

Class Four Event� Change of the Structure

Here I proceed as above� i�e�� I exchange models� But in addition I have

to evaluate the initial values with which I start the new model� As I have

already mentioned above the exchange of models here means also the change

of the state space�

In order to be able to link the new model to the others� I suggest to use

separate models that build an interface to them� These interface models

have the task to prepare the output variables from the exchangeable part as

CHAPTER
� THE META MODEL CONCEPT ���

input variables for the static part of the model or to another exchangeable

part as well�

�� The Meta Model Concept

In this concept I combine the results of the steps described above� and� taking

again a step forward� I present the meta model concept for describing and

handling state events in continuous system simulation�

The main idea is to leave completely the terms model and experiment and

give them new meanings�

The process that we are simulating is now divided into small components�

Component denotes parameters� constants� functions that describe parts

of the real process� � � � Every component is then put in a separate model

M��M�� � � � �Mn� Every model has its input ports and output ports where it

can be linked to other models�

Additionally� we need three special model types� At �rst the interface model

IM� As I have already mentioned above� the interface model builds up the

interface between two models� It calculates new initial values out of the

terminal values of other models or manages that a model gets only �prepared�

data from other models� Prepared data can be scalar data that are needed

as vectors� � � �

The second special model is the result model RM� This model stores the

results of the simulation run� It is connected via interface models to those

models that produce data the user is interested in�

The third and most important model is the meta model MM� The meta model

mainly consists of event conditions and events� Depending on these event

conditions links between models are cleared or set up� The meta model also

starts and stops calculations within models� So this meta model organises

the simulated �model� � here in its ordinary sense � that is only built up

dynamically when the simulation runs� Therefore I call it the meta model�

CHAPTER
� THE META MODEL CONCEPT ���

Let us now take a closer view to the parts of this concept�

The Model

The model denotes here again the generalised model out of the Model Inter�

connection Concept� It can therefore be either just a parameter or a function

or a model that could be separately simulated� The model has de�ned in�

ports and outports that allow the linking to other models� So we have to

de�ne output variables and input variables�

The Interface Model

The interface model has the task to transfer data and prepare them �on the

y��

An example for data preparation is given by the looping pendulum that we

have already described� Here the swinging phase is modelled by using polar

co�ordinates� On the other hand� the phases of the free fall are modelled

by using Cartesian co�ordinates� So the interface model can here be used to

convert the results to Cartesian co�ordinates for example� and the results can

be plotted in one�

On the other hand� prepared data can also make good errors which are due

to the application of numerical algorithms�

When we simulate a tank system that is emptied� it can happen that we

get confronted with negative contents� This can be seen easily� We apply a

numerical integration algorithm with a step by step mode of operation to the

equations describing the state variable �content of the tank�� In addition� we

have a restricted accuracy� In most of the cases� the algorithm will not stop

when the content is exactly at zero but it will calculate a little bit further�

This fact can be dangerous for other components when they are prepared for

getting �useful� �in this case� positive� values only� Therefore the interface

model prevents such problems�

CHAPTER
� THE META MODEL CONCEPT ���

The advantage of these interface models is that the models do not have to

be adapted� but only small interface models have to be built up and put in

between of those sensitive models�

The Meta Model

The meta model is the central part of the simulated system� Its main tasks

are�

� to build up a representation of a �real� system with a web of models

that can be simulated

� to supervise the simulation and check the event conditions

� to start � if necessary � a locating procedure

� to carry out the event actions � to link components or to remove links

and

� to start or stop simultaneously the calculations in the corresponding

models

For an easier handling� the meta model can also enable and disable compo�

nents� In other words� the meta model sends to the component the message

whether it is active or not� Subsequently the model produces the correspond�

ing output� Otherwise� when the model is inactive it stops the calculations

and gives a prede�ned output� e�g� �� So the links need not to be removed�

����� Formalised Description

A formalism describing what is going on in this concept will obviously be

the description of the contents of the main part� the meta model� The meta

model therefore represents the environment we are living in� that creates the

simulated system� starts and stops calculations� creates and removes links � � �

CHAPTER
� THE META MODEL CONCEPT ���

In order to formalise the new concept� I now group the models� At �rst there

is the model group MG consisting of

�� the models�

�� the interface models and

�� the result model�

Secondly� there is the event group EG consisting of the conditions and actions

to be carried out� Additionally� the priority of an event has to be assigned�

The Model Group

If we now build up a new system for simulation we describe it in ameta model�

For building up a system we need some models that can be linked together�

These models are prede�ned or copies of library models� The library models

are named here

M��M�� � � � �Mn n � N

When loading these models I indicate a copy of a model� here copy � of

model � by C�M�� In case of an object�oriented modelling approach one

would call these copies �instances��

The description of the interface models and the result model is similar apart

from a little di�erence� we replace Mi by IMi or RMi� The copies of such

models are obviously called CjIMi and CjRMi�

So we can now state the set of used models in our system as

MG � f C�M�� C�M�� � � � � Ci�M�� C�M�� � � � � CijMj�

C�IM�� C�IM�� � � � � Ck�IM�� C�IM�� � � � � CklIMl�

C�RM�� C�RM�� � � � � Cm�
RM�� C�RM�� � � � � CmnMn g

i� j� k� l� m� n � N

CHAPTER
� THE META MODEL CONCEPT ���

The Event Group

Now the meta model needs to know what to do under which condition� We

have to describe these conditions C and actions A in the event group� Fur�

thermore� priorities p have to help in concurring events�

The actions the meta model carries out with the models is to create or to

remove links between pairs of them� Linking of models consist of connecting

output variables to input variables� In a formalised manner I describe for

example� �when C� is true do action A� that is create a link between the

variable out� of C�M� and in� of C�M�� with

A� � fout��C�M��in��C�M�g

Each of the actions A�� A�� � � � corresponds to a condition C�� C�� � � � and the

event group is a set of pairs of them�

EG � f�C�� A��� �C�� A��� � � � � �Cn�An�g

Other actions than the one I described above are also possible� when a

condition C� is true and the action is to remove the link that was created

before� I will write

A� � f�out��C�M��in��C�M�g

Obviously� more actions also can be placed in a set and we also can combine

the types �removing� and �creating� in one set�

This same description is needed for describing a state event or also a time

event� In fact in this concept we use events to build up system descriptions�

Additionally� there are two more possible actions� an event is also capable of

enabling or disabling events � including itself�

When an event is triggered it may occur that other events are no more

meaningful in the system description or that an event� once it is triggered�

CHAPTER
� THE META MODEL CONCEPT ��	

must not be reactivated� And also vice versa� an event that was removed

can be activated again by this statement� A description similar to the one

above is used for these cases�

A� � f�C���C�� C�g

This statement means that when condition C� is ful�lled condition C� and

also itself should be removed from the active part of the model so that they

cannot be triggered any more� On the other hand� condition C� is activated�

Furthermore� it is also possible for the meta model to enable or disable com�

ponents� In order to come to a more e�cient simulation it is possible to

disable a component that is already linked and reduce its outputs to prede�

�ned constant values� So the action here is to stop the simulation of this

model and replace the outputs by constant values�

Continuing with the established link created in the example above� we now

want to disable C�M�� Obviously� we have also to assign the output variable

out� with a constant value const�

A� � f�C�M��out� � const�g

When we enable the model again we can do this by

A� � f!C�M�g

Besides� only models that were already linked to other models can be disabled

and� consequently� only disabled models can be enabled�

Finally we have to add a command that enables a reinitialisation of a model�

When we want to change a state variable in a model we have to give a

command that carries out this resetting� In this concept we describe the

action of changing the variable x� to x�new by

A	 � finit�x��C�M� � x�newg

CHAPTER
� THE META MODEL CONCEPT ���

The Priority of an Event

In addition to the conditions C and the actions A we have to provide an

integer denoting the priority of an event� Due to the formulation of the

conditions but also due to numerical errors the situation may arise that two

or more events should be triggered at the �same time�� In this case the

priority denotes a sequence what event has to be handled �rst�

After triggering an event and after the actions have been carried out� the

conditions are checked again and if necessary further events are triggered�

The proposed proceeding is to give a unique integer number to each event

out of the event group� Then the event can be arranged in a sequence�

Therefore� I expand the event group by an integer number p for each pair of

condition and action� that assigns the priority�

EG � f�C�� A�� p��� �C�� A�� p��� � � � � �Cn�An� pn�g

The conditions are checked according to that order� When a condition is

found to be true� the actions are carried out and after that all the conditions

are checked again� starting at the beginning of the list�

The Meta Model

In the meta model we de�ne all these conditions and actions that deal with

copies of models out of the model group�

Besides� it is also necessary to include runtime commands for starting and

stopping� for creating copies of models� for setting parameters� � � �

Furthermore� we decide in the meta model which integration algorithm to

use and the integration parameters are set here� too�

����� Assessment of the New Concept

The main advantages of this concept are

CHAPTER
� THE META MODEL CONCEPT ���

The modular concept� The process that we want to simulate is divided

into small parts that are calculated independently� Therefore� at the

model development level we can build up the model components very

easily� Di�erent groups can describe parts of the model independently�

They get linked together eventually by using interface models�

Besides� we can de�ne separate numerical integration algorithms to be

used in di�erent components that are specially adapted and adjusted

to the model they are used in�

Another advantage is the possibility to replace models by hardware and

therefore getting a �hardware�in�the�loop simulation��

The modular concept gives us also the possibility of parallel simulation�

We may simulate di�erent components on di�erent processors�

The reusability of model components� As the model components do not

contain any statements depending on di�erent events and following ac�

tions� they can easily be built up independently and independent from

the other components and can also be used in di�erent simulations�

Thus� we can build up a library of models� When building up a new

system we only have to take some of these library models and only have

to design the meta model and the interface models�

The maintainability of model components� It is very easy to maintain

the components or even exchange them with others as they are acting

independently� If new developments are made and the components

have to be changed or updated� the new components can simply be

simulated without changing the �model��

There are very few additional demands to simulators when using this concept�

Dynamic linking� This is the main part of the concept� the dynamic link�

ing of components� These components build up a state dependent

model� Therefore� the linking has to be dynamic� that means it must

be possible to create new links to models and on the other side to

remove links concerning to the event conditions�

CHAPTER
� THE META MODEL CONCEPT ���

Independent calculation� For this demand the simulator needs a com�

munication management that organises the data
ow from and to the

linked components even if they are not calculated on the same proces�

sor�

Exact time management� Although the event is now replaced by the ac�

tion of linking we are still confronted with the problems I have presented

above� It is necessary to �nd the �exact� time when the event has to

be triggered� So the meta model must have the capability to intervene

in the integration algorithms�

�� Application of the Meta Model Concept

for Events

����� Bouncing Ball

Here I will give two descriptions of the bouncing ball� The �rst models

the hitting process with a spring and damper system whereas the second

model simply models this process with a change of the state variable �x� As

I introduced and discussed these examples of the bouncing ball in chapter ��

I here reduce the descriptions to the essential parts� Some models of the

bouncing ball can also be found in chapter ��

Bouncing Ball � Microscopic

As a �rst example I want to show the model description of the simpli�ed mo�

tion of the bouncing ball where the process of hitting the ground is described

by a spring and damper system� The system description is as follows�

state equation

 x � �g !

��
�

� if condition �

k � �r � x� �

m
� c � �x �

m
if condition �

CHAPTER
� THE META MODEL CONCEPT ���

initial values

�x�t�� � �x�

x�t�� � x�

�y�t�� � �y�

y�t�� � y�

event condition function �

�x� r� � �

event condition function �

�x� r� � �

event� add or remove the component

When we translate this description� we build up a model M� with the �rst

part of the state equation� The component is described in a second model

M��

The conditions C�� the event condition function � � for the event when the

ball hits the ground � as well as and C�� event condition function � � when

it leaves the ground again � are given by

C� � f�x� r� � �g

C� � f�x� r� � �g

The event gets described in di�erent actions� Let us start when C� gets true�

when the ball hits the ground�

The action A� is to link the component M� to the model of the motion M�

and the action A� to link the necessary variables to this second model� So

the links between the variables have to be added in the following two lines�

CHAPTER
� THE META MODEL CONCEPT ���

at �rst the additional accelaration a calculated in model M� has to be linked

to M� and then the position x and the velocity �x of M� have to be linked

to M�� In A� we then set C� inactive as the event should only be triggered

when the condition gets true� Furthermore� we have to enable the second

condition C� that checks when the ball leaves the ground again�

A� � fouta�C�M��ina�C�M�g

A� � fpos�C�M��inpos�C�M�� vel�C�M��invel�C�M�g

A� � f!C���C�g

When C� gets true the created links have to be removed� C� has to be set

active and C� set inactive� So we have to de�ne the following actions�

A� � f�outa�C�M��ina�C�M�g

A� � f�pos�C�M��inpos�C�M���vel�C�M��invel�C�M�g

A	 � f�C��!C�g

Now we have the following event group�

EG � f�C�� A��� �C�� A��� �C�� A��� �C�� A��� �C�� A��� �C�� A	�g

The result model RM for collecting the data also has to be created and linked

to the corresponding variables of C�M��

Finally� we can compose the meta model with the instructions for creating

copies of M� and M�� the conditions and the actions� Furthermore� the

commands for starting the simulation have to be added�

CHAPTER
� THE META MODEL CONCEPT ���

Bouncing Ball � Macroscopic

In this example of the bouncing ball we simplify the description of the hitting

process by describing it with a simple reinitialisation of the velocity� The

description of this system is

state equation x � �g

initial values �x�t�� � �x�

x�t�� � x�

event condition function x � �

event �xnew � �� � �xold

For the translation of the event condition function we have to add here a

term that checks whether the velocity is negative so that only zero crossings

from positive to negative trigger the event�

C� � f�x � �� AND � �x � ��g

The event is described in a separate model M� that consists only of this

simple function� So when the condition gets true we only have to start this

second model and to change the state variable xdot in M�� The action A� is

given in the following line

A� � finit�xdot�C�M� � C�M��oldxdot��g

Therefore the event group is built up with only one condition and action pair

EG � f�C�� A��g

����� Looping Pendulum

In describing the looping pendulum � a more detailed description can be

found in section ��� � we have again two di�erent models� The �rst model

CHAPTER
� THE META MODEL CONCEPT ���

M� describes the swinging pendulum and the second M� the fall of it� The

conditions for swapping fromM� toM� and vice versa are that the centrifugal

force declines under a certain threshold �C�� and otherwise that the distance

r from the mass to the point of rotation is equal to the length of the string

l �C���

C� � f� ���l � g j cos��� j� � �g

C� � f�l � r� � �g

As we describe the motion in the �rst model with polar co�ordinates and

in the second with Cartesian co�ordinates we need additionally an interface

model that transforms the values� So we can link then the two models and

put the interface model IM� in between� When we start the simulation one

model has to be set inactive�

When an event occurs� let us say C� is true� the consequent actions are to

set M� inactive and assign the output values to the �nal values �A�� and to

set M� active �A��� The input serves as an initial value for the model� In

addition� we have to remove the link from the result model to M� �A� and

A�� and create a link fromM� via the interface model to the result model �A�

to A��� The interface model here transforms the data to polar co�ordinates

so that the results are all in polar co�ordinates� Finally the condition C�

itself has to be set inactive and the other condition C� to be set active �A���

So the actions that have to be carried out when C� is true are

A� � f�C�M��outphi � finphi� outphidot � finphidot�g

A� � f!C�M�g

A� � f�outphi�C�M��inphi�C�RM�g

A� � f�outphidot�C�M��inphidot�C�RM�g

CHAPTER
� THE META MODEL CONCEPT ���

A� � foutx�C�M��inx�C�IM�� outy�C�M��iny�C�IM�g

A	 � foutphi�C�IM��inphi�C�RM�g

A� � foutphidot�C�IM��inphidot�C�RM�g

A� � f�C�� C�g

When C� gets true the actions look similar with only little changes�

����� Constrained Pendulum

The constrained pendulum � the example was introduced in section ��� and

dicussed also in chapter � � the pendulum that hits a pin is described with

three separate models� the model of the swinging motion �M��� the models

that describe the process when hitting the pin �M�� and when leaving it

again �M��� The last two models are again simple functions that calculate

here the new angular velocity �phidot� and the new length of the string �l��

The corresponding conditions are described by

C� � f� � phipin� � phipin�g

C� � f� � phipin� � phipin�g

When the condition C� gets true we have to start M� and to set C� inactive

and C� active� Some time later C� will get true and then we have to start

M� and to set C� active again and C� inactive� In both of the cases we have

to change the parameter l and the state variable phidot�

����� Block on a Rough Surface

A detailed description and two solutions of the block on a rough surface are

given in section ���� The description of the system is as follows�

CHAPTER
� THE META MODEL CONCEPT ���

Figure ���� Block on a Rough Surface

state equations

 x � �f� ! f��
�

m

initial values

�x�t�� � �x�

x�t�� � x�

event condition function

j f� j �bf � �

event� reinitialise the velovity and reassign the sliding friction

The block on a rough surface can here be modelled with three separate mod�

els� the model of the motion of the block and two di�erent models that

represent the friction forces when the block sticks or is unstuck� When the

block sticks� the friction force cancels all other forces that are applied to the

block� So this model has to get these forces as input from the model of the

motion� The second friction model is only a constant�

The model of the motion can be split into two models when separating the

forcing function that provides the force on the block due to the spring at�

tached on the one end to a rotating wheel and on the other end to the block�

CHAPTER
� THE META MODEL CONCEPT ��	

In order to make di�erent experiments we easily can replace the forcing func�

tions by other ones�

Therefore� we have got three models� M� describes the motion of the block�

M� the forcing function and �nally M� represents the friction force when the

block is moving� When the block sticks the friction force is a constant that

is only necessary for triggering the event when the block starts moving again

and has no other links�

The conditions for the events are C� and C�� When the block moves� we

check if the velocity gets zero �C�� and the block is grabbed by the friction�

When it sticks we have to control if the breakout force bf is reached �C�� by

the forces due to the forcing function �ff��

C� � f �x � �g

C� � fff � bfg

The consequent actions when one of the condition gets true are the following�

When C� is true� when the block gets grabbed� we may stop M� and set the

output values to constant values� the position �x� linked to M� is set to the

�nal position and the velocity is set �exactly� to zero�

A� � f�C�M��outx � finx� outxdot � ��g

A� � f�C�� C�g

When the block starts moving M� has only to be activated again�

A� � f!C�M�g

A� � fC���C�g

CHAPTER
� THE META MODEL CONCEPT ���

����� Pilot Ejection

This system of a pilot ejection is a well�known benchmark� A solution can

be found in the ACSL manual ��� pp� A��� ��� It deals with the motion of

a pilot relative to that of his aircraft from which he is ejected� With the

simulation of this model one may determine whether the pilot strikes the

airplane or not� after he was ejected and one also can �nd out the necessary

ejection velocity so that he will be save�

The system can be divided into two parts

�� the motion of the airplane �M��

�� the motion of the pilot �M��

M� simply consits of a constant value as the velocity of the airplane is as�

sumed not to change� We denote this value with va�

M� describes the phase of the motion in which the seat is conducted in rails

that are inclined backwards with the angle 	� vp denotes the initial velocity

of the pilot and 	p the angle of the motion of the pilot� Both values are

constant here and get described in M�� The corresponding equations for the

horizontal �x� and the vertical position �y� are�

�x � vp � cos 	p � va

�y � vp � sin 	p

When the pilot left the rails� when his vertical position is higher than yr�

his motion is retarded by air resistance and gravity� Gravity also in
uences

the
ight direction� therefore we have an additional equation for �	� This

additional acceleration is described by

�vp � �D
�

m
� g � sin 	p

�	p � �g � cos 	p �
�

vp

CHAPTER
� THE META MODEL CONCEPT ���

where m is the mass of pilot and seat� g is gravity and D is a function of

velocity� the aerodynamic drag coe�cient c� the air density
 and the e�ective

cross�sectional area a of pilot and seat de�ned by

D �
�

�

 � c � s � v�p

M� contains these two equations and will then be linked to the model of the

motion M��

In order to summarise the system description� we may write�

state equations

�x � vp � cos 	p � va

�y � vp � sin 	p

�vp �

��
�
�D �

m
� g � sin 	p if rails left

� if in rails

�	p �

��
�
�g � cos 	p �

�

vp
if rails left

� if in rails

initial values

x�t�� � x�
���

event condition function

y � yr

event� add components

When simulating the system� we start with M� and M�� In the �rst phase�

when the pilot gets ejected� we have to link the parameters of M� to M��

fpilotvel�C�M��pilotvel�C�M�� pilottheta�C�M��pilottheta�C�M�g

CHAPTER
� THE META MODEL CONCEPT ���

When he leaves the rails the next phase of the motion starts� So we formulate

the condition for this event whith

C� � fy � yrg

where yr denote the end of the rails�

The corresponding action is to remove the links between M� and M� �A��

and create links to M� �A��

A� � f�pilotvel�C�M��pilotvel�C�M��

�pilottheta�C�M��pilottheta�C�M�g

A� � fpilotvel�C�M��pilotvel�C�M��

pilottheta�C�M��pilottheta�C�M�g

Then the constant values get replaced by a new component that calculates

these values with the function described above� With this new �model� we

can simulate the fall of the pilot with his seat�

����
 Reconditioning Plant

This reconditioning plant is part of a project about a plant for combusting

sludge� It consists of two tanks where the concentration of some pollutants

is diminished due to di�erent processes� e�g� the addition of air�

The plant consists of two tanks� The �rst gets �lled with sludge� When the

concentration of the observed pollutants goes under a certain threshold� the

sludge of the �rst tank is pumped into the second� Before� sludge of the

second tank has to be pumped into the combustion unit� Finally� the �rst

tank gets re�lled again�

Therefore� this model consists of two tanks where the decrease of the con�

centration of the pollutes progresses �M� and M��� In addition� there are

CHAPTER
� THE META MODEL CONCEPT ���

the processes of emptying the second tank �M�� the pumping of sludge from

the �rst to the second tank �M�� and the re�lling of the �rst tank �M���

Figure ��� illustrates these processes�

Tank 1 Tank 2

M M 345M

M 1 2M

Figure ���� Reconditioning Plant

We start the simulation of the system� The condition C� for pumping some

sludge from the second tank to the combustion unit �A�� is that the concen�

tration of the pollutants is below a certain threshold� So we have to link M�

and M�� A similar condition C� is necessary for the action A� of pumping

sludge from the �rst tank to the second� In addition� we have to check if

there is some capacity left for more sludge� And also for the third action A�

we have to check whether there is enough space left �C���

C� � fconc� � threshold�g

A� � fout�C�M��in�C�M�� out�C�M��in�C�M�g

C� � f�conc� � threshold��AND�cap� � �g

A� � fout�C�M��in�C�M�� out�C�M��in�C�M�� out�C�M��in�C�M�g

C� � fcap� � �g

A� � fout�C�M��in�C�M�� out�C�M��in�C�M�g

CHAPTER
� THE META MODEL CONCEPT ���

The conditions for stopping these actions of pumping are similar to the ones

above and are created by adding minus signs at the corresponding places�

For more e�ciency of these pumping processes we should add some more

conditions and insert some threshold so that the pumps only start when it

pays o��

In this system we have a combination of parallel and sequential processes�

For instance� while the sludge is pumped the decrease of concentration of the

pollutants is going on�

�� Other Application

The presented concept can now be applied also to a wider range of problems

than only to state events�

����� Repeated Linearisation

Sometimes it is necessary to replace a nonlinear system by a linear one� A

good method to achieve this is to use Jacobi matrices� Regarding a system

�x � f�x� t� we can transform it to a linear system

�xL � J�xP ��xL � xP �

with J�xP � being the Jacobi matrix� evaluated at a �xed �point�� the centre

of expansion xP

J�xP � �
�f

�x
�xP � �

�
BBB�

�f�
�x�

�xP � � � � �f�
�xn

�xP �
��� � � �

���
�fn
�x�

�xP � � � � �fn
�xn

�xP �

�
CCCA

Obviously� this linearised system is a good approximation to the original sys�

tem only in a certain surrounding of the centre of expansion� And here we

CHAPTER
� THE META MODEL CONCEPT ���

L1x (t)

p1x

x(t)

t

Model 1 Model 3Model 2

x (t)
x (t)

L2

L3

x

xp3

p2

Figure ���� Repeated linearisation

can make use of the presented concept as we may formulate the relineari�

sation as a state event� We regard the distance to the centre of expansion

xP as an event condition function� insert a certain threshold� depending on

the eigenvalues of the system� When the function crosses the threshold we

trigger the event �relinearisation�� That means that we stop the dynamic

calculations� re�evaluate the Jacobi matrix and start the calculations again

with the new system�

This process is shown in �gure ���� One line shows the solution calculated

with linearised functions� The dotted line denotes the exact function x�t�

�that we will never know�� The vertical lines mark the points of linearisation�

In between of two lines the solution is calculated with the linearised model

until� at the next line� the model gets linearised again� The new centre of

expansion is then the �nal value of the previous calculations�

Formalising this process we write for the condition� i�e� that the distance

between the centre and x gets bigger than a threshold a�

C� � fkx� xPk � ag

CHAPTER
� THE META MODEL CONCEPT ���

Then the action is to relinerise the modelM�� This is described in a separate

model M�� So the action is to start the �linearisation� model that updates

M�� the linearised version of model M��

A� � finit�C��M� � C��M��newcentre�g

����� Integration Algorithms � Sti� Systems

During a simulation experiment it will sometimes be necessary to change

the applied integration algorithm� Dealing with �sti� systems� we will get

involved in such a situation quite quickly�

When a system is sti
 is a question that cannot be easily answered� Lambert

��	� p� ��	� says that sti�ness is more a phenomenon than a property since it

cannot be de�ned in precise mathematical terms� Nevertheless� he tried to

give a �de�nition� in the following way ��	� p� ����

De�nition	 If a numerical method with a �nite region of absolute stability�

applied to a system with any initial conditions� is forced to use in a certain

interval of integration a steplength which is excessively small in relation to

the smoothness of the exact solution in that interval� then the system is said

to be sti
 in that interval�

The comparison with the exact solution is in most of the cases impossible

since it is simply unknown� So I will take a di�erent de�nition here that does

not cover the whole phenomenon but can be taken as an approach�

This widely used de�nition of sti�ness is to look at the eigenvalues �i of the

linearisation of a system �x � f�t� x� at a �xed point� The �i are obtained

by calculating the eigenvalues of the Jacobi matrix that is built up as I have

demonstrated above� With

�max � max
i
f�ig and �min � min

i
f�ig

Then we can state that a system is said to be sti
 if all its eigenvalues have

a negative real part and �max and �min di
er a lot�

CHAPTER
� THE META MODEL CONCEPT ���

The sum of the terms ae�itvi with a being a constant and vi the corresponding

eigenvector is part of the solution of this linearised system�

Since we have required that the real part of the eigenvalues is negative� all

the terms tend to zero�

lim
t��

e�itvi � �

When now �i is large we get a term that represents a fast part of the solution�

a term that tends fast to zero� When �i is small then it decays slowly�

When we now apply a numerical integration algorithm to this system� we have

to adjust the steplength to the fastest term of the solution� On the other

side� we have to consider what the stability region of the integration algorithm

looks like� If we use Runge�Kutta algorithms we face �nite regions of stability

that means that the absolute value of the product of steplength and largest

eigenvalue has to be smaller than a speci�c constant� For a Runge�Kutta

method of order this constant is about ������ for Runge�Kutta�Fehlberg ��

it is ������

Therefore� when �max is large the steplength has to be adjusted very small�

We have to bear in mind that the small steplength is necessary because of a

term that does not really contribute to the solution�

But the small steplength may lead us to numerical problems and unreliable

results� In this situation it is necessary to change to a di�erent integration

algorithm� to an explicit algorithm of higher order or better to implicit ones�

Implicit algorithms may even have an in�nite region of stability� The costs

for this advantage are longer computing times as more operations for one

step are needed�

Therefore� it is worth swapping to a di�erent algorithm only if necessary�

This can again be formulated within the meta model concept as an event�

The condition for the event is when the di�erence of the eigenvalues exceeds

a certain threshold� In other words� the event is triggered when the ratio

between the maximum and the minimum of the eigenvalues exceed a certain

CHAPTER
� THE META MODEL CONCEPT ���

threshold� These eigenvalues are only valid locally around the point of lin�

earisation� Like in the application described above they have to be updated

from time to time� So when the distance to the last point of linearisation is

bigger than a certain threshold� the system gets linearised again and so the

eigenvalues can be refreshed�

In this presented application of the meta model concept we again merge the

descriptions of the model and the experiment� But the separation of these

two parts as it is proposed by Zeigler �	�� is not left completely� In the

models we still can �nd the separation� Only the meta model consists also

of statements that are part of the experiment� Here� the decision of which

integration algorithm to take is made in this special model�

�� Implementation of the Meta Model

Concept

For an Implementation of the Meta Model Concept it is necessary to adapt

especially the experiment level for new tasks� The experiment level is seen

here also as an acting module for system descriptions� It is also required that

it provides some capabilities for calculating�

As mentioned above� we can extract three main requirements to a simulator

where the concept gets implemented�

Dynamic linking� the possibility to create and remove links between mod�

els during the simulation�

Independent calculation� a real parallel processing and the necesseary

data
ow management�

Exact time management� when event occurs� the di�erent models must

be synchronised� in order to minimise the problems due to timing errors

CHAPTER
� THE META MODEL CONCEPT ��	

Though it is desirable that this new concept gets implemented in its entirety

I want to give in this section possibilities to apply parts of the concept in

di�erent simulators�

ACSL�ACSL MATH

In ACSL I see no possibility to implement the meta model concept� In

combination with ACSL MATH we can de�ne at least static systems that are

built up with several models� The models can then be simulated sequentially�

The control is done in the ACSL MATH environment� Here we also have a

good mathematical functionality for calculations between the runs�

A dynamic linking cannot be described in this language� Another constraint

is that in every ACSL model there has to exist at least one state variable�

So there is no chance for adding e�g� interface models�

SIMNON

In SIMNON we can implement a statically linked system� Here there are

features for simulating models in parallel� By using the CONNECTING SYSTEM

we can link the models even in a very sophisticated way as we may use IF

statements� I used this method in the model of the bouncing ball with spring

damper system in chapter ����� where I described the component exchange

with the following line

sd�ballequ�	 IF x�ballequ�
 r THEN sd�ballcomp� ELSE ��

So I can choose the component that is linked but the component that is not

linked continues the calculations even if it is not necessary�

When we combine a MACRO SYSTEM at experimental level with a CONNECTING

SYSTEM we can even de�ne a semi�dynamic structure� Semi dynamic structure

means� that we de�ne multiple CONNECTING SYSTEMs that we load from the

CHAPTER
� THE META MODEL CONCEPT ���

MACRO SYSTEM and simulate in this way a series of systems with di�erent

connection structures�

Constraints are given due to the restricted mathematical capabilities of the

macro level� But here we have a real parallel system at our disposal�

MATLAB�SIMULINK

In MATLAB�SIMULINK we can describe our models in SIMULINK but

also in MATLAB� In SIMULINK models we can only use static structures�

A semi dynamic structure can be achieved when using MATLAB �models� as

M�Files in a SIMULINK model� With this method of �dirty programming�

we can make use of some of the special features in SIMULINK like the �scalar

expansion�� Otherwise we have no possibilities to simulate models in parallel�

Besides� we can also simulate SIMULINK models in the MATLAB environ�

ment� But here also we may only simulate the models sequentially�

MOSIS

In MOSIS the Model Interconnection Concept is implemented and therefore

we start from a good basis� We �nd here features for parallel simulation�

On the runtime level we can create instances of the models and link them

with the connect statement� Removing links can be done with a disconnect

statement�

We also can assign variables in these instances by simply typing

inst�var	value

for assigning value to the variable var of the instance inst�

In addition� there are if statements with which we can build up models with

a sophisticated structure�

On the runtime level we also can de�ne special functions containing �C��code

or statements of the generic runtime system language� Furthermore� there

CHAPTER
� THE META MODEL CONCEPT ���

are the commands for starting and stopping the simulation of the instances�

run�inst�

stop�inst�

These statements also stop or start all the other instances that follow the

instance in the command� in other words that get data from it�

Besides� there is also a reinit statement that reinitialises an instance of a

model�

Applying these possibilities we can build up dynamically linked models� Re�

stricitions are due to the limited capabilities of the experiment level� espe�

cially the algorithmical features� that are for example the algorithms for the

location of the state events� and for linearisation�

Bibliography

��� #� ACSL�Graphic Modeller User
s Guide� MGA Software� ����

��� #� ACSL Reference Manual� Edition ��� Mitchell and Gauthier Asso�

ciates Inc�� Concord MA ����� USA� ����

��� #� ACSL MATH User
s Guide� Version � for Windows� Mitchell and

Gauthier Associates Inc�� Concord MA ����� USA� October ���	

��� #� ESL User Manual� ISIM Simulation� April ����

��� #� MATLAB Release Notes Version ���� The Math Works Inc�� Natick�

Mass�� USA� ����

�	� #� MATLAB Reference Guide� The Math Works Inc�� Natick� Mass��

USA� ����

��� #� MATLAB User
s Guide� The Math Works Inc�� Natick� Mass�� USA�

����

��� #� SIMNON for Windows� Version ���� May ����� SSPA Systems

G oteborg� ����

��� #� SIMULINK ��� Release Notes� The Math Works Inc�� Natick� Mass��

USA� May ����

���� #� SIMULINK User
s Guide� The Math Works Inc�� Natick� Mass��

USA� ����

���

BIBLIOGRAPHY ���

���� ANDERSSON� M�� Omola � An Object�Oriented Language for Model

Representation� in� ���� IEEE Control Systems Society Workshop on

Computer�Aided Control System Design �CACSD�� Tampa� Florida�

����

���� ANDERSSON� M�� Object�Oriented Modeling and Simulation of Hybrid

Systems� Dept� of Automatic Control� Lund Institute of Technology�

����

���� BREITENECKER� F�� Klassi�zierung und Umsetzung von Ereignis�

beschreibungen und Ereignisbehandlungen in kontinuierlichen Simula�

tionssprachen� in� Kampe� G� �ed��� Simulationstechnik� �� Symposium

in Stuttgart� Oktober ����� Vieweg� Braunschweig�Wiesbaden� �����

pp��������

���� BREITENECKER� F�� Comparison � � ACSL� in� Breitenecker� F��

Husinsky� I� �eds��� Comparison of Simulation Software� EUROSIM �

Simulation News Europe� no� �� July ����� p� ��

���� BREITENECKER� F�� ECKER� H�� BAUSCH�GALL� I�� Simulation

mit ACSL� Vieweg� Braunschweig�Wiesbaden� ����

��	� BREITENECKER� F�� HUSINSKY� I� �eds��� Comparison of Simulation

Software� EUROSIM � Simulation News Europe� no� ����� ��������	

���� BREITENECKER� F�� SOLAR� D�� Models� Methods and Experiments

� Modern Aspects of Simulation Languages� in� Proceedings of the �nd

Simulation Congress� Antwerpen� Belgium� Sept ����� ���	� pp� �������

���� CARVER� M�B�� E�cient Integration over Discontinuities in Ordinary

Di
erential Equation Simulation� Mathematics and Computers in Sim�

ulation XX� ����� pp� ������	

���� CELLIER� F�E�� Combined Continuous�Discrete System Simulation by

Use of Digital Computers	 Techniques and Tools� Dissertation� Swiss

Federal Institute of Technology Zurich� ����

BIBLIOGRAPHY ���

���� CELLIER� F�E�� Continuous System Modeling� Springer�Verlag� New

York� ����

���� CROSBIE� R�E�� HAY� J�L�� Description and processing of discontinu�

ities with the ESL simulation language� in� CELLIER� F�E� �ed��� Pro�

ceedings of the Conference on Continuous System Simulation Languages�

San Diego� California� USA� ������������	� pp������

���� CROSBIE� R�E�� HAY� J�L�� Towards new Standards for Continuous

System Simulation Languages� in� Proceedings of the SCSC ����� SCSi

San Diego� pp���	����

���� ELMQVIST� H�� $ANGSTR OM� K�J�� SCHNTHAL� T�� WITTEN�

MARK� B�� SIMNON Simulation of Nonlinear Systems � User
s Guide

for MS�DOS Computers� Version ���� SSPA Systems G oteborg� ����

���� ELMQVIST� H�� CELLIER� F�E�� OTTER� M�� Object�Oriented Model�

ing of Hybrid Systems� in Proceedings of the ESS��� European Simula�

tion Symposium� Delft� ����

���� ELMQVIST� H�� DYMOLA � Dynamic Modeling Language � User
s

Manual� Version ������� DYNASIM AB� Lund� ���� SIMNON Simu�

lation of Nonlinear Systems � User
s Guide for MS�DOS Computers�

Version ���� SSPA Systems G oteborg� ����

��	� ENGELN�M ULLGES� G�� REUTTER� F�� Numerische Mathematik

f�ur Ingenieure� Bibliographisches Institut� Mannheim�Wien�Z urich� ��

Au
�� ����

���� FASOL� K�H�� DIEKMANN� K� �eds��� Simulation in der Regelungstech�

nik� Springer�Verlag� Berlin� ����

���� GEAR� C�W�� The Automatic Integration of Ordinary Di
erential Equa�

tions� Communications of the ACM� ��� No� �� ����� pp���	����

BIBLIOGRAPHY ���

���� GEAR� C�W�� %STERBY� O�� Solving Ordinary Di
erential Equations

with Discontinuities� ACM Transactions on Mathematical Software� Vol�

��� No� �� March ����� pp� �����

���� GLADWELL� I�� SAYERS� D�K� �eds��� Computational Techniques for

Ordinary Di
erential Equations� Academic Press� London� ����

���� GOLDYNIA� J�W�� ANA ��x� ftp���ftp�iert�tuwien�ac�at�ana�

���� GOLDYNIA� J�W�� Comparison � � ANA ��x� in� Breitenecker� F��

Husinsky� I� �eds��� Comparison of Simulation Software� EUROSIM �

Simulation News Europe� no� �	� March ���	� p� ��

���� HAY� J�L�� CROSBIE� R�E�� CHAPLIN� R�I�� Integration Routines for

Systems with Discontinuities� The Computer Journal� Vol� ��� No� ��

����� pp� �������

���� HESSEL� E�� MELZIG� M�� VHDL�A � Erste Erfahrungen mit dem

neuen Standard� in� KRUG� W� �ed��� Fortschritte in der Simulations�

technik� ��� Symposium in DRESDEN� Sept� ���	� Vieweg� Wiesbaden�

���	� pp� �������

���� KORN� G�A�� WAIT� J�V�� Digital Continuous�System Simulation�

Prentice�Hall� Inc�� Englewood Cli�s� New Jersey� ����

��	� LAMBERT� J�D�� Numerical Methods for Ordinary Di
erential Systems

� The Initial Value Problem� Wiley� Chichester� ����

���� MARKOWITSCH� J�� Modellbeschreibung in Simulationssprachen � Ein

Vergleich anhand von ACSL� ESL� SIMNON und SIMULINK� Diplom�

arbeit� TU Wien� ����

���� MATTSSON� S�E�� Modelling of Power Systems in Omola for Transient

Stability Studies� CACSD���� Dept� of Automatic Control� Lund Insti�

tute of Technology

���� MATTSSON� S�E�� ANDERSSON� M�� The Ideas Behind Omola�

CACSD���� Dept� of Automatic Control� Lund Institute of Technology

BIBLIOGRAPHY ���

���� MATKO� D�� ZUPANCIC� B�� KARBA� R�� Simulation and Modelling

of Continuous Systems � A Case Study Approach� Prentice Hall� ����

���� MURRAY�SMITH� D�J�� Continuous System Simulation� Chap�

man&Hall� London� ����

���� MURRAY�SMITH� D�J�� Comparison � � SLIM� in� Breitenecker� F��

Husinsky� I �eds��� Comparison of Simulation Software� EUROSIM �

Simulation News Europe� no� ��� March ����� p� �	

���� NIKOUKHAH� R�� STEER� S�� SCICOS a dynamic system builder and

simulator � User
s Guide � Version ���� INRIA� ftp�inria�fr

���� O�REGAN� P�G�� Step size adjustment at discontinuities for fourth order

Runge�Kutta methods� The Computer Journal� Vol� ��� No��� Nov� �����

pp��������

���� ORTEGA� J�M�� POOLE� W�G�� An Introduction to Numerical Methods

for Di
erential Equations� Pitman Pub� Inc�� Marsh�eld� Mass�� ����

��	� OTTER� M�� Objektorientierte Modellierung mechatronischer Systeme

am Beispiel geregelter Roboter� Fortschrittberichte VDI� Reihe ��� Rech�

nerunterst utzte Verfahren� Nr����� VDI�Verlag� D usseldorf� ����

���� OTTER� M�� GR UBEL� G�� Direct Physical Modeling and Automatic

Code Generation for Mechatronics Simulation� Second Conference on

Mechatronics and Robotics� Duisburg� ��������������

���� PICHLER� F�� SCHW ARTZEL� H� �eds��� CAST Methods in Modelling�

Springer� ����� pp��������

���� PLANK� J� � Algorithmenstruktur in Simulationssprachen � Ein Ver�

gleich anhand von ACSL� ESL� SIMNON und SIMULINK� Diplomar�

beit� TU Wien� ����

���� PR AHOFER� H�� System Theoretic Foundations for Combined Discrete�

Continuous System Simulation� Dissertation� Uni�Linz� ����

BIBLIOGRAPHY ���

���� PR AHOFER� H�� AUERNIG F�� REISINGER� G�� An Environment

for DEVS�Based Multiformalism Simulation in Common Lisp�CLOS�

Discrete Event Dynamic Systems� Theory and Applications �� �����

pp��������

���� PR AHOFER� H�� BICHLER� P�� ZEIGLER� B�� Synthesis of Endomor�

phic Models for Event�Based Intelligent Control Employing Combined

Discrete�Continuous Simulation� IEEE ����� pp� ������	

���� PR AHOFER� H�� JAHN� G�� JACAK� W�� HAIDER� G�� Supervising

Manufacturing System Operation by DEVS�Based Intelligent Control�

IEEE ���� Institute of System Science� U�Linz

���� PR AHOFER� H�� PREE� D�� Visual Modeling of DEVS�Based Multifor�

malism Systems Based on Highgraphs� Proceedings of the ���� Winter

Simulation Conference� pp� ����	��

���� PR AHOFER� H�� REISINGER� G�� Distributed Simulation of DEVS�

Based Multiformalism Models�

��	� RECHENBERG� P�� Die Simulation kontinuierlicher Prozesse mit Dig�

italrechnern� Vieweg� Braunschweig�Wiesbaden� ����

���� SCHUSTER� G�� De�nition and Implementation of a Model Interconnec�

tion Concept in Continuous Simulation� Dissertation� TU�Wien� ����

���� SCHUSTER� G�� MOSIS � The Modular Interconnection System� User
s

Guide� Version ����� ATS�ARGESIM� Vienna� Austria� ����

���� SCHUSTER� G�� MOSIS � downloadable full version� ARGESIM�

ftp���argesim�tuwien�ac�at

�	�� SCHUSTER� G�� BREITENECKER� F�� Comparison � � MOSIS� in�

Breitenecker� F�� Husinsky� I� �eds��� Comparison of Simulation Software�

EUROSIM � Simulation News Europe� no� ��� November ����� p� ��

�	�� STRAUSS� J�C� et al�� The Sci Continuous System Simulation Language

�CSSL�� Simulation� vol� �� no� �� Dec� ��	�

BIBLIOGRAPHY ���

�	�� TROCH� I�� Gew�ohnliche Di
erentialgleichungen� Skriptum� TU�Wien�

����

�	�� UBERHUBER� C�� Computer�Numerik I�II� Springer�Verlag� Berlin�

����

�	�� ZEIGLER� B� P�� Theory of Modelling and Simulation� John Wiley� New

York� ���	

Index

ACSL� ��� 	�� ��� ��	

All�in�one method� ��� ��

ANA ��x� ��

block on a rough surface� ��� ���

ACSL model

Discrete Section method� ���

SIMNON model

Concatenated Runs method�

���

block�oriented� ��

bouncing ball� ��� ���

macroscopic view� ��� ���

microscopic view� ��� ��� ���

CASE� ��

classi�cation � � classes� ��

classi�cation � � classes� ��

COMPARTMENT� ��

component� ��� �	

Component Exchange� �	

Component Exchange method� ��

Concatenated Runs method� ��� ���

CONNECTING SYSTEM� 		� ���

��	

continuous binary search� ��� ��

CONTINUOUS SYSTEM� 		� ��

CSSL�standard� ��� ��� ��� 	�� ��

CTERM� 		� ���

DERIVATIVE� ��� ��

discontinuity� ��

DISCRETE� ��� ���

Discrete Section method� ��� ���

DISCRETE SYSTEM� 		

DYMOLA� ��

DYNAMIC� 	�

equation�oriented� ��

ESL� ��

event

description� �	� ���

detecting� ��

handling� ��� ���

locating� ��

passing� ��

event condition function� �	

event�de�nition� ��

event�state event� ��

event�time event� ��

experiment� ��� ��� ���

experiment level� ��

Extended Experiment method� ���

���

Hit�Crossing�Block� ��

��	

INDEX ���

interface model� ���

linearisation� ���

MACRO SYSTEM� 		� �	� ���� ��	

MATLAB� ��� 	�� ���

meta model� ���

Meta Model Concept� ���

method of false position� ��

model� ���� ���

Model Interconnection Concept� ���

ModelMaker� ��

MOSIS� 	�� ���

MULTIPLEXER� ��

Newton�s method� ��

numerical integration algorithms� �	

ONRISE � DO� ��

parameter� ��

pendulum� �	

constrained pendulum� ��� ���

���

ACSL model� ��

ANA ��x model� ��

DYMOLA model� �	

ESL model� 	�� 	�

ModelMaker model� ��

SIMNON model� 	�

SIMULINK �� �c model� ��

SIMULINK �� � model� ��

SLIM model� ��

looping pendulum� ��� ���

pilot ejection� ���

reconditioning plant� ���

regula falsi� ��� ��� 	�

RESET�Integrator� ��

restarting� �	

result model� ���

root locating� ��

SCHEDULE� ��

Sequential Model method� ��

Sequential Models method� �	

SEVENT� 	�

SIMNON� 	�� ��� ��� ��	

simulation� ��

simulator� ��

SIMULINK� ��� 	�� ��� ���

SLIM� 	�

state space� ��

sti� system� �	� ���

Stop�n�Go method� ��� ���

STOP�Block� ��

structure� ��

change of structure� ��

study� ��

SWITCH�Block� ��

system

real system� ��

VHDL�standard� ��

WHEN� 	�� ��

Über den Autor …
Dr. Johannes Plank studied Technical Mathematics at the TU Vienna.
During his studies, he attended several lectures on simulation techniques,
also his diploma thesis dealt with simulation techniques and comparison of
simulation software. Under the supervision of Prof. Breitenecker, he started
to work on this dissertation in 1995. Since his graduation to the doctoral
degree in April 1997, he is now engaged in a project on "Numerical
Simulation in Tunnelling" at the Technical University Graz, Austria.

Über diesen Band …

State Events in Continuous Modelling and Simulation deals with state events in continuous systems
in a comprehensive way. Starting with an introduction on state events by means of simple examples
a classfication of state events is given. Then the book describes systematically and methodically
how state events can be formulated in mathematical models and/or simulators. Furthermore, a state-
of-the-art report on handling of state events in modern simulators is given.
The second part of the book is devoted to a new approach. Based on a Model Interconnection
Concept a Meta Model Concept is presented, which claims to simplify modelling and handling of
state events in continuous simulation. The basic idea is to transfer state events from the model level
to another level, as well the executive control of the events as well as the description of the events
in separate models. As consequence, modelling and implementation of state events, re-usability of
models etc. become much more simple.

Über diese Reihe …

Die Bände dieser neuen ASIM - Reihe Fortschrittsberichte Simulation konzentrieren sich auf
neueste Lösungsansätze, Methoden und Anwendungen der Simulationstechnik (Ingenieurwissen-
schaften, Naturwissenschaften, Medizin, Ökonomie, Ökologie, Soziologie, etc.).
ASIM, die deutschsprachige Simulationsvereinigung (Fachausschuss 4.5 der GI - Gesellschaft für
Informatik) hat diese Reihe ins Leben gerufen, um ein rasches und kostengünstiges Publikations-
medium für derartige neue Entwicklungen in der Simulationstechnik anbieten zu können.
Die Fortschrittsberichte Simulation veröffentlichen daher: * Monographien mit speziellem
Charakter, wie z. B. Dissertationen und Habilitationen * Berichte zu Workshops (mit referierten
Beiträgen) * Berichte von Forschungsprojekten * Handbücher zu Simulationswerkzeugen (User
Guides, Vergleiche, Benchmarks), und Ähnliches.
Die Kooperation mit den ARGESIM Reports der ARGESIM vermittelt dabei zum europäischen
Umfeld und zur internationalen Publikation.

	diss_plank.pdf
	Leere Seite
	Leere Seite
	Leere Seite

