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Abstract. The use and development of Artificial Intelli-
gence (AI) based systems is becoming increasingly promi-
nent in different industries. The aviation industry is
also gradually adopting AI-based systems, for instance,
with Machine Learning algorithms for flight assistance.
There are several reasons why adopting these technolo-
gies poses additional obstacles in aviation compared to
other industries. One reason are the strong safety re-
quirements which lead to obligatory and thorough as-
surance activities such as testing to obtain certification.
Therefore, a systematic approach is needed for develop-
ing, deploying, and assessing test cases for AI-based sys-
tems in aviation. This paper proposes a method for iter-
ative scenario-based testing for AI-based systems. The
method contains three major parts: First, a high-level
description of test scenarios; second, the generation
and execution of these scenarios; and last, monitoring
of parameters during scenario execution. Parameters
are refined, and the steps are repeated iteratively. The
method forms a basis for developing iterative scenario-
based testing solutions. As a domain-specific example,
a practical implementation of this method is illustrated.
For an object detection application used on an airplane,
flight scenarios, including multiple airplanes are gener-
ated from a descriptive scenariomodel and executed in a
simulation environment. The parameters are monitored
using a custom Operational Design Domain monitoring
tool and refined in the process of iterative scenario gen-
eration and execution. The proposed iterative scenario-
based testing method helps in generating precise test
cases for AI-based systems while having a high potential
for automation.

Introduction
The practical use of Machine Learning (ML) applica-

tions for Artificial Intelligence (AI) based systems in

aviation is still in an early stage. One reason is the

premature nature of guidelines illustrating the proper

implementation of those applications. Specifically, the

additional and strict requirements and constraints for

introducing new systems in the aviation industry pose

an obstacle. This makes the implementation and cer-

tification of ML algorithms for autonomy challeng-

ing. Recently, the European Union Aviation Safety

Agency (EASA) [1] and Society of Automotive Engi-

neers (SAE) [2] each published early versions of fun-

damental guidelines, discussing the implementation of

ML applications in aeronautical systems. These guide-

lines provide guidance for implementing level 1 ML ap-

plications, which can assist humans. Due to the prema-

ture nature of these guidelines, the certifiability of ML

applications in aviation, especially for fully AI-based

systems, is not yet given. Yet, similar to traditional soft-

ware, it is certain that specific verification artifacts need

to be provided to increase trust. Typical artifacts in-

clude the results of conducted tests. As defined in the

EASA guidance, implementing AI-based systems re-

quires the exact definition of their Operational Design

Domain (ODD).

The ODD defines the conditions under which a sys-

tem operates correctly. In the domain of AI-based sys-

tems, the ODD defines the execution boundaries un-

der which the AI-based system is designed and defines

the parameters which need to be satisfied for the sys-

tem to properly operate [3]. The definition of parame-

ter boundaries for the correct behavior of an AI-based

system becomes especially important when working in

safety-critical domains such as aviation. For instance,

the ODD of an aviation system can help with the def-

inition of design assurance levels [4]. In this context,

the definition of the system’s ODD guarantees the gen-

eration of precise test cases for high test coverage. One

systematic approach for developing test cases for AI-

based systems in their operational domain is model-
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based testing using the Model-Based Systems Engi-

neering (MBSE) methodology. Due to its highly de-

scriptive nature and model-centric approach [5], MBSE

is an appropriate methodology to model systems on

all levels of abstraction, making it useful in the devel-

opment process of test cases for ML applications [6].

The iterative scenario testing concept presented in this

work is amongst others exemplified with methods from

MBSE.

This paper discusses the generation of test scenarios

for an AI-based system. The use case is about using a

computer vision algorithm to perform object detection

and determine the distance to other aircraft to predict

dangerous situations. The scenarios represent different

situations with foreign aircraft used for testing. The de-

tailed use case is explained in [7]. A method for itera-

tive scenario-based testing of AI-based systems is pre-

sented in the scope of this work. Three essential parts

of the method are defined: A high-level description of

the scenarios to be executed, the testing environment

in which test scenarios are executed, and a monitoring

tool for narrowing down the parameter boundaries for

the ODD of the respective system. A domain-specific

implementation of this methodology is also presented.

For modeling the systems involved and developing test

cases, the MBSE tool Cameo1 is used. The simulation

is executed in FlightGear, a highly customizable open-

source software for flight simulation2. The scenarios

are generated in a model-based approach in Cameo and

then executed in a FlightGear instance. Parameters are

monitored using a custom Python library. The findings

show that the presented iterative scenario-based testing

method facilitates the definition and refinement of test

scenarios for AI-based applications.

The remaining paper is structured as follows:

In Section 1, related work and the status quo of

scenario-based testing with a model-based approach

are discussed. Section 2 presents the development of

a domain-independent method for iterative scenario-

based testing. The implementation of this methodology

is presented in Section 3 with tools used for defining

scenarios, executing them, and monitoring them.

1Dassault Systemes, 2022, Cameo Systems Modeler, available at

https://www.3ds.com/products-services/catia/
products/no-magic/cameo-systems-modeler/.

2FlightGear developers & contributors, 2021. FlightGear, Available at

https://www.flightgear.org/.

1 Related Work
In [8], Jafer and Durak discuss the complexity of sim-

ulation scenario development in aviation. They pro-

pose ontology-based approaches to develop an avia-

tion scenario definition language (ASDL). According

to the authors, ontologies provide invaluable possibil-

ities to tackle the complexity of simulation scenario de-

velopment. Durak presents a model-driven engineering

perspective for scenario development in [9]. The use

of metamodels for generating executable scenarios is

demonstrated with a sample implementation. Durak’s

work is closely related to the research presented in the

work at hand, specifically the development of concep-

tual metamodels for generating executable scenarios.

Simulation-based data and scenario generation for

AI-based airborne systems is discussed by Gupta in

[10]. In the work, the authors aim to answer the ques-

tion of what needs to be simulated for synthetic data

and scenario generation in the simulation engineering

process of an AI-based system. The used methods are a

simulation-based data generation process adapted from

EASA’s first usable guidance for Level 1 machine learn-

ing applications and the scenario-based approach us-

ing SES, which is explained more thoroughly in the

publications of Durak [11], [12] as well as Karmokar

[13]. The work in [10] is succeeded with [14], which

discusses behavioral modeling for scenario-based test-

ing in aviation and introduces an enhanced approach

for scenario-based testing called Operational Domain

Driven Testing.

Closely related, [15] demonstrates the testing of

black box systems, such as AI-based applications for

autonomous road vehicles, in their ODD. The frame-

work introduced by the authors is used to learn monitors

in a feature space and prevent the system from using

critical components when exiting its ODD. Scenario-

based testing of autonomous road vehicles is discussed

in [16] and [17]. The authors present an automated

scenario-based testing methodology for vehicles using

advanced AI-based applications. The work shows that

the presented formal simulation approach effectively

finds relevant tests for track testing with a real au-

tonomous vehicle.

In [18], Hungar presents scenario-based testing for

automated road vehicles. The outcome of the work is

the PEGASUS method, which is used to assess highly

automated driving functions. According to the author,

the most important steps for scenario-based testing in-

volve capturing all evolutions, i.e. variants, of func-
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tional scenarios, formalization of them, systematic test-

ing, the analysis of critical regions, and finally, the de-

velopment of a risk chart.

Closely related to [9], the work presented in this pa-

per discusses model-driven scenario development. In

addition to the methodologies discussed in the related

work, an iterative scenario parameter adjustment and

generation process is introduced, forming the iterative

scenario-based testing method. The method is illus-

trated with an exemplary generation of test scenarios

for an AI-based demonstrator. In the next section, the

methodology for this domain- and tool-independent it-

erative scenario-based testing method is presented.

2 Iterative Scenario-Based
Testing Concept

The related work shows that there are many ways to re-

alize scenario-based testing for AI-based systems. Es-

pecially when talking about domain-specific tools, a va-

riety of testing strategies are possible. A generalization

of these testing strategies can help with defining uni-

versal testing methods. To achieve that, a fundamental,

tool-independent method is needed to describe the ba-

sic methodology for iterative scenario-based testing on

a high level of abstraction. This method can then be

used to build some domain-specific testing tools. For

such iterative scenario-based testing, three fundamental

components have been identified:

Scenario Model
First, a high-level description of the testing scenar-

ios needs to be defined. This high-level model can

be achieved by describing the scenarios’ fundamental

components. Modeling tools or formalized methods can

for instance be used to formulate the scenarios and de-

rive all required scenario variations from the high-level

model. The method shall be capable of generating an

arbitrary number of scenarios with high parameter vari-

ation from the high-level description to achieve satis-

factory test coverage for the application to be verified.

Environment for Scenario Execution
Second, an environment for executing the derived sce-

narios should be selected. The environment can be of

different types, such as simulated, real system, or a mix

of both, e.g. real systems extended with elements from

augmented reality. These environments have different

advantages and disadvantages. A simulated system can

be deployed quickly, offers consistent conditions, and is

cost-effective. The biggest drawback of simulated envi-

ronments is their sim-to-real gap. The gap refers to the

applicability of simulations to real-life environments, as

many simulated environments cannot fully offer all rel-

evant conditions as a real system. The biggest advan-

tage of a real system is its closeness to the real-life en-

vironment in which the tested application is designed to

operate in. Real systems are hard to deploy and costly.

Especially when talking about automated and acceler-

ated testing, real systems can pose a financial and tem-

poral bottleneck in the testing process.

ODD Monitoring
Last, a monitoring tool is required for verification and

for tracking all parameters that are necessary for and

can have some variance on scenarios. By tracking these

parameters and verifying the application to be tested,

a precise ODD can be defined for the system. With

feedback from the monitoring tool, parameters can be

adjusted, or new parameters can be chosen for a new it-

eration of scenario generation. The tools for monitoring

in the chain of scenario-based testing can be arbitrarily

chosen as long as they are capable of monitoring pa-

rameters in real-time for synchronization purposes.

The described method is of an iterative nature. Each

component feeds the next with some information. This

loop is depicted in Figure 1.

Figure 1: Iterative scenario-based testing
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The execution of test scenarios can be accomplished

in a simulated environment as well as a real system. Al-

though both approaches are important to consider, the

method depicted in Figure 1 is tailored towards testing

in simulated environments. For generating application-

readable scenario descriptions with the scenario model-

ing tool, some application, e.g. script, is needed. Simi-

larly, after scenario execution and monitoring, some ap-

plication is needed which feeds the result logs to the

scenario modeling tool, decides on parameter adjust-

ment, and triggers new scenario generation. The use of

such intermediate applications and scripts enables high

automation and optimization of the method. In ideal cir-

cumstances, the iterative scenario-based testing method

forms a closed loop with automated test scenario gen-

eration, execution, and real-time monitoring of param-

eters.

3 Exemplary Implementation

This section explains an exemplary implementation to

demonstrate the derived method. For the implementa-

tion, domain-specific tools were selected that can be ex-

changed depending on the use case. The exemplary im-

plementation of discussed method can be divided into

three components: First, the MBSE-based scenario de-

scription and generation using Cameo; second, the exe-

cution of scenarios defined in generated XML files with

the flight simulator FlightGear; and last, the monitoring

of parameters during scenario execution with a custom

ODD monitoring tool. The basic flow of information

and steps are illustrated in Figure 2.

The high-level model of the scenarios is described

with a profile diagram in Cameo. Profile diagrams are

defined in the System Modeling Language. Addition-

ally, extensions are used to increase the modeling ca-

pabilities with profile diagrams. One configuration of

a specific scenario is generated with a block definition

diagram, which can be transformed and exported into

the desired XML scenario files with the help of scripts.

XML files are generated for the use case on hand, since

FlightGear uses a XML format for the scenario execu-

tion. However, other domain-specific formats can be

used as well. The scenarios are executed within an in-

stance of FlightGear and the parameters are monitored

with a custom ODD monitoring tool. A more detailed

description of the implementation is shown in the fol-

lowing subsections.

Figure 2: Flow of information and steps for iterative
scenario-based testing used in this work

3.1 Scenario Format and MBSE-Based
Scenario Generation

A high-level description of the necessary files for sce-

nario execution can be observed in Figure 3. Along with

scenario files, flight plan files are needed for scenario

execution, as will be explained shortly.

The scenario files include various tags which de-

fine the inputs, objects, and attributes when executing

them in FlightGear. An important tag is the <entry> tag

which defines objects used in a scenario and can include

the following additional tags: <callsign> – the identifi-

cation of the aircraft, <type> and <model> – the type

and model of the aircraft, <flightplan> – the flight plan

which the scenario refers to, and <repeat> – a Boolean

flag that indicates whether the scenario shall be repeated

once or infinitely often.

The flight plans, which the scenario files refer to,

are also in XML format. The most important tag in the

flight plan is the <wpt> tag, which can include the fol-

lowing additional tags: <name> – the name of the way-

point, <lat> – the latitude of the entry that refers to the

flight plan, <lon> – the longitude, <alt> – the altitude,

<ktas> – the knots true airspeed, <on-ground> – if the

specified object starts from the ground or not, <gear-
down> – if the landing gear is retracted or extended, and

<flaps-down> – if the flaps are retracted or extended.

FlightGear offers many more configuration files which

can be adjusted to change environmental parameters as
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Figure 3: High-level description of the configuration files for
FlightGear

well as parameters of entities and other components of

interest for scenario-based testing. For simplicity, only

the scenario and flight plan files along with their param-

eters are discussed here. Some high-level description,

i.e. metamodel, of the scenario and flight plan files is

needed to generate arbitrary test scenarios.

Figure 4 depicts one instance of the high-level de-

scription of the scenario and flight plan files.

3.2 Scenario Execution

The scenarios are executed within FlightGear. The

respective XML files can be executed manually in a

FlightGear instance, or referred to as parameters for au-

tomatic execution with startup of FlightGear. For au-

tomation purposes, we chose the latter. As explained

in the previous subsection, one or more entries, e.g.

planes, can be defined in a scenario file, with each flying

according to a predefined route. In this instance, one

passenger airplane is defined, which narrowly passes

the user’s plane. Figure 5 shows a screenshot of the

scenario during execution in FlightGear.

3.3 ODD Definition and Monitoring

The ODD defines the conditions under which a system

operates properly. Several parameters can have a vari-

ance on the scenarios executed in FlightGear, some of

which were defined above. Additional parameters, such

Figure 4: Block definition diagram of one scenario and flight
plan configuration

Figure 5: Passenger airplane narrowly passing user’s Cessna
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as weather conditions, need to be considered. A high-

level description of the domain model for the ODD of

the AI-based system used on an airplane is depicted in

Figure 6.

Figure 6: Domain model for the ODD of the scenario-based
testing method

The parameter boundaries for the use case of ob-

ject detection during scenario execution can be deter-

mined in an iterative process. Due to the high num-

ber of parameters to be considered, a manual exhaus-

tive search for parameter boundaries is highly time-

consuming. Therefore, some tool is needed which can

track the necessary parameters during scenario execu-

tion and give feedback on the result of the tested appli-

cation.

For monitoring these parameters in FlightGear, a

public Python library3 for fetching parameters from

FlightGear’s property tree is used. The AI-based system

tested in this example is an object detection application.

The result of the domain model’s object detection and

desired parameters can be logged using the monitoring

tool. The feedback generated from the tool can then

be used to adjust the values of selected parameters in

Cameo, generate new scenarios, and narrow down the

parameters to fit the ODD of the application. This it-

erative process can be used to narrow down the ODD

boundaries of each parameter with every iteration.

A simplified ODD for the system with the two pa-

rameters altitude and speed can be defined as follows:

“The application performs correct object detection of

3Munyakabera Jean Claude, 2022. flightgear_interface, Available

at: https://github.com/ironmann250/flightgear_
interface

intruding airplanes of type Boeing 737 within follow-

ing parameter boundaries:

• Altitude of intruding airplane relative to own air-

plane in feet, Δ alt: -100 to 100.

• Cumulative speed of intruding airplane as well as

own airplane in knots true airspeed, Σ ktas: 0 to

500.”

Table 1 shows an exemplary log recorded during ex-

ecution of a scenario in FlightGear. For completeness

and to reflect other relevant parameters currently cov-

ered in the scenario model, the latitude and longitude of

the intruding airplane are logged along with the afore-

mentioned altitude and speed.

Log # lat lon Δ alt Σ ktas detect

1 63.970 -22.65 100 400 no
2 63.974 -22.65 100 399 no
3 63.978 -22.65 100 400 no
4 63.982 -22.65 100 399 yes
5 63.986 -22.65 100 400 yes
6 63.990 -22.65 100 403 yes
7 63.994 -22.65 100 399 no
8 63.998 -22.65 100 400 no

Table 1: Exemplary log of parameters monitored during
scenario execution in FlightGear.

The table shows that a successful object detection

is on hand for logs four to six. Therefore, the prede-

fined ODD holds for the combination of parameters on

hand. Now, single parameters can be adjusted for a po-

tential revaluation of the predefined ODD. In this case,

the altitude of the intruding airplane relative to the own

airplane is increased by 100 feet. First, a scenario with

a new configuration of attributes needs to be generated,

similar to the one depicted in Figure 4. In this case, the

altitude is adjusted to reflect the definition for the new

test case. Lastly, the necessary XML files are gener-

ated from the configuration model. Now, scenario ex-

ecution in FlightGear and parameter monitoring can be

performed. Table 2 shows the log for the second itera-

tion of parameter monitoring.

As shown in the second table, the object detection is

successful for logs three to five. The predefined ODD

still holds for the combination of parameters on hand.

However, the ODD can now be adjusted and phrased
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Log # lat lon Δ alt Σ ktas detect

1 63.970 -22.65 200 400 no
2 63.974 -22.65 200 399 no
3 63.978 -22.65 200 401 yes
4 63.982 -22.65 200 400 yes
5 63.986 -22.65 200 400 yes
6 63.990 -22.65 200 400 no
7 63.994 -22.65 200 400 no
8 63.998 -22.65 200 400 no

Table 2: Exemplary log of parameters monitored during
scenario execution in FlightGear.

more precisely in line with the altered parameter. The

ODD for the application can therefore be rephrased as

follows:

“[...] within following parameter boundaries:

• Altitude of intruding airplane relative to own air-

plane in feet, Δ alt: -100 to 200.

• [...]”

The loop of parameter adjustment, scenario gener-

ation, execution, and monitoring can be repeated until

the changes in detection results fall below some prede-

fined value and an ODD with some desired precision

has been determined. The example for ODD monitor-

ing and parameter adjustment presented above is sim-

plistic and, for instance, does not consider constraints.

Many more parameters can be and need to be consid-

ered when defining a precise ODD for the underlying

application. Also, the granularity for testing parame-

ter boundaries of the ODD needs to be determined ac-

curately. For instance, a higher logging frequency of

parameters can be chosen, which makes the tests more

precise but also increases the testing effort. Also, in-

stead of a Boolean for the result of the object detec-

tion, the more granular confidence of the object detector

from the machine learning application can be used as a

metric. The framework in itself requires fine-tuning and

more testing to provide the right conditions for success-

ful iterative scenario-based testing of various systems.

The exemplary implementation of model-based sce-

nario generation and ODD monitoring in this section

follows the method presented in Figure 1. Domain-

specific tools such as Cameo, XML files, and a Python

application were used to build a framework for iterative

scenario-based testing. The implementation can be seen

as a minimal working example, demonstrating the iter-

ative scenario-based testing method explained in Sec-

tion 2. The implementation can be developed further to

allow for closed-loop scenario-based testing with auto-

mated scenario generation, execution, and monitoring.

4 Conclusion and Discussion
The use of ML applications in AI-based systems such

as airplanes is steadily increasing. The thorough testing

of these systems is a fundamental part of their devel-

opment process. Certain industries, such as aviation,

impose strict requirements and constraints for the use

of AI-based applications, increasing the testing efforts

required to certify and use these applications. Addition-

ally, ML applications are often considered a black box.

Therefore, black box testing methods need to be put in

place that are as rigorous as current testing methods for

common software systems.

This work depicts a method for iteratively testing an

AI-based system which performs object detection in an

airplane. For this purpose, a scenario-based testing loop

was developed, including the three steps of generating

application-readable scenario descriptions from mod-

els, execution of these scenarios, and parameter moni-

toring with model parameter adjustments. In addition to

generating arbitrary test cases, the presented method il-

lustrates the approximation of boundaries for the ODD

of the ML application with iterative parameter adjust-

ments.

This method can be further optimized by connecting

its components, i.e. the high-level scenario description,

scenario execution, and ODD monitoring, and creating

a closed loop with automated scenario generation, ex-

ecution, and parameter adjustment. Additionally, test

oracles that determine the success or failure of individ-

ual tests should be investigated. The granularity of test

cases, i.e. only success and failure evaluation or more

finely grained evaluations, is important. These findings

will be investigated in future research.
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