
Implementing Thermodynamic Cyclic Processes
Using the DLR Thermofluid Stream Library

Peter Junglas*

PHWT-Institut, PHWT Vechta/Diepholz, Am Campus 2, 49356 Diepholz, Germany;
*peter@peter-junglas.de

Abstract. Simulation programs modeling cyclic pro-
cesses can be used in thermodynamics lectures to pro-
mote understanding. Modelica-based simulation envi-
ronments are a good starting point for the development
of such programs, but the handling of the correspond-
ing thermo-fluid standard library is very difficult for non-
experts. The recently presentedDLR ThermoFluidStream
Library is a good alternative, that is easier to use. It pro-
vides most components that are needed in typical cases
and includes full access to the Modelica media library.
It will be shown, how to use the ThermoFluidStream Li-
brary to create examples ranging from the simple Otto
and Diesel cycles over the basic Joule-Brayton and Er-
icsson processes to the water/steam based Clausius-
Rankine cycle. Though the construction of concrete pro-
cesses with given thermodynamic state values and mass
flow still requires some effort, one can apply a system-
atic approach to create working models for teaching pur-
poses.

1 Introduction

Thermodynamics is a difficult subject for many engi-

neering students, mainly because of its partly unintu-

itive nature using abstract notions like enthalpy and en-

tropy. To promote understanding simulation programs

can be used, which allow to “experiment” with state

changes or complete cyclic processes, such as the col-

lection of Java applets described in [1].

But the construction of such programs is a tedious

and time-consuming task, especially if one wants to

include examples that use more complex media than

the simple ideal gas with constant specific heat capac-

ity. Instead of writing such programs from scratch,

one could use a simulation environment to describe

the example models, and leave the actual computation

to its solver. Modelica [2] with its physical model-

ing approach seems to be a good starting point, es-

pecially since a comprehensive free model library is

available that describes the thermodynamic behaviour

of many useful media [3]. Therefore it will be used in

the following to build models of the standard processes

that are examined in most introductory thermodynam-

ics courses: the Otto and Diesel processes for closed

systems and the Joule-Brayton and Ericsson processes

for open systems [4, 5]. These models should run on

any Modelica platform, especially on the freely avail-

able OpenModelica environment [6], and can be em-

ployed directly in a thermodynamics course.

The Modelica Standard Library (MSL) already con-

tains an elaborate thermo-fluid library that provides ba-

sic components for one-dimensional thermo-fluid flow

in pipes, vessels or machines [7]. But due to its very

general approach it is much too complicated for the sim-

ple didactical applications addressed here. Addition-

ally, corresponding models recurrently fail to run for

reasons that are hard to find for non-specialists [8].

The recently presented DLR ThermoFluidStream

Library [9] (“ThermoDLR”) seems to provide just the

level of detail that is needed here: On the one hand

it uses the full Modelica media library, on the other

hand it offers components for vessels and machines that

are much easier to handle than their MSL counterparts.

And, most importantly, it uses a very clever, physically

motivated scheme to achieve a high robustness [10] that

should lead to models that generally run without deli-

cate fine-tuning. This makes it a promising foundation

for the construction of didactical examples.

A similar, but simpler and more limited ap-

proach has been presented in [11], which also de-

scribes a Modelica library for thermodynamical exam-

ples (“ThermoSimT”). Since its focus is on teaching

Modelica, it does not use the complex standard Media

library, but a greatly simplified version. Especially its

steam/water model only shows basic modeling princi-

ples, but is of no practical use. Nevertheless it allows

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

ARGESIM Report 21 (ISBN 978-3-903347-61-8), p3-10, DOI: 10.11128/arep.21.a2102 3



to easily build models of all standard processes and will

be used as a benchmark to assess the ease of use and

versatility of the new ThermoDLR version.

In the following we will briefly describe the basic

ideas of the ThermoSimT library, which provides mod-

els of cyclic processes for ideal gas with constant or

temperature-dependent specific heat capacity and of the

steam/water based Clausius-Rankine cycle. Then we

will use the ThermoDLR library to implement similar

models, utilizing the Media library to get valid practi-

cal results. Due to the didactical purpose and since we

are only interested in equilibrium behaviour, the mod-

els have some unusual features: Heat transfer is done

very fast, the characteristics of compressors or turbines

don’t really matter, and the values of the mass flow and

several state variables are given in advance.

We will show, which problems appeared during the

implementation, and present ways how to deal with

them. This will help to produce similar models for own

teaching purposes. As a starting point, all models de-

scribed here can be downloaded freely from [12].

2 Cyclic Processes in
ThermoSimT

Since [11] is a textbook on modeling and simulation,

the main purpose of the ThermoSimT library is to teach

the design and construction of a Modelica library. But

thermo-fluid modeling is a very difficult task, therefore

a lot of simplifying assumptions had to be made: The

mass flow is constant and the flow has always the same

direction, i. e. all connections are uniquely defined as

input or output ports. The components have no states

describing an internal change, but the thermodynamic

variables just jump from the input to the output state.

As a consequence, the described models are static, time

changes can only by implemented by changing work or

heat flows.

Since stream connectors [13] are much too advanced

for an introductory textbook, the connector is based on

the preliminary version of the thermo-fluid library de-

scribed in [3]. ThermoSimT contains components for

simple devices such as a cylinder, a heater, a pump and

a turbine, together with source and sink components

and a state measurement device that outputs all relevant

thermodynamical variables. Pump and turbine are iden-

tically modeled as simple turbo machines based on an

isentropic state change with a simple linear characteris-

tic

ṁ = Kω.

The simple Media library covers the ideal gas with

constant heat capacity (“simple air”), the NASA dry air

model [14] and a simple model for steam and water,

using ideal gas and ideal fluid equations together with a

Clausius-Clapeyron based vapor pressure curve.

Figure 1: Otto cycle using ThermoSimT.

With these components a model of an Otto cycle can

be built easily (cf. Figure 1). The thermodynamic com-

putations are done in the cylinder component, while ad-

ditional blocks provide a test stand defining the position

of the piston and the amount of external heat. Models

using simple air and dry air are provided, as well as a

similar example for the Diesel process.

Figure 2: Joule-Brayton cycle using ThermoSimT.

Much more interesting from a modeling perspective

is the model of the Joule-Brayton cycle (cf. Figure 2),

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

4



which describes the actual flow of the medium between

components. The mechanical work for the compressor

is provided by a constant torque block, while the exter-

nal load at the turbine is modeled using a simple gen-

erator and a resistor. The ThermoSimT library does not

work with a cyclic topology, but an additional cooler

at least brings the state of the medium back to its ini-

tial state. Versions for simple air and dry air are pro-

vided, as well as an identically looking model using the

simple steam/water medium, which actually makes it a

Clausius-Rankine cycle.

Figure 3: Ericsson cycle using ThermoSimT.

The final example is the Ericsson cycle, which con-

tains several compressors and coolers as well as tur-

bines and heaters, to approximate an isothermal be-

haviour in the turbo machines. It can be modelled easily

with ThermoSimT (cf. Figure 3).

3 Otto and Diesel Processes
Since a cylinder model, which is at the heart of the

Otto cycle model, is not included yet in the Ther-

moDLR library, one has to build it oneself. Fortu-

nately, a complete volume model already exists, to-

gether with several variants. They all inherit from

the parent class PartialVolume, which provides

most of the variables and equations needed, together

with optional HeatPort, Inlet and Outlet. To

construct a CylinderVolume, one simply extends

PartialVolume, adds a mechanical Flange and

provides simple equations for the definition of the vol-

ume, the force and the work at the flange. To simplify

the drawing of a T-s diagram, an explicit variable for

the entropy is added.

Exchanging the cylinder model in the ThermoSimT

Otto cycle is all that remains to do. The new model

works immediately with DryAir, for SimpleAir
one has to extend its range of validity by defining

SimpleAir(T_min=200, T_max=2000)

The Diesel controller component needs the inter-

nal pressure to create an isobaric process, which can

be supplied by a sensor at the optional Outlet of the

CylinderVolume.

4 Joule-Brayton Process with
Ideal Gas

The construction of a model for the Joule-Brayton cy-

cle seems to be almost trivial. One starts by replac-

ing the thermodynamic components from the Ther-

moSimT example with their counterparts from Ther-

moDLR: Source, Sink, Compressor, Turbine,

and ConductionElement as replacement of the

Heater. All parameters have their default values

except for the initial pressure and temperature at the

Source. That the mass flow can not be defined any-

where, is due to the different concept of ThermoDLR:

ṁ is a dynamic variable and is computed in the con-

text of the whole model – here probably mainly depend-

ing on the compressor parameters. With the ideas from

ThermoSimT in mind, this seems to be strange, and in-

deed: Starting the simulation results in the infamous

error “Failed to solve nonlinear system using Newton
solver during initialization.”

To find the reason of this problem, one exam-

ines a simple test model consisting of a Source, a

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

5



Compressor and a Sink. The Source defines start-

ing pressure p1 = 1 bar and temperature T1 = 300 K, the

Sink the final pressure p2 = 6 bar. Using the same

torque as in the ThermoSimT model, the simulation

doesn’t run, which is not surprising, since the compres-

sor from ThermoDLR uses a completely different char-

acteristic curve and default operating point.

To find an adequate torque value, one has to ana-

lyze the equations used in the Compressor compo-

nent. Using default parameters and neglecting regulari-

sations for small variable values, they are:

p2

p1
=

ω2

ω2
re f

− ṁ2

ṁ2
re f

+1

wt =
κ

κ −1
RT1

((
p2

p1

) κ−1
κ

−1

)

=
ωτ
ṁ

They define a quadratic pressure characteristic and

compute the work using the explicit formula of an isen-

tropic process for an ideal gas with constant heat capac-

ity. Inserting the given state variables, the desired mass

flow ṁ = 0.1 kg/s and the default parameter values, one

easily computes values for ω and τ .

Figure 4: Results of the compressor test model.

Using this torque value for the constant torque and

setting the initial value of the rotational velocity to ω
(at least approximately), the test model runs and has

the correct results (cf. Figure 4). In accordance to the

philosophy of the ThermoDLR library, the initial value

of ṁ is chosen to be 0, so that the equilibrium is reached

by simulating the powering up of the system.

A similar computation can be done for the turbine.

Unfortunately, the identical characteristic curve of com-

pressor and turbine contains a very strict regularisation,

whenever the pressure drops (as in the turbine). But of

course it’s simple to create a copy of the curve model

and use the quadratic characteristic for the turbine as

well. Trying to compute the torque for the given state

variable values, one gets a negative value under a square

root. This problem can easily be fixed by changing the

operation point, setting ṁre f = 0.05 kg/s. Finally one

utilizes the linear characteristic of the simple generator

to compute the resistance R, and gets the requested re-

sults.

For the heater, no new computations are necessary,

since the needed heat is fixed by the thermodynamics.

Combining the components (for a start without the fi-

nal cooler) using the new parameter values, one gets

a working Joule-Brayton process, which almost repro-

duces the required values. Only the pressure p2 after the

compressor is slightly higher in the combined model,

maybe due to the effect of several regularisations.

Instead of going through the complete equations,

the fine-tuning can easily be done with a few manual

parameter changes: First one lowers the torque at the

compressor, until p2 reaches the desired value. Here,

the MultiSensor components are very convenient,

which display state variables directly in the graphical

model. Now all pressure and temperature values are

correct, only the mass flow is a bit too small. Better

than fiddling with several parameters at once, one can

use a simple scaling procedure: Increasing all works

and heats by a constant factor q one can change only

the mass flow, not the thermodynamical state. Setting

q = ṁdesired/ṁactual , increasing ṁre f , τ and Q̇ by a fac-

tor q and dividing R by q, one eventually reproduces all

ThermoSimT values.

Finally one adds another ConductionElement
with a large heat transfer coefficient to bring the tem-

perature down to the start value. With the ThermoDLR

library, one can now make it a real cycle by deleting

the Sink and Source components and closing the cir-

cle with an intermediary Volume element. The initial

state, which had been defined by the Source, is now

given as initial value of the Volume.

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

6



5 Ericsson Process with Ideal
Gas

To simplify the construction of an Ericsson model, a

subsystem is built for a line of three compressors and

intermediate coolers (cf. Figure 5), as well as a sim-

ilar model of two turbines with intermediate heater.

Both components contain sensors to output the com-

plete work and heat supplied to the line. This will be

useful to compute the overall efficiency in the complete

model.

Figure 5: Line of compressors for the Ericsson cycle.

Providing correct parameter values, these com-

pressor and turbine components show approximately

isothermal behaviour. Using them in the Joule-Brayton

model and guessing reasonable values for the work-

related parameters τ and R, the Ericsson model runs –

at least, if one lowers the intermediate heating tempera-

ture a bit. As before, one can use fine-tuning to get the

given pressure values and scaling to reach the correct

mass flow. The resulting model is more stable, so that

one can raise the intermediate heating temperature to

the incoming value to better approximate an isothermal

process.

Now we can make good use of the additional pos-

sibilies that are supplied by ThermoDLR, and include

a heat exchanger that utilizes excess heat after the tur-

Figure 6: Ericsson cycle with heat exchanger using
ThermoDLR.

bine for preheating the gas before entering the heater

(cf. Figure 6). To reach the same maximal temperature

as before, one starts with a low heat transfer coefficient

kNTU , then gradually lowers the supplied heat, while

rising kNTU . The final Ericsson model is much more re-

alistic than the previous version based on ThermoSimT.

6 Joule-Brayton Process with
Dry Air

Building a Joule-Brayton example based on dry air as

a medium should be done easily by simply changing

SimpleAir to DryAirNasa, but unfortunately, the

new model doesn’t run: To compute the temperature

from the given enthalpy, the function h(T ) has to be

inverted – but the Dekker-Brent based solver is supplied

with a start interval without a zero.

Looking closer at the DryAirNasa implementa-

tion, one finds another problem: The computation of

the isentropic enthalpy is based on the approxima-

tion of constant heat capacity. This may be good

enough for many practical applications, but in a teach-

ing context one should present a correct solution.

Since the utilised function isentropicEnthalpy
is not declared as replaceable, one has to cre-

ate a copy of the DryAirNasa class and its base

class SingleGasNasa and supply a computation that

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

7



is based on the constant entropy. Additionally, the

function dp_tau_const_isentrop that is used

in ThermoDLR to define the compressor character-

istics, is based on a constant heat capacity formula

as well and has to be replaced by an exact version

dp_tau_const_isentrop_S.

Using these more accurate methods, one is still

faced with the original problem: The inversion gets a

wrong start interval. This is due to the initial value

ṁ(0) = 0: The direction of the flow is undefined ini-

tially and the algorithm tries values that are going into

the wrong direction. Simply setting ṁ(0) = 0.1 kg/s,

which is given anyhow, succeeds and the model runs –

but the values of pressure and mass flow are not the re-

quired ones. Obviously, the seemingly small difference

between SimpleAir and DryAir leads to larger de-

viations than expected.

To find correct parameter values, one again starts

with a simple test model for the compressor. Either by

a direct computation – which can be easily done for dry

air with a small Matlab script – or by a few trial and

error steps, one finds values that lead to the required

pressure and mass flow. Due to the internal inversions,

the model is less stable than its SimpleAir counter-

part: Even if one sets the correct torque value, one still

has to supply an initial value for ω that is large enough.

For simplicity one can instead directly define ω at the

flange. The corresponding computation for the turbine

again shows that ṁre f has to be lowered. After that, the

computation leads to the correct value of the resistance

R. Closing the cycle with a cooler and a volume ele-

ment, one arrives at a Joule-Brayton model with dry air

that – after a bit of the usual fine-tuning – reproduces

the given state and mass flow values.

7 Clausius-Rankine Process
with Standard Water

Basically, the Clausius-Rankine process is a Joule-

Brayton process with water and steam as a medium:

Though its technical realisation is much more compli-

cated due to the phase transitions from water to steam

and back, conceptually it consists of a pump, a heater,

a turbine and a cooler. The media library includes

StandardWater, a precise description of water and

steam based on the IAPWS-IF97 formulation [15]. Yet,

one cannot just use one of the Joule-Brayton models

and change the medium, since the compressor and tur-

bine components of ThermoDLR use explicit ideal gas

relations. For incompressible fluids the Pump compo-

nent can be used, a suitable turbine component is not

provided in the library. Also, completely different val-

ues of the state variables than before will be employed:

The pressure ranges from 0.1 bar to 60 bar, the high-

est temperature should be 500 ◦ C and the mass flow 10

kg/s.

To find working parameters, one can start with a

simple test model for the pump. The ThermoDLR

Pump component provides two different characteris-

tics: a centrifugal pump and a simpler nominal pump,

which is used in the following. Setting reasonable

nominal values and basic parameters, one can once

again use the model equations and the given state

and mass flow to compute a correct value of the ro-

tational speed ω . Adding a standard heater (i. e.

a conductionElement), one can reach the given

temperature by first estimating, then fine-tuning the

needed heat flow. The heating process includes the

complete vaporisation of the water, succeeded by an

overheating of the steam, but all this is automatically

taken care of by the state equations used in IF97.

Adding corresponding sensors, one can easily monitor

the dryness fraction x everywhere in the cycle model.

A generic turbine model TurbineG that works

for StandardWater (and any any other fluid

medium) can be easily constructed: It inherits

from the provided PartialTurboComponent
and uses the explicit characteristic function

dp_tau_const_isentrop_S that has already

been defined for the DryAir example. Since the

medium changes its phase from hot steam to wet

steam inside the turbine, one can expect numerical

difficulties, and in fact: Using default parameter values,

the usual test model doesn’t run, because the pressure

reaches values below the triple point of water. To

find working values, one initially starts with a simpler

process, going from 60 bar to 30 bar instead of trying

to reach 0.1 bar immediately. Changing ωre f und ṁre f ,

one soon gets a model that at least runs for a very short

time. This makes it possible to study its behaviour

and find the reason of the problems. Adapting ω , the

model finally runs to the end. Now one can use the

usual fine-tuning to gradually lower the pressure to the

requested value and to switch from the constant ω input

to the simple consumer model. The needed resistance

value is completely unrealistic, but can finally be scaled

to a meaningful value by changing the transformation

coefficient of the simple generator model.

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

8



Now a first version of a Claudius-Rankine cycle

can be built by combining the pump-heater and tur-

bine models. The model runs only for a short time,

before the final pressure again drops below the triple

point. Enlarging the value of R by a factor of 100, the

model runs to the end, though the state values are far

from the requested ones. Once again one goes through

the fine-tuning process, changing ω , Q̇ and R, to reach

the requested state values. This is much more tedious

than in the previous examples, because the very differ-

ent properties of water and steam lead to a small range

of working parameters. Additionally, their strong cou-

pling sometimes results in a counterintuitive behaviour,

as in the following scenario: One finds a too low tem-

perature behind the heater and increases the heat flow,

which leads to an increase of the mass flow and a falling

temperature. Another problem is the unstability of the

standard DASSL solver that is used in the simulation

program Dymola: Occasionally, the solver hangs for

certain parameter values and has to be stopped. Chang-

ing to the Esdirk23a solver drastically reduced the fre-

quency of such events. With a certain amount of per-

severance, results within 1 % of the requested values

could be reached.

Figure 7: Clausius-Rankine cycle using ThermoDLR.

The next step is the addition of the cooler, which is

supplied with a fixed temperature. Choosing the obvi-

ous value of 45.80◦ C – the condensation temperature

at 0.1 bar –, one doesn’t reach x = 0, therefore one has

to use a smaller value and to increase the heat transfer

coefficient U considerably. Finally adding the volume

element to close the circle, one again gets very different

results and has to tune the cooler parameters once more,

as well as the initial temperature of the volume. But in

the end one reaches a complete Clausius-Rankine cycle

with the requested state values (cf. Figure 7).

8 Conclusions
All examples of the simple ThermoSimT library could

be implemented in ThermoDLR, as well as more com-

plex processes using a heat exchanger or an accurate

water model. ThermoDLR is designed to create models

that run immediately, nevertheless it was nontrivial to

build models that reproduce the given state values and

mass flows. A systematic approach often worked that

was based on the following steps:

• Start with simple models, where initial and final

states are defined by Source and Sink compo-

nents.

• Change the operation points of turbo machines to

values near the given state values.

• Use (simplified) versions of the component equa-

tions to get good starting points for external param-

eters.

• Gradually fine-tune parameters to approximate the

given thermodynamic states. If necessary, change

the mass flow by a scaling procedure.

• Combine partial models and reiterate the fine-

tuning process.

• Finally close the cycle with a Volume component

and properly define its initial values.

Sometimes it was difficult to find proper parame-

ters to make the model run at all or to change the state

into the required direction – especially for a complex

medium such as water and steam. In such cases, it

proved useful to set the initial value of the mass flow di-

rectly to the required value or to define operation points

very close to the target values. Generally, such a model

runs at least for a very short time. This is helpful, be-

cause seeing the results of small parameter changes di-

rectly can provide clues on what to do to finally reach a

running model. Other helpful measures were the intro-

duction of control valves to decouple parts and define

intermediate states, or even to change the solver. When

the model finally works as required, it is generally more

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

9



stable than the previous versions and allows for easy pa-

rameter changes.

The design of the ThermoDLR library, and espe-

cially its ability to start with zero mass flow and model a

power-up situation, makes the modeling of thermofluid

systems much simpler for non-specialists than the com-

plex Modelica Thermo-Fluid library. On the other hand,

the consistent use of the mass flow as a state variable

sometimes leads to unexpected behaviour, when pa-

rameters are changed or submodels combined. Ther-

moDLR provides useful basic components that are easy

to understand down to the equation level and are easy to

extend due to a simple, but convenient inheritance hier-

archy. The supplied MultiSensor components are

very helpful during the fine-tuning phase. Some impor-

tant elements are missing yet, such as a generic turbine

with a corresponding characteristic function or a cylin-

der volume, and had to be added here.

On the whole, ThermoDLR proved to be a very use-

ful tool for the construction of cyclic process models

that can be used for demonstration purposes in thermo-

dynamics lectures. Of course, it requires some effort to

familiarise oneself with the library, but going in simple

steps, as has been shown before, the learning curve is

not very steep and can be mastered by lecturers, who

are not experts in thermo-fluid modeling.

Acknowledgement

The author is grateful to Dirk Zimmer, Niels Weber and

Michael Meißner for introducing him to the DLR Ther-

mofluid Stream Library and for providing helpful hints

during the construction of the described models.

References
[1] Junglas P. Simulation Programs for Teaching

Thermodynamics. Global J of Engng Educ. 2006;

10(2):175–180.

[2] Modelica Association. Modelica® – A Unified
Object-Oriented Language for Systems Modeling,
Language Specification Version 3.5.

URL https:
//modelica.org/documents/MLS.pdf

[3] Casella F, Otter M, Proelss K, Richter C, Tummescheit

H. The Modelica Fluid and Media library for modeling

of incompressible and compressible thermo-fluid pipe

networks. In: Proc. 5th Int. Modelica Conference. 2006;

pp. 631–640.

[4] Moran MJ, Shapiro HN, Boettner DD, Bailey MB.

Fundamentals of Engineering Thermodynamics.

Hoboken, NJ: John Wiley & Sons, 9th ed. 2020.

[5] Cerbe G, Wilhelms G. Technische Thermodynamik.

München: Carl Hanser, 19th ed. 2021.

[6] Fritzson P, Pop A, et al. The OpenModelica Integrated

Environment for Modeling, Simulation, and

Model-Based Development. Modeling, Identification
and Control. 2020;41(4):241–295.

[7] Franke R, Casella F, Sielemann M, Proelss K, Otter M.

Standardization of thermo-fluid modeling in

Modelica.Fluid. In: Proc. 7th Int. Modelica Conference.

2009; pp. 122–131.

[8] Drente P, Junglas P. Simulating a simple pneumatics

network using the Modelica Fluid library. SNE
Simulation Notes Europe. 2015;25(2):85–92.

[9] Zimmer D, Weber N, Meißner M. The DLR

ThermoFluidStream Library. In: Proc. 14th Int.
Modelica Conference. Linköping. 2021; pp. 225–234.

[10] Zimmer D. Robust object-oriented formulation of

directed thermofluid stream networks. Mathematical
and Computer Modelling of Dynamical Systems. 2020;

26(3):204–233.

[11] Junglas P. Praxis der Simulationstechnik.

Haan-Gruiten: Verlag Europa-Lehrmittel. 2014.

[12] Junglas P. Thermodynamic Cyclic Processes library in
Modelica.

URL http://www.peter-junglas.de/fh/
simulation/thermocycle.html

[13] Franke R, Casella F, Otter M, Sielemann M, Elmqvist

H, Mattson SE, Olsson H. Stream connectors – an

extension of Modelica for device-oriented modeling of

convective transport phenomena. In: Proc. 7th Int.
Modelica Conference. 2009; pp. 108–121.

[14] McBride BJ, Zehe MJ, Gordon S. NASA Glenn Coeffi-

cients for Calculating Thermodynamic Properties of

Individual Species. Nasa report tp-2002-211556,

NASA. 2002.

[15] Wagner W, Cooper JR, et al. The IAPWS Industrial

Formulation 1997 for the Thermodynamic Properties of

Water and Steam. J Eng Gas Turbines and Power.

2000;122(1):150–182.

ASIM Workshop STS/GMMS/EDU Proceedings Langbeiträge, Magdeburg, 6.- 7. 3. 2023

10


