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Abstract.  Reinforcement Learning (RL) is an optimi-
zation method characterized by two interacting enti-
ties, the agent and the environment. The environ-
ment is a Markov Decision Process (MDP). The goal 
of RL is to learn how an agent should act to achieve 
a maximum cumulative reward in the long-term. In 
discrete-event simulation, the dynamic behavior of a 
system is represented in a model (DESM) that is ex-
ecuted via a simulator. The concept of Experimental 
Frame (EF) provides a structural approach to sepa-
rating the DESM into the Model Under Study (MUS) 
and its experimental context. Here, we explore the 
integration of a discrete event MUS as an environ-
ment for RL using the concept of EF. After discussing 
the methodological framework, a case study using 
MATLAB/Simulink and the SimEvents blockset is con-
sidered. The case study starts with an introduction of 
the discrete-event MUS for which a control strategy 
shall be developed. The MUS is reused in three ex-
periments using specific EFs. First, an EF for the de-
sign of a heuristic control strategy with ordinary sim-
ulation runs is presented. Then, based on the meth-
odological approach, specifics of the EF are consid-
ered when using a self-implemented Q-agent and the 
RL toolbox of MATLAB/Simulink. 

Introduction
In modeling and simulation (M&S), a model describes 
the dynamic behaviour of a real or virtual system. The 
execution of the model is performed using a simulator. In 
the versatile use of a model, it should be developed inde-
pendently from the context of use. The reference to a con-
crete experiment can be mapped by an Experimental 
Frame (EF). An EF specifies the conditions under which 
a system is observed or a model experimented with (Zei-
gler [12], Zeigler et al. [14], Traore and Muzy [11]). The 

model used is called the Model under Study (MUS). De-
pending on the EF, the same MUS can be used in differ-
ent experimental contexts, such as a parameter study, 
sensitivity analysis, optimization, etc. The EF and MUS 
form the simulation model (SM). Discrete event simula-
tion models (DESM) are characterized by a finite number 
of states over a continuous time base.

The EF implements the interface for a Simulation-
Based Experiment (SBE). Inspired by Breitenecker’s [1]
approach to structuring SBEs, Pawletta et al. [5] and
Schmidt [7] introduced the concept of Simulation 
Method (SimMeth) and Experiment Method (ExpMeth). 
The SimMeth controls the execution of the simulation 
runs via a simulator and ExpMeths are arbitrary numeri-
cal methods. ExpMeths are used for pre- and post-pro-
cessing or to control the SimMeth, such as in simulation-
based optimization experiments (Carson and Maria [2]; 
Schmidt [7]).

Reinforcement Learning (RL) (Sutton and Barto [8])
in combination with a dynamic system simulation can be 
considered as a SBE. However, RL is an optimization 
method for Markov Decision Processes (MDPs). The 
MDP is modeled as an environment and an agent acts as 
a controller. The goal is to learn how the agent should act 
to achieve a maximum cumulative reward in the long-
term. In contrast to a DESM, an MDP is a discrete time 
process and the time base is only used for the sequential 
ordering of states. Not all states of the MUS are usually 
of interest to the RL. Accordingly, the states of the MUS 
must be converted into MDP-compliant states. Due to the 
methodological differences, the combination of the two 
methods, RL and discrete event simulation, often lead in 
practice to implementations that are difficult to maintain 
and MUS that are not generally usable.
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Here, the practical integration of both methods using
the concept of EF is explored by means of a case study
and using MATLAB/Simulink as well as the SimEvents 
blockset (MathWorks [9]). We start with some basics to 
SBEs, EF, RL and the usage of RL in a SBE. Then, the
MUS is introduced for which a control strategy is devel-
oped. To present the reusability of the MUS in the con-
text of different experiments using specific EFs, we start 
with the design of a heuristic controller. This is followed 
by two experiments on RL-based controller design.

This work is based on Pawletta and Bartelt [6]. More 
details on the theoretical background and related work is 
provided there.

1 Basics  
Based on Pawletta and Bartelt [6], we briefly review the 
basics of structuring SBEs, the RL method, and the use
of RL as a method of an SBE.

1.1 Structuring Simulation-Based 
Experiments 

Schmidt [7] divides SBEs into three classes. We consider 
only the first two classes. The execution of one or more 
simulation runs by a SimMeth constitutes a simple SBE,
if the SimMeth is invoked directly by the user or a super-
visory Experiment Control (EC). An EC defines the goals 
and steps of an experiment and automates the experiment 
execution.

In a complex SBE, the SimMeth is controlled by an 
ExpMeth, for example, by a numerical optimization 
method. Figure 1 shows the basic structure of a complex 
SBE. Both the SimMeth and ExpMeth define process pa-
rameters (PExM, PSnM ).

The EF separates the MUS from a specific context of 
use to improve the reusability of the MUS. Formally, Zei-
gler [13] defines the function of an EF with the tuple.

(1)

T represents the time base, I and O the set of input and 
output variables of the MUS (equivalent to IMUS and OMUS

in Fig. 1), C the set of run control variables, ΩI the set of 
admissible input segments, ΩC the set of admissible con-
trol segments, and SU the set of summary mappings. Set 
ΩI refers to the input variables of the MUS and to the in-
put/output relationships in the EF. Set ΩC defines the ex-
perimental constraints. The experiment objectives are 
mapped to interest variables. Set SU defines the determi-
nation of the interest variables based on the MUS outputs. 

The interest variables are typical output variables of the 
EF. The implementation of an EF is done using three 
types of components, as illustrated in Figure 2 (Zeigler 
[13]; Zeigler et al. [14]). The generator (Gen) initializes 
the configurable parameters of the MUS and calculates 
the input segments for the MUS which can also be inputs 
of the Acceptor (Acc) or Transducer (Trans). The Acc 
defines the admissible control segments and monitors 
their compliance. The output of the Acc is run control in-
formation. The Trans calculates the SU.

Figure 1. Basic structure of a complex SBE. 

Figure 2. Basic structure of a DESM with MUS and 
EF. An EF does not necessarily have to 
contain all three components and the cou-
pling relationships are not fixed. 

1.2 The Method of Reinforcement 
Learning  

According to Sutton and Barto [8], RL focuses on the se-
quential decision-making by an agent that interacts with 
a real or virtual environment. The agent is trained by its 
interactions with the environment. The goal of RL is to 
learn a behavioral strategy : → for the agent that 
assigns an action to each state of the environ-
ment. Thus, the agent can act as a controller for the envi-
ronment. Using RL, a distinction is made between the 
training and deployment of an agent, although the agent 
can continue learning during deployment. The basic RL 
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framework is shown in Figure 3.

Figure 3. Basic RL framework. 
 

In model-free RL, the agent only knows the allowed ac-
tion set at the start of training. The states of the 
environment are . When an action 

takes effect, the environment determines its next 
state t+1 as well as a reward value t+1 using a state tran-
sition model → and reward model 
→ . The next state and the reward value are sent back to 
the agent. The index t marks a sequence of states in the 
sense of a MDP. Through iterative interactions with the 
environment, the agent obtains information about possi-
ble states of the environment and the benefits of actions, 
gradually improving its behavioral strategy . A variety 
of different learning strategies have been developed for 
RL agents such as Q-learning, Deep Q Networks etc.

We briefly consider Q-learning that uses formula (2)
to learn a strategy using a table function called the Q-
matrix. A matrix element represents the esti-
mated benefit of an action when it is performed in the 
state of the environment. The updated value 
of the current state/action tuple is calculated from 
the previous value, the currently received re-
ward , and the maximum Q-value ( )

of all possible actions in the currently received next state 
. The variables and are hyperparameters, i.e. they 

must be defined before training, but can still be adjusted 
during training.

 

The training takes place in independent episodes. Each 
episode starts in an initial state of the environment and 
ends when a target state or abort state is 
reached. At the beginning of the training, the agent se-
lects an action randomly. This is called explora-
tion. As the learning process progresses, the agent in-
creasingly uses the knowledge it has acquired to select an 
action which is called exploitation. The ratio of explo-
ration to exploitation is adjusted over the course of the 
training. After the completion of a defined number of ep-
isodes, the behavioral strategy is derived from 

the training data.

1.3 Integrating Reinforcement Learning 
into a Simulation-Based Experiment 

When integrating RL and dynamic system simulation, the 
MUS forms the environment for the RL agent. The goal 
of such an SBE is

to learn the best possible behavioral strategy of the 
agent,
to extract this strategy from the training data, and
to use it as a controller for the MUS.

The first two items are defined with an ExpMeth training
that controls a SimMeth to execute simulation runs. The 
ExpMeth training contains the following basic steps:

Set the RL-specific experiment parameters PExM 
such as the learning rate, exploration rate, maximum 
number of episodes, Q-matrix etc.
Set the simulation execution parameters PSnM for the 
SimMeth, such as the simulator to be used, the simu-
lation time interval etc. 
Set the DESM parameters for the EF and the MUS and 
prepare the DESM for executing using a SimMeth.
Initialize statistical variables, such as those used to 
record the total reward per episode etc,
Compute the defined number of episodes, i.e. call the 
SimMeth into a loop to execute the DESM, update the 
statistical variables after each episode, and check 
whether to abort the training or continue with another 
episode.
Determine and save the best policy π, and plot essen-
tial learning results.

Figure 4 shows the basic structure of a DESM with an EF 
for RL in the training phase. The variables τ and t repre-
sent the different time bases. τ is the continuous time of 
the MUS and t the discrete time for ordering the sequen-
tial states of the RL. The input variables IEF are initialized 
at the simulation start time τ0, at the beginning of an epi-
sode. Results are get back via OEF at the end of an episode 
(eoe).

The Gen is subdivided into three subcomponents. 
Gen.GMUS initializes the parameters of the MUS at τ0 and 
calculates input segments ΩI for the MUS inputs IMUS(τ)
over the course of an episode. Gen.Agent maps the RL 
agent. It is part of the Gen because its output, an action
at, inputs of the MUS. The agent's parameters 
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are initialized via the input interface IEF(τ0). In addition 
to the ordinary agent inputs’ new state st+1 and the reward 
value rt+1, the third input isDonet+1 is a Boolean value 
that signals the end or cancellation of an episode. At the 
eoe, the agent creates a summary mapping SUAgent that
contains RL-specific values such as the number of steps,
the total reward, or the strategy learned so far (e.g. the 
Q-matrix). The SUAgent is passed to the Trans. Gen.En-
coder defines a mapping i(τ)=h(at) to transform a single 
action value at into MUS compatible input values i(τ)
IMUS(τ) as introduced by Choo et al. [3].

Figure 4. Basic structure of a DESM with a MUS 
and EF for RL in the training phase. 

 
The Trans is also subdivided into three subcomponents.
Trans.Decoder defines (i) the calculation of the interest 
values O’MUS(t+1) from the current outputs OMUS(τ) of the 
MUS related to the time base of the RL (i.e. 
O’MUS(t+1)=f(OMUS(τ))), and transformation of the interest 
values O’MUS(t+1) to a state st+1 in the RL space (i.e.
st+1=g(O’MUS(t+1))). Thus, all interest values of the MUS 
are mapped into one state for the RL and for each partic-
ular interest value there is only one corresponding state 
in the RL space (Choo et al. [3]). The Trans.Reward-
model maps the reward calculation. The reward value 
characterizes a state transition st→ st+1 in the RL space.
Defining the reward calculation is sometimes a difficult 
problem. Our own experiments showed that the reward 
value can sometimes be computed very efficiently based 
on the O’MUS(t+1) values. The component Trans.SUmap-
ping implements the overall SU of an episode and passes 

it at the eoe to the output OEF.
The Acc checks compliance with the constraints for 

the episode using defined run control information. Run
control variables can be initialized via IEF(τ0). Typical run 
conditions to be monitored include the simulation inter-
val [τ0, τfinal] of the MUS and thus the maximum duration 
of an episode, the detection of illegal states or the reach-
ing of a target state. The Acc checks all the relevant quan-
tities and sets the isDone value, before sending the tuple 
(st+1, rt+1, isDonet+1) to the Gen.Agent.

When deploying a learned strategy, we have to distin-
guish whether it is used with or without further learning 
of the agent. For an experiment deployment without
training the EF simplifies as shown in Pawletta and Bar-
telt [6]. No explicit ExpMeth is required. The SimMeth 
is called directly in the EC according to the number of 
simulation runs to be executed.

2 Case Study 
The basic implementation of the approach to integrate RL 
and discrete-event simulation introduced in Section 1.3 
will be demonstrated by a case study using 
MATLAB/Simulink and the SimEvents blockset. The 
objective is to develop a control strategy for a MUS with 
discrete-event dynamics. First, the most general possible 
modeling of the MUS, i.e. without concrete references to 
an experiment, is discussed. Then, the same MUS is used 
in three experiments using different EFs: (i) to design a
heuristic strategy, (ii) to learn a strategy with a self-im-
plemented Q-agent, and (iii) to learn a strategy using 
MathWorks’ dedicated RL toolbox (MathWorks [10]).

2.1 Model Under Study and General 
Objectives of the Control Design 

The MUS is a simple server line consisting of an entity 
generator, a convertible operating unit, and two down-
stream servers connected in parallel with separate input 
queues as shown in Figure 5. The operating unit can pro-
cess two types of entity (jobType=1 | 2). A separate pro-
cessing time can be defined for each entity type (procT1, 
procT2). A retooling time (retoolingT) is necessary when 
the entity type is changed in the operation unit. The cal-
culation of the type of entity and retooling time depend-
ent processing time is done during simulation runtime us-
ing two Simulink functions (not shown in Fig. 5). After 
processing, branching into one of the two FiFo queues of 
the downstream servers takes place depending on the en-
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tity type. The downstream servers have different pro-
cessing times (saleT1, saleT2). The definition of the dif-
ferent time values is determined by a value vector 
param=[procT1, procT2, retoolingT, saleT1, saleT2] at 
input port3 at the simulation start time τ0. Entities are 
generated via input events (msgGenJob) at input port1. 
The entity type (jobType) to be generated follows on 
from the value at input port2. After an entity has been 
processed in the operating unit, the MUS generates an 
output event (y_msgFinish) at output port1. Furthermore, 
the current tool setting (sSetting) of the operating unit, 
the current queue lengths (y_#jobsQ1, y_#jobsQ2), and 
the number of completed entities on the downstream 
servers (y_#jobs1sold, y_#jobs2sold) are output as data 
from port2 to port6. Hence, input set IMUS and output set 
OMUS are defined by:

IMUS  ={msgGenJob(τ), type(τ), param(τ0)}
OMUS={y_msgFinish(τ), y_sSetting(τ), 
             y_#jobsQ1(τ), y_#jobsQ2(τ),
             y_#jobs1sold (τ), y_#jobs2sold(τ)}

Figure 5. Structure of the MUS in SimEvents 
 

The MUS represents the dynamic system behavior inde-
pendent of a concrete experiment. The goal of the follow-
ing experiments is to design a controller with the best 
possible injection strategy of the two entity types into the 
MUS so then the queues have the most balanced stock of 
both types available for the downstream servers.

2.2 Designing a Heuristic Strategy 
The top-level structure of the DESM for designing a heu-
ristic control strategy is shown in Figure 6. The MUS 

named Prodline implements the input and output inter-
face described in Section 2.1 with IMUS(τ) and OMUS(τ).
The IEF / OEF of the EF are not visible on the top-level 
structure of the DESM. This interface is realized via
workspace variables. The EF consists of five compo-
nents, of which Parameters, Controller and Encoder
form the generator Gen according to Figure 2. With the 
exception of the Encoder, the components of the EF op-
erate purely signal-oriented.

Figure 6. Top-level structure of the DESM with 
MUS and EF for designing a heuristic con-
trol strategy, and substructure of the En-
coder block 

The Transducer monitors the signal-oriented outputs of 
the MUS, maps the variables of interest O'MUS for this ex-
periment in a vector yDec=[sSetting, #jobsQ1, #jobsQ2],
and provides the vector as output variable. Moreover, the 
Transducer generates the SU mapping, by providing the 
time trajectories of the O'MUS quantities as EF outputs OEF

via the data workspace.
The Acceptor controls the termination of the simula-

tion after a specified time interval [τ0, τfinal] has elapsed.
It evaluates the interest variables #jobsQ1 and #jobsQ2
and terminates the simulation run abnormally if the dif-
ference between the two quantities exceeds a maximum 
value.

The Controller implements the heuristic strategy. It 
determines the next entity type to be generated based on 
the current values of the interest variables received by the 
Transducer. The goal is to minimize the difference be-
tween the two queue contents (#jobsQ1 and #jobsQ2)
while respecting the current tool setting (sSetting). The 
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result is passed on as a signal (jobType) to the Encoder.
The Encoder works event-driven (see Fig. 6). If the 

operation server of the MUS is free, it sends an event 
y_msgFinish to the Encoder. Thereupon the Encoder
sends an event msgGenJob to the MUS and forwards the 
signal jobType that codes the entity type to be generated. 
At the start of a simulation run, the Encoder generates the 
initial input event msgGenJob and sets the entity type 
(jobType=1) to be generated for the MUS. Parameters
generates the constant input segments for the MUS vec-
tor param for initializing the MUS parameters.

This is a simple SBE. The EC defines the parameters 
PSnM to be varied and directly calls the SimMeth to exe-
cute simulation runs.

2.3 Learning a Strategy Using a Self-
Implemented Q-Agent 

The top-level structure of the DESM for this SBE is 
shown in Figure 7. The identical MUS named Prodline is 
integrated into an RL-specific EF according to Figure 4.
As in the previous experiment, the EF interface (IEF /OEF)
is implemented via Workspace variables. Parameters,
Agent and Encoder form the generator Gen, and Decoder,
Reward as well as SU Mapping form the transducer 
Trans (cf. Fig. 2). To learn a strategy, the agent requires 
unique state-action tuples (st, at) as well as associated 
next state st+1 and reward values rt+1. Hence, the two time 
bases t and τ were introduced in Subsection 1.3 for the 
EF and the MUS. Accordingly, the components of the EF 
are implemented event-oriented, with the exception of 
Parameters and SU Mapping. The component Parame-
ters is identical to the previous experiment.

At simulation start time τ0, an episode is started by the 
Agent sending an event msgGenJob and setting an action 
value at={1|2} at the output port action. In this case, the 
outputs of the Agent are compatible with the inputs of the 
MUS in value and timestamp with respect to the global 
simulation clock. Hence, the Agent’s outputs are only 
forwarded by the Encoder to the MUS ProdLine that gen-
erates a new entity with jobType=action value.

When an entity has completed on the operation unit, 
an output event y_msgFinish(τ) is sent from the MUS to 
activate the Decoder and study-specific output data(τ) is 
passed signal-oriented to the SU_Mapping for trajectory 
recording. The Decoder selects the information relevant 
to the RL from the MUS outputs(τ) and calculates the new 
state st+1 of the RL space. To limit the RL space, the De-
coder truncates the two queue contents (#jobsQ1 and 
#jobsQ2) to a maximum length. The new state st+1 is thus 

calculated from the two limited queue contents and the 
current tool setting (sSetting) of the operating unit, and 
output at the port sysState4Agent.

Figure 7. Top-level structure of the DESM with 
MUS and EF for learning a strategy using a 
self-implemented agent component. 

After decoding, the reward calculation is activated by 
an event msgFinish. Contrary to the general approach, the 
reward is not calculated using the RL-related state 
but on the basis of MUS-related interest variables 
O’MUS(t+1), in this case #jobsQ1 and #jobsQ2. In terms 
of content, both approaches are identical but the second 
one resulted in a much better structured reward computa-
tion.

After the reward calculation, the Acceptor is activated 
by an event msgFinish. In this experiment, no constraints 
are defined for st+1 and rt+1, so they are only passed to the 
Agent. Only a control segment is defined for the simula-
tion time interval [τ0, τfinal], which specifies the length of 
an episode. At the termination of an episode, the Accep-
tor schedules an internal event with an infinitesimal time 
advance. The time delay is necessary for data updates in 
the Agent and SU_Mapping at the end of an episode. The 
Acceptor activates the Agent via an event msgFinish and 
signals using the boolean variable isDone whether the 
end of an episode (eoe) has been reached or not.

The Agent evaluates the boolean isDone value. If is-
Done is false, it executes its learning rules, calculates a 
new action value, and generates an output message 
msgFinish to activate the Encoder. In case of isDone is 
true it performs a data update SU_Agent(eoe) and the ep-
isode is terminated by the Acceptor.

This is a complex SBE. The EC defines the parameters 
PExM and PSnM (cf. Fig. 1), and calls an ExpMeth training
as described in Subsection 1.3, which calls the SimMeth 
in a loop to execute the DESM for one episode at a time.
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Figure 8 shows the simulation results of the MUS using 
a learned control strategy after 5000 episodes.

The event-oriented implementation of the EF compo-
nents was done using SimEvents' Discrete Event Charts,
which call MATLAB functions. This makes the algo-
rithms of the components, such as the learning approach 
of the agent, easily interchangeable. In Pawletta and Bar-
telt [6], the algorithms of this experiment are presented 
in more detail and the full implementation is available on 
Github (FG CEA [4]).

Figure 8. Time trajectories of the queue lengths 
computed using the learned strategy of a 
self-implemented Q-agent after 5000 epi-
sodes. 

2.4 Learning a Strategy Using a 
Dedicated RL Toolbox 

The MathWorks offers a dedicated RL toolbox for 
MATLAB/Simulink (MathWorks [10]). This provides an 
agent block for Simulink, which is configured from
MATLAB. Different learning approaches can be config-
ured in the form of agent types as well as hyperparameter 
settings. Furthermore, the toolbox provides different 
methods, such as a training method called train. In this 
experiment we use the Q-learning agent and the train
method of the RL toolbox. It must be noted that the doc-
umentation of the toolbox does not contain any hints or 
examples for the use with event-oriented MUS imple-
mented with the SimEvents blockset. According to the 
documentation, the agent block of the RL toolbox works 
signal-oriented. A signal is in Simulink a time-varying 
quantity that has values at all points in time. Accordingly, 
the agent block is designed for continuous or discrete-
time models with equidistant sampling.

The top-level structure of the DESM for this SBE is 
shown in Figure 9. With the exception of the Triggered 
Agent block, the DESM corresponds completely to the 
DESM in Figure 7, i.e., all other components of the EF 
as well as the MUS were adopted unchanged. Hence,
only the Triggered Agent is discussed below.

Figure 9. Top-level structure of the DESM with 
MUS and EF for learning a strategy using 
the RL Toolbox of MATLAB/Simulink, and 
substructure of the Triggered Agent. 

The Triggered Agent, implements a so-called triggered 
subsystem and encapsulates the RL agent block of the 
toolbox. The inner structure of the Triggered Agent and 
the input/output interface of the encapsulated RL agent 
are also shown in Figure 9. Analogous to the Agent in the 
previous model (cf. Fig. 7), the Triggered Agent is acti-
vated by the Acceptor per event (msgStart) when a new 
state st+1 of the RL space (input port sIn) and a new re-
ward value (input port rIn) as well as the boolean isDone
value have been calculated. If isDone is false, the encap-
sulated RL agent calculates the next action value at as 
well as updates the cumulative reward value, and then the 
Triggered Agent activates the Encoder by event (msgFin-
ish). In the other case, if isDone is true, the encapsulated 
RL agent computes the complete data update of the epi-
sode SU_Agent(eoe) and, in contrast to the previous 
model, immediately terminates the episode. I.e., the ter-
mination of the episode by the acceptor according to the 
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previous example is skipped.
The EC defines the parameters PExM and PSnM, and 

calls the RL toolbox specific ExpMeth train, which uses 
an RL toolbox specific SimMeth.

3 Conclusions 
The integration of discrete-event simulation and RL 
methods has a high application potential for both M&S 
and AI applications. On the basis of the concept of EF 
and the general structure of complex SBE, it has been
shown how a clear methodological separation can be 
made so that the MUS, EF, SimMeth, simulator and AI 
methods – as ExpMeth – can be developed independently 
and reused in different contexts. The methodological 
considerations have been practically underpinned by a 
case study implemented with MATLAB/Simulink and 
the SimEvents blockset.

In particular, the three experiments of the case study 
demonstrate that MUS can be developed independently 
of their experimental context. As shown, this is also true 
when integrating with the RL method. The adaptation to 
a concrete experiment can be done by a specific EF, 
higher-level ExpMeths and a supervisory EC. The basic 
structure of an EF and the communication relationships 
in SBE using the RL method were presented.

SBEs in combination with the RL method are charac-
terized by a large number of methodological parameters 
and variants of agents. Accordingly, the specification of 
such experiment variants and their automated execution 
based on the System Entity Structure and Model Base 
(SES/MB) approach will be investigated in a next step.
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