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Abstract.  As Automated Driving Systems (ADS) become 
more widely used, there is rising worry regarding their 
safety and security. Traditional verification techniques, 
such as evaluating the vehicle's performance over a 
certain number of miles or kilometres, are insufficient to 
assess ADS risk. Instead, alternate approaches, such as 
scenario-based testing, which involves assessing the 
vehicle's performance in simulated situations that match 
real-world settings, are required to determine the 
system's safety and performance. This article presents a 
literature review on the importance of critical scenario 
analysis in ensuring the safety and reliability of ADS. 
Critical scenario analysis is a complete approach for 
identifying, quantifying, prioritising, selecting, and 
validating the most critical situations for ADS 
development and testing. ADS can reduce the frequency 
of accidents and fatalities caused by human error. 
Through this literature review, readers will understand 
the importance and benefits of critical scenario analysis 
methods and approaches, allowing them to systematically 
evaluate risks and opportunities and better comprehend 
the potential outcomes of future scenarios. 

Introduction 
The increasing number of vehicle accidents and fatalities 
is a global concern, with the World Health Organization 
reporting that 1.3 million deaths occur yearly [1]. The 
introduction of Automated Driving Systems (ADS) has 
the potential to drastically reduce this number, as it aims 
to remove human error – the leading cause of such 
accidents. This is because ADSs are meant to remove 
human mistakes, which are the primary cause of 
automobile accidents. The Society of Automobile 
Engineers (SAE) has classified different levels of 
automation for ADSs, ranging from no automation (level 
0) to full automation (level 5) [2]. ADSs with an SAE
level of 3 or above have a higher degree of automation
and can accomplish many driving activities without
human involvement [2]. As the level of automation

increases, so does the level of safety concern, including 
the potential for system malfunction or failure [3]. To 
ensure the reliability and security of these systems, ADS 
must undergo comprehensive security evaluations before 
being deployed to the public[3],[4].
The most common procedures for validating ADS 
involve evaluating the vehicle's performance over a 
certain number of miles or kilometres and assessing the 
system's safety and dependability [6]. This is done by 
measuring the miles or kilometres a vehicle can travel 
without incident. The assumption is that the further a 
vehicle can go without incident, the safer it is. However, 
these techniques are not considered sufficient for 
evaluating the risk of ADS as they do not consider the 
various operational scenarios that a vehicle may 
encounter in the real world [5]. As an alternative, 
scenario-based testing may be used to more accurately 
assess the system's safety and performance [6]. Scenario-
based testing involves evaluating the vehicle's 
performance in simulated scenarios replicating real-
world conditions, such as variable weather, traffic 
patterns, and road conditions. The process involves 
deliberately modifying the conditions and parameters of 
the simulated scenario to test the vehicle's ability to 
operate safely and effectively. This method aims to 
evaluate the safety and reliability of the ADS by exposing 
it to a wide range of potential conditions and situations it 
may encounter in real-world operations. Virtual testing is 
scenario-based testing that uses computer simulations to 
replicate these scenarios instead of physical testing. This 
approach allows for a more efficient and cost-effective 
ADS testing method [29].

Critical scenarios refer to specific driving situations with 
a high probability of causing safety issues or problems in 
the ADS [10]. These scenarios may present a significant 
risk to the safety of the autonomous vehicle, its 
passengers, and other road users. They may pose a 
challenge to the proper functioning of the ADS. These 
scenarios can include but are not limited to, situations 
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such as heavy traffic, poor weather conditions, complex 
road layouts, and unexpected obstacles. Identifying and 
testing for these critical scenarios is an essential step in 
ensuring the safety and reliability of ADS before they are 
released to the public [10].

The literature review focuses on specific methods 
proposed in previous research for identifying critical 
scenarios likely to present significant risks or challenges 
to the safety or operation of ADS. These methods can 
include techniques for identifying and quantifying the 
potential impact of different scenarios, prioritising them 
based on their likelihood or potential impact, selecting 
the most critical ones, and evaluating them can increase 
performance to focus on during the development of the 
ADS. These methods aim to help ensure that the ADS is 
thoroughly tested and validated against a wide range of 
scenarios likely to be encountered in real-world 
operations before deployment to improve its safety and 
reliability. First, section 1 introduces fundamental 
concepts related to scenario-based safety validation for 
ADS. Then, Section 2 describes the literature review, 
which is used to identify relevant information on critical 
scenario analysis. This process involves searching 
through academic journals, conference proceedings, and 
other relevant sources to identify articles, papers, and 
studies that address critical scenario analysis in the 
context of ADS.

This paper presents a comprehensive overview of various 
techniques in a cohesive manner, allowing the reader to 
gain a holistic understanding of the subject matter. 
Bringing together a diverse range of concepts and 
approaches facilitates a deeper understanding of the 
interconnectedness of these different aspects and how 
they can be applied in practice.

1. KEY CONCEPTS 
ADS are vehicles designed to operate and navigate 
without human intervention. These systems use a 
combination of sensors, cameras, and other technologies 
to sense their surroundings and decide how to drive and
operate the vehicle. SAE has defined many levels of 
autonomy for ADS, ranging from Level 0, which requires 
human intervention for all driving activities, to Level 5, 
which can do all driving functions without human 
intervention. Many levels of autonomy for ADS, ranging 
from Level 0, which requires human intervention for all 
driving activities, to Level 5, which can do all driving 
functions without human intervention. The criteria for 
each level are clearly defined, including the tasks the 
system can perform and the situations in which it can 
perform them without human intervention. ADS aims to 
increase safety by using advanced technologies to 

perceive and analyse the driving environment, make 
decisions, and control the vehicle. By relying on these 
technologies rather than human drivers, ADS can 
potentially reduce the frequency of accidents and 
fatalities caused by human error, such as distracted or 
impaired driving [11],[12].

ISO/PAS 21448:2019, as cited by Geyer et al. and 
Ulbrich et al., defines a scenario as a sequence of events
occurring in a particular order and in different locations 
or settings (referred to as "scenes"). Scenarios help 
describe the temporal series of images portrayed by 
scenes and actions, and occurrences that can enhance 
them[13]-[15].

Thorn et al. employed a method of testing called 
scenario-based testing to evaluate the performance of 
ADS. This method involves creating simulated scenarios 
replicating real-world conditions and situations that the 
ADS may encounter during operation. For example, 
scenario-based testing can include testing the vehicle's 
performance in simulated scenarios replicating real-
world conditions such as variable weather, traffic 
patterns, or road conditions. These scenarios evaluate the 
ADS' ability to safely and effectively navigate different 
driving conditions [16].

Menzel et al. introduced the concept of using different 
levels of abstraction to represent and analyse potential 
scenarios that an autonomous vehicle may encounter. 
Functional scenarios are described using semantic or 
linguistic notations and are defined at a high level of 
abstraction. Logical scenarios are represented using 
state-space level with parameter ranges and are defined 
at a medium level of abstraction. Finally, concrete 
scenarios are described using concrete parameter values 
and are defined at a low level of abstraction. Using these 
different levels of abstraction allows researchers to better 
understand a vehicle's capabilities and limitations and 
develop strategies for improving safety and reliability 
[17].

Although not a topic for discussion in this paper, it should 
be noted that Operational Design Domain (ODD) is a 
concept mainly used in ADS to define the operating 
conditions and limitations of the vehicle to ensure safe 
operation. ODD specifies the range of environmental 
conditions within which the ADS is designed to operate. 
In reality, ADS is the combination of hardware and 
software that collectively performs the entire dynamic 
driving task (DDT) on a sustained basis, regardless of 
whether it is limited to a specific ODD. Specifying the 
ODD helps to set the boundaries of safe operation for the 
vehicle. At the same time, the ADS is responsible for 
navigating the car and reacting to the environment and 
traffic based on the ODD-defined parameters. Also 
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included in ADS is the concept of ontology, which is a 
formal representation of knowledge that describes 
concepts and relationships within a specific domain [22]. 
In the context of ADS, an ontology can be used to 
represent knowledge about the driving scene, including 
information about the road layout, traffic signs, and the 
behaviour of other vehicles. The ontology can also be 
used to represent the relationships between concepts, 
such as how traffic signs constrain the behavior of 
vehicles. Using an ontology to represent this knowledge 
allows for automation in creating traffic scenarios for 
testing and simulation, which is a more efficient process 
than manually creating these scenarios by experts [9]. 
This can be useful to identify critical scenarios in the 
design of ADS and to evaluate the performance of the 
ADS in a wide range of conditions.
Additionally, ontology metamodels can provide a 
standardised, structured way of representing and 
organising knowledge about the environment and the 
vehicle's capabilities [21]. Therefore, ODD and ontology 
metamodels may be considered vital components in 
ensuring the safety and performance of ADS. However, 
noting that ODD is not always required for scenario 
generation [7],[8],[9],[21],[22].

Critical scenarios generally refer to specific driving 
situations that present a high risk or danger to the safety 
and operation of ADS. These scenarios may include 
potential collisions, traffic violations, or other dangerous 
situations. Analysing critical scenarios is essential for 
developing strategies to enhance the safety and 
performance of ADS [18].

According to Zhang et al., critical scenarios are defined 
as difficult circumstances under which an autonomous
vehicle can operate safely. The authors specify the 
specific parameters, such as weather and road conditions, 
and external circumstances, such as traffic density and 
presence of pedestrians, necessary for the vehicle to run 
safely. A comprehensive set of essential scenarios should 
be defined to ensure that the vehicle operates effectively 
in various locations and scenarios. Examining critical 
scenarios aids in understanding and developing strategies 
for improving the vehicle's performance and safety limits 
[19].

2. CRITICAL SCENARIO 
ANALYSIS 

Critical scenario analysis is a comprehensive process 
used to develop and test ADS. This process aims to 
ensure the safety and reliability of ADS by thoroughly 
testing their capabilities under a range of scenarios based 
on real-world data and expert opinions. The following 
sections will present a literature review and explain the 

critical scenario analysis process. The process starts with 
critical scenario identification and quantification, 
followed by critical scenario prioritisation, validation, 
selection, and evaluation.

 
Figure 1: Overview of Critical Scenario Analysis[97] 

2.1 Critical Scenario Identification & 
Quantification 

Critical scenario identification and quantification is 
identifying possible scenario types, grouping them into 
categories, and giving numerical numbers to each 
scenario to compare and rank them. The purpose of 
scenario identification is to develop a well-defined set of 
scenarios that may be utilised to assess a specific problem 
or circumstance, identify potential risks and 
opportunities, and develop strategies for managing them. 
Scenario quantification is an essential step in the scenario 
management process. It helps to identify the most critical 
scenarios and concentrate on the issues most likely to 
have a significant impact.

Articles by Kramer et al. and Papa and Ferreira present 
solutions for meeting critical scenario identification and
quantification requirements. Kramer et al. propose 
combining existing methodologies for hazard analysis 
and risk assessment (HARA) with further advancements 
and recommend using an integrated HARA strategy early 
in the development phase of ADS so that the results may 
be included during the design and testing phases. They 
also propose a method for identifying and specifying 
hazards related to ADS. The technique consists of 
modelling the system design architecture and intended 
system design, identifying hazards, performing a causal 
chain analysis, deriving the triggering conditions for 
hazards, and quantifying and assessing the associated 
risks. Papa and Ferreira use a mix of exploratory and 
back-casting approaches to scenario building, allowing 
flexibility in the process and customisation for the 
specific situation under investigation. They define 
scenarios as hypothetical futures highlighting the policy 
quandaries and behavioural conflicts that may arise as 
ADSs transition from speculation to reality. They provide 
two alternatives, one optimistic and the other pessimistic, 
and identify critical decisions related to the deployment 
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and governance of ADS. Additionally, Song et al. 
propose a new research strategy for selecting critical 
ADS test scenarios, which includes studying the system 
requirements and implementation of the autonomous 
driving functionalities, defining the system's essential 
parameters, describing the parameter's ratio and 
dispersion, and establishing feasible object operations 
and severity levels for the ADS, and using the 
modeFrontier tool to develop an optimisation technique 
for identifying critical test scenarios for ADS. These are 
the main approaches for critical scenario identification 
and quantification being utilised today [22],[23],[24].

2.2 Critical Scenario Prioritisation 
Critical scenario prioritisation is used in ADS to prioritise 
tests for ADS based on diversity and cost. Critical 
scenario prioritisation requirements include minimising 
the data needed for autonomous vehicle testing while 
maintaining accuracy and detecting almost all inserted 
defects. 
 
Several solutions have been proposed to meet the 
requirements of critical scenario prioritisation. Deng et 
al. offer STRaP, a method that enables the alignment of 
messages from different channels in the recording and the 
conversion of each frame of the aligned recording into a 
vector based on a driving situation data structure. 
Additionally, the STRaP method allows for slicing the 
aligned and vectorised recording into components based 
on the correlation of successive vectors and the 
prioritisation of the classes based on their coverage of 
driving scene aspects and rarity. Birchler et al. present 
two evolutionary techniques for selecting ADS 
experiments in virtual settings based on diversity 
measures derived from static road characteristics. They 
demonstrate that their strategy enhances the detection of 
security issues and that multi-objective meta-heuristics 
better single-objective procedures for promoting SDC 
tests. The solutions provided by this article, such as the 
Singular-Objective Genetic Algorithm (SO-SDC-
Prioritizer), Multi-Objective Genetic Algorithm (MO-
SDC-Prioritizer), and the Black-box Greedy Algorithm, 
all aim to minimise the amount of data needed for 
autonomous vehicle testing while maintaining accuracy 
and detecting almost all inserted defects [26],[27].

2.3 Critical Scenario Selection 
Critical scenario selection is choosing the most 
appropriate scenario for a given situation using the results 
of scenario evaluation, quantification, and prioritisation. 
The goal of scenario selection is to select the scenario that 
offers the best balance of benefits, risks, and uncertainties 
based on the specific goals and objectives of the situation.  
 

Several strategies have been presented to address the 
essential scenario selection requirements. Wang et al. 
recommended choosing the best scenario for a given 
condition. Riedmaier et al. distinguish between 
techniques based on testing and falsification in their 
literature review. Testing-based approaches to safety 
assessment involve evaluating the safety of a system by 
testing it under a range of scenarios selected to assess the 
system's safety under various conditions. Examples 
include N-wise sampling, Interactive Design of 
Experiments (DoE), automated method for regression 
testing, Satisfiability Modulo Theories (SMT), Signal 
Temporal Logic (STL), Randomization procedures, and 
Developing logical scenarios. These methods all ensure 
that the selected scenarios represent real-world 
conditions and can identify potential issues in the ADS. 
Falsification is a method of testing that seeks out 
instances that break safety criteria for ADSs. Examples 
include using real-world accident data, increasing the 
criticality of specific scenarios, identifying critical 
scenarios within established parameter ranges, using 
simulation-based falsification, using reinforcement-
based adaptive stress testing learning, using optimisation 
methods such as Particle Swarm Optimization, 
Differential Evolution Genetic Optimization, Simulated 
Annealing and using machine learning models such as 
random forest for scenario selection [28 -85]

2.4 Critical Scenario Validation 
Critical scenario validation is the process of checking 
scenarios to ensure that they are accurate and realistic. 
This can involve comparing the scenarios with real-world 
data and expert opinions and adjusting them as needed. 
The goal of scenario validation is to ensure that the 
scenarios being considered are based on the most precise 
and up-to-date data and accurately reflect the real-world 
situations that ADS may encounter.
 
Various solutions have been proposed to meet the 
requirements of critical scenario validation. Wang et al.
propose VAAFO, an ADS validation approach that 
combines the benefits of test drives with virtual 
assessment. This approach includes a route analysis unit, 
a reality design adjustment unit, an evaluation unit, and a 
scenario record unit. Second, Elrofai et al. propose a 
method for efficiently and systematically evaluating the 
safety of advanced ADS by integrating deterministic 
algorithms with data science to uncover events concealed 
in massive volumes of the dataset. Finally, Weng et al. 
propose a total and effective probabilistic solution to the 
security assessment challenge. This approach is based on 
set invariance, divides the given data into separate 
groups, and validates each group independently. These 
solutions aim to improve the accuracy and reliability of 
critical scenario validation by providing methods for 

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

90



 

comparing scenarios to real-world data, adjusting them 
as needed, and evaluating the safety and security of ADS 
[86],[87],[88].

2.5 Critical Scenario Evaluation 
Critical scenario evaluation assesses the likelihood and 
potential impact of different scenarios to identify the 
most critical ones and focus on the issues most likely to 
have a significant effect. Requirements for critical 
scenario evaluation include the ability to analyse 
decision-making in uncertain settings, identify the best 
possible actions to take in each situation, and evaluate the 
performance of the autonomous system in critical 
scenarios.

The articles provided describe various solutions for 
meeting these requirements. Huang et al., for example, 
present scenario analysis as a method for identifying 
critical scenarios. Van Der Pol suggests using Markov 
Decision Process (MDP) to analyse decision-making in 
uncertain settings. Sutton et al. present reinforcement 
learning (RL) as a machine learning approach that uses 
MDPs to identify the best possible actions to take in each 
situation. Levine et al. present REINFORCE, a specific 
type of RL algorithm that uses a policy gradient method 
called Monte Carlo sampling to find the optimal policy. 
Ren and colleagues present Neural architecture search 
(NAS) as a parameter optimisation strategy for 
constructing a learning algorithm for a given task. 
Shalev-Shwartz et al. present the Responsible and Safe 
Social Scenario (RSS) method, which guarantees that an 
operator cannot be the cause of an incident. Dosovitskiy 
et al. present Carla, an open-source simulator for ADS 
that aims to provide realistic settings and a ROS bridge 
to test and evaluate the system's performance in critical 
scenarios. These are the most commonly used approaches 
for critical scenario evaluation [89 - 96].

3. CONCLUSION AND FUTURE 
WORK 

The scenario-based methodology presented in this work 
helps discover, measure, and prioritise relevant situations 
of critical scenarios to assist ADS development. As a 
result, researchers may better understand the capabilities 
and limits of ADS and devise ways to improve their 
safety and performance by methodically creating and 
analysing demanding scenarios. Future studies on this 
issue might include developing and testing the scenario-
based approach to critical scenario analysis. This may 
also require conducting more complete assessments of 
the technique using more extensive and more diverse 
case datasets, as well as investigating the impact of 
different aspects, such as the ADSs level and the 

complexity of the environment, on the approach's 
performance. Furthermore, it may be worthwhile 
investigating possible applications of the technique 
outside of the creation of ADS, such as designing other 
complex systems or decision-making in dynamic 
situations. Overall, it is imperative to study more in this 
field to understand better crucial circumstances and their 
importance in developing sophisticated technology. 
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