
Simulation-based Verification of Functions for
Autonomous Drones

Hamza Ghezali2, Siddhartha Gupta2, Umut Durak1

1Institute of Flight Systems, German Aerospace Center (DLR), Lilienthalplatz 7, 38108 Braunschweig, Germany
2Institute of Informatics, Clausthal University of Technology, Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Ger-
many

Abstract. Theworld is witnessing considerable interest
and a rapid shift towards the autonomous aerial domain.
Aerial robotics brings a lot of solutions to some existing
problems and has benefits in many fields, such as trans-
portation of people and goods, navigation, military de-
fence, games, agriculture and so on. Small aerial robots,
also known as drones, have critical applications due to
their flexibility and suitable small size. Developing these
small electronic devices is an arduous task involving care-
ful planning and testing. In addition, Their development
and delivery to end users should not only be finished in
a shorter amount of time and also with high liability. One
of the main concepts to address this issue is using a new
testing technique called Behavior Driven Development
(BDD). This work uses BDD in component-based software
engineering for aerial robotics as an agile technique. This
testing approach offers an exciting method to write dif-
ferent possible scenarios in simple, easy-to-read, and un-
derstandable feature files. An example of applying this
method for drone application development with Robot
Operating System and Gazebo is shown in this paper.

Introduction

We live in a time where "flying robots" are no longer

only in science fiction movies. In the beginning, aerial

robots were mainly considered for military surveillance,

but currently, they have a vital role in targeting and spe-

cial missions. Over time their involvement in the civil-

ian domain has drastically increased. Some examples

are aerial photography, remote sensing, agricultural and

wildlife surveys, disaster response, and delivering prod-

ucts. Aerial robots are complex Cyber-Physical Sys-

tems (CPS) with various kinds and many sensors, actu-

ators, controllers, and communication systems. Robot

Operating Systems (ROS) is a framework for large-

scale robotic applications which offers a peer-to-peer

communication infrastructure. It uses a central broker

for service registration and discovery [1]. It is becoming

a famous architecture for developing software compo-

nents and aerial robotics. Some of the recent studies on

the utilisation of ROS for aerial robotics include ([2];

[3]; [4]; [5]). There are testing strategies developed in

the industry for ROS-based robotics software already

([6]; [7]; [8]). Most of them follow the Test Driven De-

velopment (TDD) approach, which has its roots in ag-

ile methods [9]. Modern software engineering practices

tend to remove disconnects among its activities by em-

ploying continuous practices to achieve agile processes.

After Test-Driven Development (TDD) bridged the gap

between implementation and testing, Behavior Driven

Development (BDD) aims at the gap between the end-

user and the implementation. It establishes a practice

based on behavior specifications from the end-user’s

perspective. It builds upon TDD and promotes a ubiq-

uitous semi-formal language for the specification of be-

havior that is accessible to all the stakeholders of the

system. BDD aims to come up with an executable and a

human-readable specification of the system, which can

be used for automated acceptance testing. There is a

growing interest in the aerial robotics domain towards

agile software engineering methods. However, being

complex Cyber-Physical Systems, system-level testing

of aerial robots requires closed-loop simulation-based

approaches [10]. Gazebo is an open-source robot sim-

ulator for developing algorithms, designing robots, per-

forming tests, or training AI systems using realistic sce-

narios ([11]; [12]). Gazebo-ROS integration has also

been developed in the last decade [13]. It has then been

used also for simulations of aerial robotics ([14]; [15];

[16]; [2]). This paper will present an approach that in-

tegrates BDD with Gazebo to enable agile simulation-

based verification of ROS-based applications for aerial

robotics.

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

ARGESIM Report 21 (ISBN 978-3-903347-61-8), p103-113, DOI: 10.11128/arep.21.a2118 103



1 Background

1.1 Behavior Driven Development

BDD is defined as "implementing an application by de-

scribing its behavior from the perspective of its stake-

holders" [17]. It promotes a ubiquitous semi-formal

language for the specification of behaviors that is ac-

cessible to all the stakeholders of the system. It is struc-

tured around features, which can be defined as the sys-

tem’s capabilities that benefit its users. A feature is usu-

ally described in BDD by a title, a brief narrative, and

a number of scenarios that serve as acceptance crite-

ria. Scenarios are concrete examples to illustrate the

desired behaviors of the system. When the concrete

examples are executable, they turn the criteria into an

acceptance test. BDD calls this automated acceptance

testing. The ubiquitous language idea is based on Evans

[18], who stresses that the linguistic divide or the lan-

guage fracture between the domain expert and the tech-

nical team leads to only vaguely described and vaguely

understood requirements. Gherkin is the common lan-

guage for writing features [19]. While it is not a Tur-

ing Complete language, it has a grammar enforced by a

parser. Each Gherkin feature may contain an arbitrary

number of scenarios, which serve as acceptance criteria

for the feature. A scenario typically consists of multiple

steps describing the actions needed to stimulate the sce-

nario and check the outcome. The steps of a scenario

are distinguished into three different classes.

• Given prefaces, a step describes some initial state of

the application or the world surrounding the applica-

tion.

• When introducing a mutation of state on the applica-

tion or the world. Often this can also be described as

the occurrence of an event.

• Then is used to describe an expected result after the

arrival of an event in a prior When step.

1.2 Behave Framework

Behave [20] is a framework written in python to per-

form BDD and allows the development of test cases us-

ing the Gherkin language. Behave is opiated on source

file organisation where a test case is placed inside the

directory feature. Multiple features can be put into dif-

ferent files having the extension .feature. A feature may

have multiple steps, and those step implementations re-

side in a nested directory called steps. A background

consists of a series of steps like scenarios. It allows

you to add some context to the scenarios of a feature.

A background is executed before each scenario of this

feature but after any before hooks. The background de-

scription is for the benefit of humans reading the fea-

ture. Again, the background name should be a descrip-

tive yet brief title, illustrating the background opera-

tion being performed or the requirement being met. A

background section may exist only once within a fea-

ture file. In addition, a background must be defined

before any scenario or scenario outline. Scenarios de-

scribe the discrete behaviours being tested. They are

given a title, like backgrounds and the scenario descrip-

tion, for the benefit of humans reading the feature text.

Scenario outlines may be used when you have expected

conditions and outcomes to go along with your scenario

steps. An outline utilises placeholders in the step defi-

nition, replaced by values from a table. You may have

several example tables in each scenario outline. Steps

take a line each and begin with a keyword - one of

"Given", "When", "Then", "And", or "But". In a formal

sense, the keywords are all Title Case, though some lan-

guages allow all-lowercase keywords where that makes

sense.

1.3 Robot Operating System (ROS)

ROS is an open-source meta-operating system to ease

the process of building a robot. ROS shares similari-

ties with traditional operating systems by having pro-

cess management and scheduling features. "It provides

a structured communications layer above the host oper-

ating systems of a heterogeneous compute cluster" [21].

ROS is currently one of the most popular platforms for

the collaboration of robotics solutions. The key con-

cepts in ROS are nodes, ROS master, topics, messages

and services.

Nodes: They are the smallest functional unit inside

ROS architecture. They execute a particular functional-

ity and help to achieve modularity. They can be thought

of as processes. Just as a normal operating system man-

ages processes and their communication, ROS manages

nodes and communication between them.

Messages: Nodes communicate through messages.

ROS has over 200 predefined messages that may con-

tain simple values and more complex data like text, im-

ages, etc. Users also can create their messages.

ROS master: ROS supports a peer-to-peer network

of ROS nodes which communicate through messages.

There is an individual node called ROS master, which

maintains the registry of all the active nodes in the net-

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

104



work. It also contains a parameter server which any

node can use to store and access the global state. It

acts as a lookup service for information on the nodes

and the communication between them. A visual repre-

sentation of a ROS parameter server can be seen below.

The diagram shows that multiple nodes like camera and

GNSS are running together in the case of a standard

robotic system. The ROS master is aware of all the

nodes and their communication. The communication

between nodes takes place in two ways:

Client Based: This is similar to a client-server architec-

ture where a node will send a request to another node

for particular information. The server node will send

the required information back to the client. This client-

server system can be realised in two ways – services

and actions –. The use of services is generally more

common compared to actions. The major difference be-

tween the two is that services are synchronous, and the

client node will wait for the server to send back the in-

formation before it continues its process. In contrast, in

actions, the client node will not wait for the server re-

sponse and continue processing.

Pub-Sub: Another method for the nodes to commu-

nicate with each other is through topics. A topic is a

channel which acts as a pipe where a publisher can send

information that a subscriber can access. There is no re-

quest, but new information is shared until the subscriber

node has subscribed to a particular topic. This method

of communication is the most common in ROS commu-

nication.

1.4 Gazebo Simulator

Gazebo is a simulator for robot research that is

closely tied to ROS for simulating robots’ behaviour

([11];[12]). Its main features include:

• A real-time physics engine which makes use of vari-

ous technologies like ODE, Bullet, simbody and DART

• High-quality graphics making use of the OGRE en-

gine.

• Rich set of sensors and plugins with noise generation

and direct access to the Gazebo API.

The two essential executables of Gazebo are – gzserver

and gzclient. The gzserver is responsible for the

physics, the engine and sensor generation. The gz-

client is responsible for the graphical user interface, the

command line interface and the custom applications.

The key elements required for a gazebo simulation are

worlds, models, and plugins. The world consists of a

scene, physics, models, plugins and light in a .world

file using the Simulation Description Format (SDF). It

consists of the environment in which Gazebo executes a

particular simulation. The gzserver loads it. Models are

also described in an SDF, but it includes the description

of a single model like a drone. Another vital element

is plugins. They define custom behavior - especially at

the startup of other elements of the Gazebo simulation

- and allow communication interface with external pro-

grams like ROS nodes. There are six types of plugins:

world, model, sensor, visual, GUI and system, each cor-

responding to a particular kind of simulation element

and its role. Currently, Gazebo supports plugins to be

written in C++.

2 Simulation Based Verification
using BDD and Gazebo

Aerial robots, like other CPS, are composed of net-

works of computers, sensors, and actuators. The soft-

ware is usually used coupled with other software, net-

worked sensors, and actuators, so it cannot be tested in

isolation. Therefore, the testing process must enclose

interaction with other components and the physical en-

vironment. Simulation-based testing utilises compo-

nent and environment virtualisation [22], which enables

convenient means of signal manipulation and behavior

monitoring. The X-in-the Loop (XiL) testing describes

different configurations for simulation-based verifica-

tion. XiL environments provide interfaces to the sys-

tem under test. The idea is to embed the system un-

der test in a synthetic environment. Input vectors sim-

ulate data signals to an algorithm or a system, and the

processed output values are monitored. A unique fea-

ture of XIL testing is the possibility to use the same

stimulus for different configurations, and the behavior

is directly comparable. Two XIL examples would be

Software-in-the-Loop (SiL) and Hardware-in-the-Loop

(HiL) testing. SiL testing executes the code within a

simulated feedback loop, essentially on the develop-

ment environment. It is non-real-time and targets func-

tional verification. HiL is the testing of the executable

on the target platform in a real-time setting. Beyond

functional requirements, it also enables the validation

of non-functional requirements. A common practice

in aerial robotics is to have a dedicated flight control

system and a companion computer for onboard mis-

sion management. There is a strong trend in the aerial

robotics community around open-source flight control

systems, particularly PX4 [23]. Its system architecture

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

105



allows a native integration to ROS using Micro Air Ve-

hicle Link (MAVLink) [24]. PX4 further provides capa-

bilities to make both SIL and HIL testing with Gazebo

using PX4 SITL [25]. Using this infrastructure, exe-

cuting the features defined in Gherkin using Behave to

test ROS nodes with the flight control system and the

physics-based simulation in Gazebo is possible.

Figure 1: SITL test architecture

Figure 1 presents a simplified representation of the

architecture for SIL testing. Typically, all the ele-

ments of the SIL test architecture are on the develop-

ment computer and connected via UDP. PX4 SITL uses

Gazebo with a plugin which provides a MAVLink con-

nection. The specific configuration of the PX4 SITL

then enables the flight control system to run in a simu-

lation mode using firmware generated explicitly for this

environment. Behave runs the step scripts executing

the Gherkin feature files on the test harness side and

exercises the ROS Node Under Test functions. PX4

supports the integration to ROS via MAVROS [26].

MAVROS is a ROS package that enables the connec-

tion of ROS deployments to MAVLink-enabled flight

control systems, such as PX4 [27]. The test harness

then utilises MAVROS to connect to the flight control

system. Based on the test requirements, other ROS

nodes or interactions may exist between the test harness

and Gazebo. A representative case to demonstrate the

utilisation of the proposed approach would be testing a

ROS node whose goal is to publish data from a distance

sensor. The Hokuyo sensor is used for ground prox-

imity tracking to prevent controlled flight into the ter-

rain. One of the requirements of the Hokuyo ROS node

could be written in natural language as follows: Hokuyo
node shall provide the drone altitude above ground level
when the drone is flying higher than 0.2 meters and
lower than 14 meters above the ground level. It is then

possible to specify this requirement with three scenar-

ios—examples of these scenarios as Gherkin features

are in Figure 9.

2.1 Data Flow between ROS nodes

The diagram in figure 2 demonstrates the different ROS

nodes, the data flow between them, and how these nodes

interact to obtain the desired data. The diagram consists

of four nodes:

1- ROS Master node: It represents the node responsi-

ble for registering and controlling all the other nodes to

facilitate communication between them.

2- Laser scan node: This node publishes the drone al-

titude data received from Laser

3- GPS node: This node publishes the drone altitude

data received from GPS

4- Processing node: This node subscribes to both the

drone altitude data received from Laser and GPS and

uses this information to control the drone accordingly.

3 Implementation steps

3.1 First step: Adding Hokuyo LIDAR sensor
to the drone

To add the Hokuyo sensor to the drone 1, the following

snippets have been added to the SDF file of the drone.

The first is used to link it to the body of the drone, as

shown in figure 3; the second shows its topic name,

"/spur/laser/scan”, as shown in figure 4, and the third

contains its characteristics shown in figure 5.

The added sensor was rotated 90 degrees using pose

coordinates so that the Hokuyo beams could be directed

vertically to detect the ground, as shown in figure 6. The

Hokuyo LIDAR publishes its data or distance to obsta-

cles via a rostopic named "/spur/laser/scan" as seen in

figure 4 in the topicName tag under the plugin tag.

3.2 Second step: Control the drone (Ground
detection, change mode, arm, takeoff
and land)

3.2.1 Ground detection

There are two ways, in our case, to detect the ground:

The Hokuyo sensor sends a range of 1024 beams (i.e.

of type array) in different directions, shown in figure 6

1Gazebo Add a Sensor to a Robot:

https://classic.gazebosim.org/tutorials

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

106



Figure 2: data flow between ROS nodes via ROS topics and services.

Figure 3: The SDF snippet used to attach the Hokuyo LIDAR to
the drone’s body using the joint tag.

Figure 4: The Rostopic name through which Hokuyo
publishes its data

as thin blue lines. This work aimed to detect the ground

after being hit with some beams sent by the Hokuyo LI-

DAR.

There are two ways to perform this detection task:

• First method (using the minimum of the 1024 beams):

This solution can only work if the drone is flying in

a clean environment without obstacles, such as trees,

buildings, or other obstacles. Suppose there are any ob-

stacles inside the maximum range of the LIDAR; then,

the minimum distance represents the distance to the

closest obstacle relative to the drone. For this reason,

the second method solves this problem.

• Second method (using the index of the beam directed

the vertically to the ground):

After a short time, when the drone takes off, all the dis-

tances corresponding to the 1024 indexes of the array

were printed to figure out which one represents the min-

imum, knowing there were no obstacles around to avoid

mistakes in detecting other objects than the ground. Af-

ter multiple tests, it was found that the index for hitting

the ground vertically is index number 256.

Since the environment is clean and no obstacles exist

nearby, we used the min() function for ground detec-

tion.

3.2.2 Change mode, arm, takeoff and land

The first step was to get the published

distance LIDAR data sent from the sen-

sor by subscribing to its rostopic using

rospy.Subscriber(’/spur/laser/scan’,
LaserScan,scan_callback,queue_size=10)
A callback function named "scan_callback" was

defined to implement and write the code based on three

conditions (figure 7):

• Distance sensor altitude of the drone less than 0,2m:

Three functions corresponding to three commands are

called to change the mode to offboard or guided mode,

arm the drone, and then takeoff.

• Distance sensor altitude of the drone between 0,2m

and 20m: In this case, the drone is considered to be

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

107



Figure 5: The SDF snippet used to add the Hokuyo LIDAR to
the drone using the link tag

Figure 6: Hokuyo beams directed vertically to detect the
ground

flying in the desired range· therefore, no action needs

to be taken.

• Distance sensor altitude of the drone higher than

20m: A function corresponding to the land command

is called if the received altitude is higher than the

maximum altitude of 20m.

3.3 Qgroundcontrol as visualisation tool

Qgroundcontrol 2 was used to visualise the status

of the drone (figure 8). It is helpful software that can

be used to configure PX4 parameters and mission plan-

ning. It shows valuable information about the drone,

such as altitude, location, connection status, and errors

as notifications (written as well as audio notifications),

which helps the user or the developer to detect and see

errors and problems hidden in the code and correct them

very quickly.

3.4 Third step: Gherkin scenarios in a feature
file and their implementation as steps in
python

As represented in figure 9, the feature file contains dif-

ferent scenarios; each scenario consists of three main

keywords: Given, When and Then. The meaning of

these are briefly explained below 3:

• Given: It is represented by the keyword Given in the

.feature file. It means under a certain situation or state

• When: It is represented by the keyword When in the

.feature file. It means when a certain condition or event

is met

• Then: It is represented by the keyword Then in the

.feature file. It means a specific outcome must occur as

a result.

3.4.1 Implementation of "Given" Hokuyo
LIDAR distance sensor node running

//rework In this work, the initial situation is to check

whether the Hokuyo LIDAR node is running i.e. it

is publishing the LIDAR distance data. A bash script

checks whether or not the LIDAR topic is publishing

data(figure 11). In other words, it appears in the output

of the "rostopic list" command. Searching the output

of the latter command and greping the Hokuyo LIDAR

2QGroundControl User Guide: https://docs.qgroundcontrol.com/master/en/
3Gherkin Reference: https://cucumber.io/docs/gherkin/reference/

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

108



Figure 7: Sequence diagram showing the flow of commands to control the drone.

Figure 8: Picture of the QGroundControl GUI

topic name "/spur/laser/scan". If the script finds it ex-

its successfully with 0, otherwise, it exits with another

value and the checking for the node running test fails.

3.4.2 implementation of "When" events
(three event possibilities) and "Then"
their expected corresponding outcomes

The task was to check and test three possibilities of

the drone altitude:

• First event when the drone is under 0.2m: In this case,

the altitude received from the Hokuyo sensor must be

minus infinity

• Second event when the drone is flying between 0.2m

and 14m: In this case, the difference between the alti-

tude received from the Hokuyo sensor and the one ob-

tained from GPS must be less than 0.30m

• Third event when the drone is flying above 14m: In

this case, the altitude received from the Hokuyo sensor

must be plus infinity

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

109



Figure 9: Gherkin scenarios.

4 Results and Discussion

As shown in the output of the behave tests for the

3 cases mentioned before (lower than 0,2m, between

0,2m and 14m, and higher than 14m), only one event

test case should run successfully at a time. The other

two test cases must fail because the drone can only be

in one of the 3 cases mentioned above (figure 10).

// Rewite For the Test whether the Hokuyo node is pub-

lishing its topic, it can be seen in the output that the

test runs successfully for ALL 3 cases (first line of each

event test is green) regardless in which event the drone

is, which is an expected result since the publication of

distance topic is independent from the altitude of the

drone.

For the sake of clarification, the output of the tests can

be divided into three main sections:

• Given node running and publishing altitude and the

drone altitude lower than 0,2m: As shown on the top

of the behave test output, the corresponding event and

outcome tests are in green (figure 12) and whereas the

context and outcome are in red for the other 2 test cases

• Given node running and publishing altitude and the

altitude of the drone between 0,2m and 14m: For the

middle case of the behave test output, the correspond-

ing event and outcome tests are in green (figure 13) and

whereas the event and outcome are in red for the other

2 test cases

• Given node running and publishing altitude and the

drone altitude higher than 14m: For the bottom case

of the behave test output, the corresponding event and

outcome tests are in green (figure 14) and whereas the

event and outcome are in red for the other 2 test cases

5 Conclusion and Future Work
In conclusion, it can be said that integration of ROS,

Gazebo, PX4 Autopilot, and QGroundcontrol provides

an efficient way to simulate cyber-physical systems,

such as the drone example we used in this project, and

allows for efficient and smooth communication between

these different components. Concerning the testing

part, the BDD framework was a handy tool that facil-

itated our tests with SITL, including ROS, Gazebo and

the drone PX4 autopilot firmware. It is a user-friendly

framework that provides an easy-to-understand high-

description language for all involved stakeholders, even

those without a technical background. In this work, a

Hokuyo LIDAR sensor was used, which is limited in

its performance because it sends beams in all directions

around it. It is suitable for object detection in general,

but for detecting a specific object in a particular desired

direction, like in our situation, using a directed Laser

would be more efficient, which could improve the pre-

cision of the received data. Moreover, the goal of this

project was mainly for learning purposes using simula-

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

110



Figure 10: Test output when drone altitude less than 0,2m

Figure 11: Python snippet to check that Hokuyo sensor is
publishing its data successfully

Figure 12: Zoomed in output, drone altitude < 0,2m

tion in the loop (SITL). For more practical projects with

the hardware (HIL), choosing a high-performance dis-

Figure 13: Zoomed in output, 0,2m < drone altitude < 14m

Figure 14: Zoomed in output, drone altitude > 14m

tance sensor like Teranger one 4 would give better and

more precise results.

4TeraRanger One - the lightweight and low-cost ToF distance mea-

surement sensor, 14m, 8grams: https://www.terabee.com/sensors-

modules/lidar-tof-range-finders/

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

111



References
[1] Morgan Quigley, Brian Gerkey, Ken Conley, Josh

Faust, Tully Foote, Jeremy Leibs, Eric Berger, Rob

Wheeler, Andrew Ng. "ROS: an open-source Robot
Operating System". InICRA workshop on open source

software 2009 May 12 (Vol. 3, No. 3.2, p. 5).

[2] Gupta, S., and U. Durak. 2020. "RESTful Software
Architecture for ROS-based Onboard Mission System
for Drones". In AIAA Scitech 2020 Forum, 0239.

[3] Sankhe, C., B. Ahuja, A. Coutinho, C. Bhangale, and

N. Giri. 2020 "Implementation of ROS in Drones for
Animate and Inanimate Object Detection". In

Advanced Computing Technologies and Applications,

579–589. Springer.

[4] Honig, W., and N. Ayanian. 2017. “Flying multiple
UAVs using ROS”. . In Robot Operating System (ROS),

83–118. Springer.

[5] Lamping, A. P., J. N. Ouwerkerk, and K. Cohen. 2018.

“Multi-UAV Control and Supervision with ROS”. . In

2018 Aviation Technology, Integration, and Operations

Conference, 4245.

[6] Fabresse, L., J. Laval, and N. Bouraqadi. 2013.

“Towards test-driven development for mobile robots”. .

In Proceedings of the ICRA 2013 Workshop on

Software Development and Integration in Robotics

(SDIR VIII).

[7] Dieber, B., R. White, S. Taurer, B. Breiling, G. Caiazza,

H. Christensen, and A. Cortesi. 2020. “Penetration
testing ROS”. . In Robot Operating System (ROS),

183–225. Springer.

[8] Paikan, A., S. Traversaro, F. Nori, and L. Natale. 2015.

“A generic testing framework for test driven
development of robotic systems”. . In International

Workshop on Modelling and Simulation for

Autonomous Systems, 216–225. Springer.

[9] Beck, K. 2003. Test-driven development: by example.

Addison-Wesley Professional. Bernardeschi, C., A.

Fagiolini, M. Palmieri, G. Scrima, and F. Sofia. 2018.

“Ros/gazebo-based simulation of co-operative uavs”. .

In International Conference on Modelling and

Simulation for Autonomous Systesm, 321–334.

Springer.

[10] Lee, E. A. 2010. “CPS foundations”. In Design

Automation Conference, 737–742. IEEE. Meier, L., D.

Honegger, and M. Pollefeys. 2015. “PX4: A
node-based multithreaded open-source robotics
framework for deeply embedded platforms”. . In 2015

IEEE international conference on robotics and

automation (ICRA), 6235–6240. IEEE.

[11] Gazebo Robotics Foundation 2014. “Gazebo, robot
simulation made easy”. . http://gazebosim.org/.

Accessed: 2021-03-01.

[12] Koenig, N., and A. Howard. 2004. “Design and use
paradigms for gazebo, an open-source multi-robot
simulator”. . In 2004 IEEE/RSJ International

Conference on Intelligent Robots and Systems

(IROS)(IEEE Cat. No. 04CH37566), Volume 3,

2149–2154. IEEE.

[13] Takaya, K., T. Asai, V. Kroumov, and F. Smarandache.

2016.“Simulation environment for mobile robots testing
using ROS and Gazebo”. . In 2016 20th International

Conference on System Theory, Control and Computing

(ICSTCC), 96–101. IEEE.

[14] Meyer, J., A. Sendobry, S. Kohlbrecher, U. Klingauf,

and O. Von Stryk. 2012. “Comprehensive simulation of
quadrotor uavs using ros and gazebo”. . In

International conference on simulation, modeling, and

programming for autonomous robots, 400–411.

Springer.

[15] Bernardeschi, C., A. Fagiolini, M. Palmieri, G. Scrima,

and F. Sofia. 2018. “Ros/gazebo based simulation of
co-operative uavs”. . In International Conference on

Modelling and Simulation for Autonomous Systesm,

321–334. Springer.

[16] Sciortino, C., and A. Fagiolini. 2018.

“ROS/Gazebo-Based Simulation of Quadcopter
Aircrafts”. . In 2018 IEEE 4th International Forum on

Research and Technology for Society and Industry

(RTSI), 1–6. IEEE. Takaya, K., T. Asai, V. Kroumov,

and F. Smarandache. 2016. “Simulation environment

for mobile robots testing using ROS and Gazebo”. In

2016 20th International Conference on System Theory,

Control and Computing (ICSTCC), 96–101. IEEE.

[17] Chelimsky, D., D. Astels, B. Helmkamp, D. North, Z.

Dennis, and A. Hellesoy. 2010. “The RSpec Book:
Behaviour Driven Development with Rspec”. .

Cucumber, and Friends, Pragmatic Bookshelf 3:25.

Dieber, B., R. White, S. Taurer, B. Breiling, G. Caiazza,

H. Christensen, and A. Cortesi. 2020. “Penetration

testing ROS”. In Robot Operating System (ROS),

183–225. Springer.

[18] Evans, E. 2004. Domain-driven design: tackling
complexity in the heart of software. . Addison-Wesley

Professional.

[19] Wynne, M., A. Hellesoy, and S. Tooke. 2017. The
cucumber book: behaviour-driven development for
testers and developers. Pragmatic Bookshelf. .

[20] Rice, Benno and Jones, Richard and Engel, Jens 2017.

“Welcome to behave!”. . https://behave.readthedocs.

io/en/stable/. Accessed: 2021-03-01

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

112



[21] Bipin, K. 2018. Robot Operating System Cookbook.
Packt Publishing. .

[22] Koch, C. B., U. Durak, and D. Muller. 2018.

“Simulation-based verification for parallelization of
model-based ¨ applications”. . In Proceedings of the

50th Computer Simulation Conference, 1–10.

[23] Meier, L., D. Honegger, and M. Pollefeys. 2015. “PX4:
A node-based multithreaded open source robotics
framework for deeply embedded platforms”. . In 2015

IEEE international conference on robotics and

automation (ICRA), 6235–6240. IEEE.

[24] Koubaa, A., A. Allouch, M. Alajlan, Y. Javed, A.

Belghith, and M. Khalgui. 2019. “Micro air vehicle
link (mavlink) in a nutshell: A survey”. . IEEE Access

7:87658–87680.

[25] PX4 2021a. “Gazebo Simulation”. .

https://docs.px4.io/master/en/simulation/gazebo.html.

Accessed: 2021- 03-15.

[26] PX4 2021b. “ROS (Robot Operating System)”. .

https://docs.px4.io/master/en/ros/. Accessed:

2021-03-15.

[27] PX4 2021c. “ROS with MAVROS Installation Guide”. .

https://docs.px4.io/master/en/ros/mavros

installation.html. Accessed: 2021-03-15.

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

113




