
Integrating Reinforcement Learning and
Discrete Event Simulation Using the

Concept of Experimental Frame:
A Case Study With MATLAB/SimEvents

Thorsten Pawletta*, Jan Bartelt
Research Group Computational Engineering and Automation (CEA), Wismar University of Applied
Sciences, Philipp-Müller-Straße 14, D-23966 Wismar, Germany; *thorsten.pawletta@hs-wismar.de,
jan.bartelt@hs-wismar.de

Abstract. Reinforcement Learning (RL) is an optimi-
zation method characterized by two interacting enti-
ties, the agent and the environment. The environ-
ment is a Markov Decision Process (MDP). The goal
of RL is to learn how an agent should act to achieve
a maximum cumulative reward in the long-term. In
discrete-event simulation, the dynamic behavior of a
system is represented in a model (DESM) that is ex-
ecuted via a simulator. The concept of Experimental
Frame (EF) provides a structural approach to sepa-
rating the DESM into the Model Under Study (MUS)
and its experimental context. Here, we explore the
integration of a discrete event MUS as an environ-
ment for RL using the concept of EF. After discussing
the methodological framework, a case study using
MATLAB/Simulink and the SimEvents blockset is con-
sidered. The case study starts with an introduction of
the discrete-event MUS for which a control strategy
shall be developed. The MUS is reused in three ex-
periments using specific EFs. First, an EF for the de-
sign of a heuristic control strategy with ordinary sim-
ulation runs is presented. Then, based on the meth-
odological approach, specifics of the EF are consid-
ered when using a self-implemented Q-agent and the
RL toolbox of MATLAB/Simulink.

Introduction
In modeling and simulation (M&S), a model describes
the dynamic behaviour of a real or virtual system. The
execution of the model is performed using a simulator. In
the versatile use of a model, it should be developed inde-
pendently from the context of use. The reference to a con-
crete experiment can be mapped by an Experimental
Frame (EF). An EF specifies the conditions under which
a system is observed or a model experimented with (Zei-
gler [12], Zeigler et al. [14], Traore and Muzy [11]). The

model used is called the Model under Study (MUS). De-
pending on the EF, the same MUS can be used in differ-
ent experimental contexts, such as a parameter study,
sensitivity analysis, optimization, etc. The EF and MUS
form the simulation model (SM). Discrete event simula-
tion models (DESM) are characterized by a finite number
of states over a continuous time base.

The EF implements the interface for a Simulation-
Based Experiment (SBE). Inspired by Breitenecker’s [1]
approach to structuring SBEs, Pawletta et al. [5] and
Schmidt [7] introduced the concept of Simulation
Method (SimMeth) and Experiment Method (ExpMeth).
The SimMeth controls the execution of the simulation
runs via a simulator and ExpMeths are arbitrary numeri-
cal methods. ExpMeths are used for pre- and post-pro-
cessing or to control the SimMeth, such as in simulation-
based optimization experiments (Carson and Maria [2];
Schmidt [7]).

Reinforcement Learning (RL) (Sutton and Barto [8])
in combination with a dynamic system simulation can be
considered as a SBE. However, RL is an optimization
method for Markov Decision Processes (MDPs). The
MDP is modeled as an environment and an agent acts as
a controller. The goal is to learn how the agent should act
to achieve a maximum cumulative reward in the long-
term. In contrast to a DESM, an MDP is a discrete time
process and the time base is only used for the sequential
ordering of states. Not all states of the MUS are usually
of interest to the RL. Accordingly, the states of the MUS
must be converted into MDP-compliant states. Due to the
methodological differences, the combination of the two
methods, RL and discrete event simulation, often lead in
practice to implementations that are difficult to maintain
and MUS that are not generally usable.

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

ARGESIM Report 21 (ISBN 978-3-903347-61-8), p125-132, DOI: 10.11128/arep.21.a2122 125

Here, the practical integration of both methods using
the concept of EF is explored by means of a case study
and using MATLAB/Simulink as well as the SimEvents
blockset (MathWorks [9]). We start with some basics to
SBEs, EF, RL and the usage of RL in a SBE. Then, the
MUS is introduced for which a control strategy is devel-
oped. To present the reusability of the MUS in the con-
text of different experiments using specific EFs, we start
with the design of a heuristic controller. This is followed
by two experiments on RL-based controller design.

This work is based on Pawletta and Bartelt [6]. More
details on the theoretical background and related work is
provided there.

1 Basics
Based on Pawletta and Bartelt [6], we briefly review the
basics of structuring SBEs, the RL method, and the use
of RL as a method of an SBE.

1.1 Structuring Simulation-Based
Experiments

Schmidt [7] divides SBEs into three classes. We consider
only the first two classes. The execution of one or more
simulation runs by a SimMeth constitutes a simple SBE,
if the SimMeth is invoked directly by the user or a super-
visory Experiment Control (EC). An EC defines the goals
and steps of an experiment and automates the experiment
execution.

In a complex SBE, the SimMeth is controlled by an
ExpMeth, for example, by a numerical optimization
method. Figure 1 shows the basic structure of a complex
SBE. Both the SimMeth and ExpMeth define process pa-
rameters (PExM, PSnM).

The EF separates the MUS from a specific context of
use to improve the reusability of the MUS. Formally, Zei-
gler [13] defines the function of an EF with the tuple.

(1)

T represents the time base, I and O the set of input and
output variables of the MUS (equivalent to IMUS and OMUS

in Fig. 1), C the set of run control variables, ΩI the set of
admissible input segments, ΩC the set of admissible con-
trol segments, and SU the set of summary mappings. Set
ΩI refers to the input variables of the MUS and to the in-
put/output relationships in the EF. Set ΩC defines the ex-
perimental constraints. The experiment objectives are
mapped to interest variables. Set SU defines the determi-
nation of the interest variables based on the MUS outputs.

The interest variables are typical output variables of the
EF. The implementation of an EF is done using three
types of components, as illustrated in Figure 2 (Zeigler
[13]; Zeigler et al. [14]). The generator (Gen) initializes
the configurable parameters of the MUS and calculates
the input segments for the MUS which can also be inputs
of the Acceptor (Acc) or Transducer (Trans). The Acc
defines the admissible control segments and monitors
their compliance. The output of the Acc is run control in-
formation. The Trans calculates the SU.

Figure 1. Basic structure of a complex SBE.

Figure 2. Basic structure of a DESM with MUS and
EF. An EF does not necessarily have to
contain all three components and the cou-
pling relationships are not fixed.

1.2 The Method of Reinforcement
Learning

According to Sutton and Barto [8], RL focuses on the se-
quential decision-making by an agent that interacts with
a real or virtual environment. The agent is trained by its
interactions with the environment. The goal of RL is to
learn a behavioral strategy : → for the agent that
assigns an action to each state of the environ-
ment. Thus, the agent can act as a controller for the envi-
ronment. Using RL, a distinction is made between the
training and deployment of an agent, although the agent
can continue learning during deployment. The basic RL

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

126

framework is shown in Figure 3.

Figure 3. Basic RL framework.

In model-free RL, the agent only knows the allowed ac-
tion set at the start of training. The states of the
environment are . When an action

takes effect, the environment determines its next
state t+1 as well as a reward value t+1 using a state tran-
sition model → and reward model
→ . The next state and the reward value are sent back to
the agent. The index t marks a sequence of states in the
sense of a MDP. Through iterative interactions with the
environment, the agent obtains information about possi-
ble states of the environment and the benefits of actions,
gradually improving its behavioral strategy . A variety
of different learning strategies have been developed for
RL agents such as Q-learning, Deep Q Networks etc.

We briefly consider Q-learning that uses formula (2)
to learn a strategy using a table function called the Q-
matrix. A matrix element represents the esti-
mated benefit of an action when it is performed in the
state of the environment. The updated value
of the current state/action tuple is calculated from
the previous value, the currently received re-
ward , and the maximum Q-value ()

of all possible actions in the currently received next state
. The variables and are hyperparameters, i.e. they

must be defined before training, but can still be adjusted
during training.

The training takes place in independent episodes. Each
episode starts in an initial state of the environment and
ends when a target state or abort state is
reached. At the beginning of the training, the agent se-
lects an action randomly. This is called explora-
tion. As the learning process progresses, the agent in-
creasingly uses the knowledge it has acquired to select an
action which is called exploitation. The ratio of explo-
ration to exploitation is adjusted over the course of the
training. After the completion of a defined number of ep-
isodes, the behavioral strategy is derived from

the training data.

1.3 Integrating Reinforcement Learning
into a Simulation-Based Experiment

When integrating RL and dynamic system simulation, the
MUS forms the environment for the RL agent. The goal
of such an SBE is

to learn the best possible behavioral strategy of the
agent,
to extract this strategy from the training data, and
to use it as a controller for the MUS.

The first two items are defined with an ExpMeth training
that controls a SimMeth to execute simulation runs. The
ExpMeth training contains the following basic steps:

Set the RL-specific experiment parameters PExM
such as the learning rate, exploration rate, maximum
number of episodes, Q-matrix etc.
Set the simulation execution parameters PSnM for the
SimMeth, such as the simulator to be used, the simu-
lation time interval etc.
Set the DESM parameters for the EF and the MUS and
prepare the DESM for executing using a SimMeth.
Initialize statistical variables, such as those used to
record the total reward per episode etc,
Compute the defined number of episodes, i.e. call the
SimMeth into a loop to execute the DESM, update the
statistical variables after each episode, and check
whether to abort the training or continue with another
episode.
Determine and save the best policy π, and plot essen-
tial learning results.

Figure 4 shows the basic structure of a DESM with an EF
for RL in the training phase. The variables τ and t repre-
sent the different time bases. τ is the continuous time of
the MUS and t the discrete time for ordering the sequen-
tial states of the RL. The input variables IEF are initialized
at the simulation start time τ0, at the beginning of an epi-
sode. Results are get back via OEF at the end of an episode
(eoe).

The Gen is subdivided into three subcomponents.
Gen.GMUS initializes the parameters of the MUS at τ0 and
calculates input segments ΩI for the MUS inputs IMUS(τ)
over the course of an episode. Gen.Agent maps the RL
agent. It is part of the Gen because its output, an action
at, inputs of the MUS. The agent's parameters

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

127

are initialized via the input interface IEF(τ0). In addition
to the ordinary agent inputs’ new state st+1 and the reward
value rt+1, the third input isDonet+1 is a Boolean value
that signals the end or cancellation of an episode. At the
eoe, the agent creates a summary mapping SUAgent that
contains RL-specific values such as the number of steps,
the total reward, or the strategy learned so far (e.g. the
Q-matrix). The SUAgent is passed to the Trans. Gen.En-
coder defines a mapping i(τ)=h(at) to transform a single
action value at into MUS compatible input values i(τ)
IMUS(τ) as introduced by Choo et al. [3].

Figure 4. Basic structure of a DESM with a MUS
and EF for RL in the training phase.

The Trans is also subdivided into three subcomponents.
Trans.Decoder defines (i) the calculation of the interest
values O’MUS(t+1) from the current outputs OMUS(τ) of the
MUS related to the time base of the RL (i.e.
O’MUS(t+1)=f(OMUS(τ))), and transformation of the interest
values O’MUS(t+1) to a state st+1 in the RL space (i.e.
st+1=g(O’MUS(t+1))). Thus, all interest values of the MUS
are mapped into one state for the RL and for each partic-
ular interest value there is only one corresponding state
in the RL space (Choo et al. [3]). The Trans.Reward-
model maps the reward calculation. The reward value
characterizes a state transition st→ st+1 in the RL space.
Defining the reward calculation is sometimes a difficult
problem. Our own experiments showed that the reward
value can sometimes be computed very efficiently based
on the O’MUS(t+1) values. The component Trans.SUmap-
ping implements the overall SU of an episode and passes

it at the eoe to the output OEF.
The Acc checks compliance with the constraints for

the episode using defined run control information. Run
control variables can be initialized via IEF(τ0). Typical run
conditions to be monitored include the simulation inter-
val [τ0, τfinal] of the MUS and thus the maximum duration
of an episode, the detection of illegal states or the reach-
ing of a target state. The Acc checks all the relevant quan-
tities and sets the isDone value, before sending the tuple
(st+1, rt+1, isDonet+1) to the Gen.Agent.

When deploying a learned strategy, we have to distin-
guish whether it is used with or without further learning
of the agent. For an experiment deployment without
training the EF simplifies as shown in Pawletta and Bar-
telt [6]. No explicit ExpMeth is required. The SimMeth
is called directly in the EC according to the number of
simulation runs to be executed.

2 Case Study
The basic implementation of the approach to integrate RL
and discrete-event simulation introduced in Section 1.3
will be demonstrated by a case study using
MATLAB/Simulink and the SimEvents blockset. The
objective is to develop a control strategy for a MUS with
discrete-event dynamics. First, the most general possible
modeling of the MUS, i.e. without concrete references to
an experiment, is discussed. Then, the same MUS is used
in three experiments using different EFs: (i) to design a
heuristic strategy, (ii) to learn a strategy with a self-im-
plemented Q-agent, and (iii) to learn a strategy using
MathWorks’ dedicated RL toolbox (MathWorks [10]).

2.1 Model Under Study and General
Objectives of the Control Design

The MUS is a simple server line consisting of an entity
generator, a convertible operating unit, and two down-
stream servers connected in parallel with separate input
queues as shown in Figure 5. The operating unit can pro-
cess two types of entity (jobType=1 | 2). A separate pro-
cessing time can be defined for each entity type (procT1,
procT2). A retooling time (retoolingT) is necessary when
the entity type is changed in the operation unit. The cal-
culation of the type of entity and retooling time depend-
ent processing time is done during simulation runtime us-
ing two Simulink functions (not shown in Fig. 5). After
processing, branching into one of the two FiFo queues of
the downstream servers takes place depending on the en-

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

128

tity type. The downstream servers have different pro-
cessing times (saleT1, saleT2). The definition of the dif-
ferent time values is determined by a value vector
param=[procT1, procT2, retoolingT, saleT1, saleT2] at
input port3 at the simulation start time τ0. Entities are
generated via input events (msgGenJob) at input port1.
The entity type (jobType) to be generated follows on
from the value at input port2. After an entity has been
processed in the operating unit, the MUS generates an
output event (y_msgFinish) at output port1. Furthermore,
the current tool setting (sSetting) of the operating unit,
the current queue lengths (y_#jobsQ1, y_#jobsQ2), and
the number of completed entities on the downstream
servers (y_#jobs1sold, y_#jobs2sold) are output as data
from port2 to port6. Hence, input set IMUS and output set
OMUS are defined by:

IMUS ={msgGenJob(τ), type(τ), param(τ0)}
OMUS={y_msgFinish(τ), y_sSetting(τ),
 y_#jobsQ1(τ), y_#jobsQ2(τ),
 y_#jobs1sold (τ), y_#jobs2sold(τ)}

Figure 5. Structure of the MUS in SimEvents

The MUS represents the dynamic system behavior inde-
pendent of a concrete experiment. The goal of the follow-
ing experiments is to design a controller with the best
possible injection strategy of the two entity types into the
MUS so then the queues have the most balanced stock of
both types available for the downstream servers.

2.2 Designing a Heuristic Strategy
The top-level structure of the DESM for designing a heu-
ristic control strategy is shown in Figure 6. The MUS

named Prodline implements the input and output inter-
face described in Section 2.1 with IMUS(τ) and OMUS(τ).
The IEF / OEF of the EF are not visible on the top-level
structure of the DESM. This interface is realized via
workspace variables. The EF consists of five compo-
nents, of which Parameters, Controller and Encoder
form the generator Gen according to Figure 2. With the
exception of the Encoder, the components of the EF op-
erate purely signal-oriented.

Figure 6. Top-level structure of the DESM with
MUS and EF for designing a heuristic con-
trol strategy, and substructure of the En-
coder block

The Transducer monitors the signal-oriented outputs of
the MUS, maps the variables of interest O'MUS for this ex-
periment in a vector yDec=[sSetting, #jobsQ1, #jobsQ2],
and provides the vector as output variable. Moreover, the
Transducer generates the SU mapping, by providing the
time trajectories of the O'MUS quantities as EF outputs OEF

via the data workspace.
The Acceptor controls the termination of the simula-

tion after a specified time interval [τ0, τfinal] has elapsed.
It evaluates the interest variables #jobsQ1 and #jobsQ2
and terminates the simulation run abnormally if the dif-
ference between the two quantities exceeds a maximum
value.

The Controller implements the heuristic strategy. It
determines the next entity type to be generated based on
the current values of the interest variables received by the
Transducer. The goal is to minimize the difference be-
tween the two queue contents (#jobsQ1 and #jobsQ2)
while respecting the current tool setting (sSetting). The

msgGenJob

msgGenJob

jobTy pe

param

y _msgFinish

y _sSetting

y _#jobsQ1

y _#jobsQ2

y _#jobs1sold

y _#jobs2sold

y _sSetting

y _#jobsQ1

y _#jobsQ2

Job 1 items sold

Job 2 items sold

y Dec

y DecjobTy pe

jobTy pe

Encoder

param

Parameters

y Dec

Acceptor

Untyped

Memory

2
jobType

1
1

2

msgGenJob

Encoder - Detail

Controller

ProdLine Transducer / SU Mapping

jobTypeOut

initial startMsg

jobTy peOut

msgStart

msgStart

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

129

result is passed on as a signal (jobType) to the Encoder.
The Encoder works event-driven (see Fig. 6). If the

operation server of the MUS is free, it sends an event
y_msgFinish to the Encoder. Thereupon the Encoder
sends an event msgGenJob to the MUS and forwards the
signal jobType that codes the entity type to be generated.
At the start of a simulation run, the Encoder generates the
initial input event msgGenJob and sets the entity type
(jobType=1) to be generated for the MUS. Parameters
generates the constant input segments for the MUS vec-
tor param for initializing the MUS parameters.

This is a simple SBE. The EC defines the parameters
PSnM to be varied and directly calls the SimMeth to exe-
cute simulation runs.

2.3 Learning a Strategy Using a Self-
Implemented Q-Agent

The top-level structure of the DESM for this SBE is
shown in Figure 7. The identical MUS named Prodline is
integrated into an RL-specific EF according to Figure 4.
As in the previous experiment, the EF interface (IEF /OEF)
is implemented via Workspace variables. Parameters,
Agent and Encoder form the generator Gen, and Decoder,
Reward as well as SU Mapping form the transducer
Trans (cf. Fig. 2). To learn a strategy, the agent requires
unique state-action tuples (st, at) as well as associated
next state st+1 and reward values rt+1. Hence, the two time
bases t and τ were introduced in Subsection 1.3 for the
EF and the MUS. Accordingly, the components of the EF
are implemented event-oriented, with the exception of
Parameters and SU Mapping. The component Parame-
ters is identical to the previous experiment.

At simulation start time τ0, an episode is started by the
Agent sending an event msgGenJob and setting an action
value at={1|2} at the output port action. In this case, the
outputs of the Agent are compatible with the inputs of the
MUS in value and timestamp with respect to the global
simulation clock. Hence, the Agent’s outputs are only
forwarded by the Encoder to the MUS ProdLine that gen-
erates a new entity with jobType=action value.

When an entity has completed on the operation unit,
an output event y_msgFinish(τ) is sent from the MUS to
activate the Decoder and study-specific output data(τ) is
passed signal-oriented to the SU_Mapping for trajectory
recording. The Decoder selects the information relevant
to the RL from the MUS outputs(τ) and calculates the new
state st+1 of the RL space. To limit the RL space, the De-
coder truncates the two queue contents (#jobsQ1 and
#jobsQ2) to a maximum length. The new state st+1 is thus

calculated from the two limited queue contents and the
current tool setting (sSetting) of the operating unit, and
output at the port sysState4Agent.

Figure 7. Top-level structure of the DESM with
MUS and EF for learning a strategy using a
self-implemented agent component.

After decoding, the reward calculation is activated by
an event msgFinish. Contrary to the general approach, the
reward is not calculated using the RL-related state
but on the basis of MUS-related interest variables
O’MUS(t+1), in this case #jobsQ1 and #jobsQ2. In terms
of content, both approaches are identical but the second
one resulted in a much better structured reward computa-
tion.

After the reward calculation, the Acceptor is activated
by an event msgFinish. In this experiment, no constraints
are defined for st+1 and rt+1, so they are only passed to the
Agent. Only a control segment is defined for the simula-
tion time interval [τ0, τfinal], which specifies the length of
an episode. At the termination of an episode, the Accep-
tor schedules an internal event with an infinitesimal time
advance. The time delay is necessary for data updates in
the Agent and SU_Mapping at the end of an episode. The
Acceptor activates the Agent via an event msgFinish and
signals using the boolean variable isDone whether the
end of an episode (eoe) has been reached or not.

The Agent evaluates the boolean isDone value. If is-
Done is false, it executes its learning rules, calculates a
new action value, and generates an output message
msgFinish to activate the Encoder. In case of isDone is
true it performs a data update SU_Agent(eoe) and the ep-
isode is terminated by the Acceptor.

This is a complex SBE. The EC defines the parameters
PExM and PSnM (cf. Fig. 1), and calls an ExpMeth training
as described in Subsection 1.3, which calls the SimMeth
in a loop to execute the DESM for one episode at a time.

jobType

param

y_msgFinish
y_sSetting
y_#jobsQ1
y_#jobsQ2

y_#jobs1sold
y_#jobs2sold

ProdLine

msgStart

state

reward

isDone

msgFinish

action

SU Agent

Agent

y_msgStart
y_sSetting
y_#jobsQ1
y_#jobsQ2
y_#jobs1sold
y_#jobs2sold

msgFinish

sysState4Agent

numJobsQ1

numJobsQ2

Decoder

m
sg

S
ta

rt

nu
m

Jo
bs

Q
1

nu
m

Jo
bs

Q
2

m
sg

Fi
ni

sh

re
w

ar
d

R
ew

ar
d

m
sg

S
ta

rt

jo
bT

yp
eI

n
jo

bT
yp

eO
ut

En
co

de
r

msgStart

rIn

sIn

msgFinish

sOut

rOut

isDone

Acceptor

reward

SU_MUS
SU_Agent

SU Mapping

param

Parameters

msgGenJob

m
sg

G
en

Jo
b

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

130

Figure 8 shows the simulation results of the MUS using
a learned control strategy after 5000 episodes.

The event-oriented implementation of the EF compo-
nents was done using SimEvents' Discrete Event Charts,
which call MATLAB functions. This makes the algo-
rithms of the components, such as the learning approach
of the agent, easily interchangeable. In Pawletta and Bar-
telt [6], the algorithms of this experiment are presented
in more detail and the full implementation is available on
Github (FG CEA [4]).

Figure 8. Time trajectories of the queue lengths
computed using the learned strategy of a
self-implemented Q-agent after 5000 epi-
sodes.

2.4 Learning a Strategy Using a
Dedicated RL Toolbox

The MathWorks offers a dedicated RL toolbox for
MATLAB/Simulink (MathWorks [10]). This provides an
agent block for Simulink, which is configured from
MATLAB. Different learning approaches can be config-
ured in the form of agent types as well as hyperparameter
settings. Furthermore, the toolbox provides different
methods, such as a training method called train. In this
experiment we use the Q-learning agent and the train
method of the RL toolbox. It must be noted that the doc-
umentation of the toolbox does not contain any hints or
examples for the use with event-oriented MUS imple-
mented with the SimEvents blockset. According to the
documentation, the agent block of the RL toolbox works
signal-oriented. A signal is in Simulink a time-varying
quantity that has values at all points in time. Accordingly,
the agent block is designed for continuous or discrete-
time models with equidistant sampling.

The top-level structure of the DESM for this SBE is
shown in Figure 9. With the exception of the Triggered
Agent block, the DESM corresponds completely to the
DESM in Figure 7, i.e., all other components of the EF
as well as the MUS were adopted unchanged. Hence,
only the Triggered Agent is discussed below.

Figure 9. Top-level structure of the DESM with
MUS and EF for learning a strategy using
the RL Toolbox of MATLAB/Simulink, and
substructure of the Triggered Agent.

The Triggered Agent, implements a so-called triggered
subsystem and encapsulates the RL agent block of the
toolbox. The inner structure of the Triggered Agent and
the input/output interface of the encapsulated RL agent
are also shown in Figure 9. Analogous to the Agent in the
previous model (cf. Fig. 7), the Triggered Agent is acti-
vated by the Acceptor per event (msgStart) when a new
state st+1 of the RL space (input port sIn) and a new re-
ward value (input port rIn) as well as the boolean isDone
value have been calculated. If isDone is false, the encap-
sulated RL agent calculates the next action value at as
well as updates the cumulative reward value, and then the
Triggered Agent activates the Encoder by event (msgFin-
ish). In the other case, if isDone is true, the encapsulated
RL agent computes the complete data update of the epi-
sode SU_Agent(eoe) and, in contrast to the previous
model, immediately terminates the episode. I.e., the ter-
mination of the episode by the acceptor according to the

msgGenJob

m
sg

G
en

Jo
b

jobTy pe

param

y _msgFinish

y _sSetting

y _#jobsQ1

y _#jobsQ2

y _#jobs1sold

y _#jobs2sold

y _msgStart

y _sSetting

y _#jobsQ1

y _#jobsQ2

y _#jobs1sold

y _#jobs2sold

msgFinish

sy sState4Agent

numJobsQ1

numJobsQ2

Decoder

m
sg

St
ar

t
nu

m
Jo

bs
Q

1

nu
m

Jo
bs

Q
2

m
sg

Fi
ni

sh

re
wa

rd

R
ew

ar
d

jo
bT

yp
eI

n
jo

bT
yp

eO
ut

E
nc

od
er

msgStart

sIn

rIn

msgFinish

msgFinish sOut

rOut

isDone

Acceptor

SU_Agent
y _sSetting
y _#jobsQ1
y _#jobsQ2

reward

sIn

rIn

isDoneSU_Agent

param

Parameters ProdLine

m
sg

St
ar

t

msgFinish
1

1
sIn

2
rIn

3
isDone

2

3

observ ation

reward

isdone

action

cumulativ e reward

Send

SU_Agent

Trigger

action

action

Triggered Agent - Detail

Triggered Agent

Transducer / SU Mapping

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

131

previous example is skipped.
The EC defines the parameters PExM and PSnM, and

calls the RL toolbox specific ExpMeth train, which uses
an RL toolbox specific SimMeth.

3 Conclusions
The integration of discrete-event simulation and RL
methods has a high application potential for both M&S
and AI applications. On the basis of the concept of EF
and the general structure of complex SBE, it has been
shown how a clear methodological separation can be
made so that the MUS, EF, SimMeth, simulator and AI
methods – as ExpMeth – can be developed independently
and reused in different contexts. The methodological
considerations have been practically underpinned by a
case study implemented with MATLAB/Simulink and
the SimEvents blockset.

In particular, the three experiments of the case study
demonstrate that MUS can be developed independently
of their experimental context. As shown, this is also true
when integrating with the RL method. The adaptation to
a concrete experiment can be done by a specific EF,
higher-level ExpMeths and a supervisory EC. The basic
structure of an EF and the communication relationships
in SBE using the RL method were presented.

SBEs in combination with the RL method are charac-
terized by a large number of methodological parameters
and variants of agents. Accordingly, the specification of
such experiment variants and their automated execution
based on the System Entity Structure and Model Base
(SES/MB) approach will be investigated in a next step.

References
[1] Breitenecker, F. (1992) Models, methods and experi-

ments - a new structure for simulation systems. Mathe-
matics and Computers in Simulation, 34(3):231–260.

[2] Carson, Y., and Maria A. (1997) Simulation optimiza-
tion: methods and applications. In Proceedings of the
1997 Winter Simulation Conference, 118-126.

[3] Choo, B., Graham, C., Stephen, A., Dadgostari, F., and
Beling, P.A. (2020). Reinforcement learning from simu-
lated environments: an encoder decoder framework. In
Proceedings of the SCS SpringSim’20 (Virtual) Confer-
ence, 12 pages.

[4] FG CEA (2022). Integration of RL and Discrete Event
Simulation: A Case study using MATLAB/ Simulink/
SimEvents, Wismar Univ. of Applied Sciences Wismar,
https://github.com/cea-wismar.

[5] Pawletta, T. (2019) Specification and execution of simu-
lation models and experiments. Discussion talk at MS
Workshop ‘One simulation model is not enough’, Univ.
of Rostock, Dep. of Computer Science, https://www.cea-
wismar.de/pawel/Forschung/Poster_Slides/2019-04-23-
Presi_FG-CEA_UnivRo-WS_reducedSize.pdf.

[6] Pawletta T., Bartelt J. Integration of Reinforcement
Learning and Discrete Event Simulation Using the Con-
cept of Experimental Frame. In Mota M.M., editor. Eu-
rosim Congress 2023; 2023 Jul; Amsterdam, Nether-
lands. 8 pages (submitted 2022-Dec-30).

[7] Schmidt, A. (2019). Variant management in modeling
and simulation using the SES/MB framework. In Ad-
vances in Simulation, Bd. 30, TU Publisher Vienna (in
German).

[8] Sutton, R.S., and Barto, A.G. (2018). Reinforcement
learning: an introduction – 2nd edition. MIT Press.

[9] The MathWorks (2022-1). SimEvents. https://math-
works.com/simevents/reinforcement-learning.html,
©1994-2022 The MathWorks, Inc.

[10] The MathWorks (2022-2). Reinforcement Learning
Toolbox. https://mathworks.com/products/reinforce-
ment-learning.html, ©1994-2022 The MathWorks, Inc.

[11] Traore, M.K., and Muzy, A. (2006). Capturing the dual
relationship between simulation models and their con-
text. Simulation Modeling Practice and Theory, Elsevier,
14(2006), 126-142.

[12] Zeigler (1976). Theory of modeling and simulation – 1st

edition. John Wiley & Sons.
[13] Zeigler (1984). Multifacetted Modelling and Discrete

Event Simulation. Academic Press.
[14] Zeigler, B.P., Muzy, A., and Kofman, E. (2018). Theory

of modeling and simulation – 3rd edition. Elsevier, Aca-
demic Press.

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

132

