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Abstract. Virtual stochastic sensors (VSS) enable the re-
construction of unobserved behavior of discrete or hy-
brid stochastic systems from observable output. Aug-
mented stochastic Petri nets (ASPN) are user models for
VSS and describe discrete stochastic models that pro-
duce discrete output symbols based on the transitions or
system states. Hybrid ASPN (H-ASPN) can describe hybrid
stochastic systemswith continuous quantities that are in-
fluenced by and interact with the discrete system parts,
producing samples of these continuous system quanti-
ties as observable output. Real-world systems often con-
tain both of these types of observable output. In house-
hold energy models, the total consumption is a continu-
ous quantity that can be sampled regularly. Additionally,
the usage behavior of some appliances might be known
in advance or can be monitored easily, resulting in ob-
servable discrete symbols. Being able to utilize both of
these for behavior reconstruction, promises better re-
sults than using either one alone.

In this paper, we describe an extended H-ASPN
paradigm for modeling symbol output as well as sam-
plemeasurement for partially observable hybrid stochas-
tic systems. We demonstrate the paradigm on a small
non-intrusive appliance load monitoring (NIALM) exam-
ple and test the behavior reconstruction. The extended
H-ASPN modeling paradigm enables faster and more re-
liable behavior reconstruction results, when using both
observable symbols and samples. The experimental re-
sults indicate that extended H-ASPN could lead the way
to practically feasible VSS for hybrid systems.

Introduction

Simulation and modeling are used in a forward manner

to observe existing systems, build abstract representa-

tions and experiment with these in order to draw conclu-

sions on the original systems behavior. Many systems

are however not directly observable, but only through

their output or interaction with the environment. To

analyze these partially observable systems, a backward

approach of behavior reconstruction based on the ob-

served output becomes necessary.

Virtual stochastic sensors (VSS) formalize and

solve the inverse problem of determining unobservable

likely stochastic system behavior based on observable

stochastic output. In [1] VSS for discrete and hybrid

systems are formalized and tested on academic and real-

world applications. Two VSS user models are intro-

duced: Augmented stochastic Petri nets (ASPN) can de-

scribe discrete systems that generate output in the form

of discrete observable symbols from an alphabet. This

output can be triggered by the firing of a transition or

based on the current system state. Hybrid augmented

stochastic Petri nets (H-ASPN) describe hybrid stochas-

tic systems with continuous reward measures that are

sampled independently of the system behavior to gen-

erate output protocols.

In a partially observable real-world system, the sym-

bols or samples that are observable can be very differ-

ent in nature and generated by a wide range of pro-

cesses: light barriers can detect the passing of an object

or person; physical sensors can measure temperature,

air pressure, or light intensity; RFID readers can detect

the time and ID of an item passing or residing within

their range. Most of these can be categorized as either

sample or discrete symbol, but a single system may gen-

erate both types of observable output. e.g. smart meters

can record household energy consumption, which is a

continuous measure, and electrical usage monitors can

detect when a specific appliance was switched on and

off, which can be interpreted as a specific symbol. Cur-

rently, ASPN can model discrete signal emissions, and

H-ASPN the samples of continuous measures, but there

exists no modeling paradigm, that can incorporate both

types of emissions. Restricting the model to only one

type of emission would disregard readily available in-

formation and therefore likely lead to mediocre results

compared to an approach including both types of emis-

sions. Therefore, we introduce a model type that can

represent both samples and symbols.
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In Section 1 some background on VSS and other

related work is given. The formalization of an ex-

tended hybrid augmented stochastic Petri net is shown

in Section 2, also addressing necessary changes to the

underlying solution algorithm. We demonstrate the

paradigm and the behavior reconstruction capability us-

ing a NIALM problem in Section 3, showing the benefit

of combining symbol and sample output. Section 4 will

discuss the results and implications.

1 State of the Art

The concept of virtual stochastic sensors (VSS) was

introduced in [2] and has since evolved into a frame-

work to describe and solve backward problems in mod-

eling and simulation ([1]). VSS enable the behav-

ior reconstruction of a broad range of partially ob-

servable stochastic systems based on the observable

output. Originally, hidden non-Markovian models

(HnMM) were developed as computational models for

VSS ([3]). Increasing feasibility, conversive hidden

non-Markovian models restrict the modeling power to

enable a much more efficient solution ([4]). Hybrid

hidden non-Markovian models (HHnMM) expand the

paradigm to include continuous measures ([5]). The

Proxel method ([6]) is used for the actual behavior

reconstruction task. It is a state space-based simula-

tion method, which enables a deterministic analysis of

stochastic models with arbitrarily distributed process

durations employing the method of supplementary vari-

ables. Behavior reconstruction for discrete systems of

realistic size is currently feasible. However, the ex-

tension to hybrid systems increases the computational

complexity drastically, making hybrid VSS only ap-

plicable to small scale academic models so far. The

user models defined for VSS are augmented stochas-

tic Petri-nets (ASPN), which were first introduced in

[4]. ASPN are based on well known stochastic Petri net

paradigms ([7, 8]) and expand these using ideas from

hidden Markov models (HMM) ([9]) by emissions of

discrete symbols. These emissions can either depend

on the current system state or can be triggered by the

firing of a transition. In both cases, the emission time is

recorded in a protocol along with the emitted symbol.

The hybrid components in H-ASPN are modeled using

ideas from stochastic reward nets (SRN) ([10]) and fluid

stochastic Petri nets (FSPN) ([11, 12]). The observable

output of a hybrid ASPN is generated by an indepen-

dent sampling process, that records the values of one or

more of the continuous quantities in a protocol along

with the sampling time stamp. [1]

The concept of observability is also found in control

theory, where Kalman filters are used to estimate the

development of a system. What is also similar to VSS

is the goal of determining a systems internal state from

external measurements. Originally, Kalman Filters are

designed to estimate the development of deterministic

linear systems in discrete steps. Since then, Kalman

Filters have been extended to deal with stochastic and

non-linear systems and are widely used to predict un-

observed or future states of such systems. The general

idea is to predict the system development based on an

estimate of the current state, and then correct the pre-

diction based on possibly noisy measurements. [13, 14]

VSS differ from Kalman Filters in that it is not nec-

essary to formalize the exact structure of the state and

observation equations, including the noise and error

terms. Instead, by mimicking the system development

and exploring the expanded model state space step by

step, we not only avoid the mathematical complexity of

Kalman Filters, but also allow for infrequent measure-

ments, observations stemming from state changes and

completely unobservable states. VSS represent an addi-

tion to the myriad of tools for estimating unobservable

quantities and can be employed when the structure and

dynamics of the partially observable system are known

and can be described by a discrete or hybrid stochastic

model such as the ones presented here.

2 Hybrid Augmented Stochastic
Petri Nets

In this section, we describe the combination of ASPN

and H-ASPN in detail, including the individual model

components. The notation and semantics use the for-

malization from [1]. Therefore, the individual elements

do not differ from the ones described there, but only

their combination.

Formally, an H-ASPN is a tuple

HnMM = (P,T, I,O,H,M0,V,b,W,w0,GF, ir,rr)

with the following elements:

• P = {p1 . . . p|P|} is a set of Places representing

physical locations or system states. The marking

of the H-ASPN is given by the distribution of to-

kens in the places of the net M ∈ M̂ = N
|P|.
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• T = {t1, ...t|T |} is a set of transitions, which is par-

titioned into a set of immediate transitions TI and a

set of timed transitions TT .

– An element of TI is associated with a prob-

ability TI → [0,1], denoting the firing proba-

bility in competition situations. If the proba-

bility is not stated, it defaults to 1. Immedi-

ate transitions can fire as soon as they are en-

abled, according to their assigned probability.

– An element of TT is associated with an ar-

bitrary continuous distribution function and

possibly a memory policy (race-age or race-

enable). This distribution describes the firing

time, which needs to elapse between enabling

and firing of a transition.

• I,O,H : P× T → N0 are incidence functions and

specify the connection between places and transi-

tions.

– If I(p, t)> 0, an input arc leads from place p
to transition t. The value of I(p, t) determines

the number of tokens that need to be present

in place p for transition t to be enabled, and

likewise the number of tokens destroyed in p,

when t fires.

– If O(p, t) > 0, an output arc leads from tran-

sition t to place p. The value of O(p, t) deter-

mines the number of tokens that are created

in place p when t fires.

– If H(p, t) > 0, an inhibitor arc leads from

place p to transition t. The value of H(p, t)
determines the number of tokens that need to

be present in p for transition t to be disabled.

• M0 = (m1 . . .m|P|) (M0 : P → N0) holds the ini-

tial marking of the H-ASPN, where mi denotes the

number of tokens in place pi at the initialization of

the system.

• V = {v1 . . .v|V |} is the set of discrete output sym-

bols of the net.

• b : V ×P∪V ×T → [0,1] describes the output be-

havior of the net, mapping the element generating

the output and the output symbol to an output prob-

ability. In most cases, outputs are associated either

to transitions or to places, a combination is how-

ever also conceivable and therefore not ruled out.

– If the output is generated depending on the

current system state, then b : V ×P → [0,1].

If a state can produce output symbols, then

the sum of the probabilities of all output sym-

bols of the state must be 1: ∃b(vi, p j)> 0 ⇒
∑k=1...|V | b(vk, p j) = 1.

– If the output is generated depending on the

ASPN transitions, then b : V ×T → [0,1]. If

a transition can produce output symbols, then

the sum of the probabilities of all output sym-

bols of that particular transition must be 1:

∃b(vi, t j)> 0 ⇒ ∑k=1...|V | b(vk, t j) = 1.

• W : {w1 . . .w|W |} is a set of variables, representing

continuous system quantities. The current values

of these quantities are given in w|W | ∈ Ŵ = R
|W |.

• w0 = (w1 . . .w|W |) contains the initial values of the

continuous system quantities.

• GF : T ×N
|P| ×R

|W | → 0,1 describes the marking

dependent guard of each transition. If the Boolean

expression evaluates to 1, the transition is enabled,

and it is disabled otherwise.

• ir : T × M̂ ×Ŵ → R (or R|W |) describes a type of

impulse reward, which can change the value of a

continuous quantity immediately. The change can

be dependent on the current marking of the ASPN.

• rr : P× M̂ ×Ŵ → R (or R|W |) describes a type of

rate reward, which can change the value of a con-

tinuous quantity continuously. The rate of change

can be dependent on the current marking of the

net. The rate reward can be associated to a specific

place or can be completely independent of the dis-

crete system state and be represented by an ODE.

The marking of the places and the values of

the continuous quantities together form the potential

state space of the H-ASPN M̂ × Ŵ . The elements

P,T, I,O,H,M0 were taken from Petri nets and are

widely known. For more details on the semantics and

dynamics of SPN refer to general Petri net literature

[7, 8].

Elements V and b hold the augmentation informa-

tion. The specific output semantics are the following:

when a transition with associated output symbols fires,

one of these symbols is emitted, sampled according to

their probabilities. When symbols are associated with

places or specific system states, observations are made

through an independent process. The symbol is sam-

pled depending on the current system state and associ-

ated output symbols. Observed outputs are collected in
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a protocol with their respective emission or sampling

time stamps. Samples of the continuous measures can

be taken at any time, and will be collected in a pro-

tocol associated with the time when they were drawn.

The protocol can contain values of different continu-

ous quantities, but not every continuous system quantity

must be represented.

2.1 Modifications to Computational Model
and Solution Algorithm

In order to enable behavior reconstruction for this mod-

ified H-ASPN model type, we also need to adapt the

computational model and solution algorithm. Analo-

gously to the combination of the user models, the com-

putational model was created by combining the output

processes of hidden non-Markovian models (HnMM)

and hybrid hidden non-Markovian models (HHnMM)

[1] to incorporate discrete symbol emissions as well as

samples of continuous model variables. As solution

method, we extended the Proxel-based analysis algo-

rithm for hybrid models (see [1, 5]) to perform behav-

ior reconstruction for extended H-ASPN. The trace can

now contain samples of the continuous model quantities

as well as discrete output symbols, and both will be han-

dled accordingly. As described in [5], the parametriza-

tion process for the Proxel method for hybrid systems

is tedious, since the inclusion of continuous variables

considerably increases the complexity of the models.

Countering the inherent problem of state-space explo-

sion of the Proxel method becomes more difficult with

more method parameters. Instead of having a binary

decision on the validity of a Proxel, as with discrete

outputs, the estimate of the continuous measure in the

Proxel can be within ε of the observed sample. The

size of ε and the cutoff probability or number for prun-

ing the Proxel tree both need to be balanced, in order

to achieve a useful reconstruction result in a computa-

tionally feasible manner. In the following experiment

section, we will show how the behavior reconstruction

works for the extended paradigm.

3 Example and Experiments

For our proof of concept, we will use a small example

constructed from the UMass Smart* Data Set for Sus-

tainability [15] (2013 release). The data was gathered

from several private homes over the period of several

months, and includes aggregate power readings, circuit

and appliance level consumption as well as environ-

mental data. The goal of non-intrusive appliance load

monitoring (NIALM) is to dis-aggregate a cumulative

household energy consumption into the contributions

of individual appliances or circuits. For demonstra-

tion purposes, we have chosen a subset of three circuits

with different characteristics from House A, namely the

Dryer, MasterLights and CounterOutlets1. For a de-

tailed description of the model construction, please re-

fer to [16]. The data set uses UNIX time stamps, and

thus seconds as basic time unit. The goal for the exper-

iments is to determine the unobserved system behavior

in terms of appliance state changes from the cumulative

power consumption, with and without information on

individual appliances state changes.

3.1 NIALM Example System

We parameterized the model using the circuit level

data of five consecutive days (May 6th to 10th), and

performed behavior reconstruction using the aggregate

power consumption of the following day (May 11th).

The graphical representation of the H-ASPN can be

found in Figure 1. Well known Petri-net elements are

represented as follows, places as circles, timed transi-

tions as open rectangles, immediate transitions as verti-

cal bars associated with a probability, and arcs as solid

line arrows. The timed transitions associated with the

state changes of the MasterLights and the CounterOut-
lets emit a symbol when firing, denoted by a dotted

arrow. The different rate rewards in the different ap-

pliance states are depicted by dashed arrows annotated

with the average consumption rate in that state. Since

the appliances have separate state spaces, the rewards of

the currently active states are added to form the overall

current consumption. For clarity reasons, not all ele-

ments of the H-ASPN are named.

In the formal description of the H-ASPN, H, ir and

GF are omitted, since the system does not include in-

hibitor arcs, impulse rewards or guard functions.

Circuits = (P,T, I,O,M0,V,b,W,�v,rr)

P = {Dr1,Dr2,Dr3,Dr1Done,Dr2Done,

ML1,ML2,CO1,CO2}
TI = {Dr1to2,Dr1to3,Dr2to1,Dr2to3}
TT = {Dr1T ,Dr2T ,Dr3T ,ML1T ,ML2T ,

CO1T ,CO2T}
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Figure 1: H-ASPN of the NIALM Example Process

I(p, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 : (p = Dr1∧ t = Dr1T )
∨(p = Dr3∧ t = Dr2T )
∨(p = Dr2∧ t = Dr3T (
∨(p = Dr1Done∧
(t = Dr1to2∨ t = Dr1to3))
∨(p = Dr2Done∧
(t = Dr2to1∨ t = Dr2to3))
∨(p = ML1∧ t = ML1T )
∨(p = ML2∧ t = ML2T )
∨(p =CO1∧ t =CO1T )
∨(p =CO2∧ t =CO2T )

0 : else

O(p, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 : p = Dr1Done ∧ t = Dr1T
∨p = Dr2Done ∧ t = Dr2T
∨p = Dr1∧ t = Dr2to1

∨p = Dr2∧ t = Dr1to2

∨p = Dr2∧ t = Dr3to2

∨p = Dr3∧ t = Dr1to3

∨p = Dr3∧ t = Dr2to3

∨p = ML1∧ t = ML2T
∨p = ML2∧ t = ML1T
∨p =CO1∧ t =CO2T
∨p =CO2∧ t =CO1T

0 : else

M0 = (1,0,0,0,0,1,0,1,0)

V = {MLon,MLo f f ,COon,COo f f}
b(MLon,ML1T ) = 1

b(MLo f f ,ML2T ) = 1

b(COon,CO1T ) = 1

b(COo f f ,CO2T ) = 1

else b(v, t) = 0

W = r

�w0 = (0)

rr(Dr1) = 4.5

rr(Dr2) = 1071

rr(Dr3) = 5918

rr(ML1) = 46

rr(ML2) = 283

rr(CO1) = 5.7

rr(CO2) = 1500

The timed transitions governing the appliance state

changes were fitted with Weibull distributions and Ex-

ponential distributions with the same expected values.

The Weibull distribution was used, since it mimics the

actual switching behavior of the appliances best [16],

and the Exponential distribution as comparison, be-

cause it is least restrictive, being memoryless. In con-

trast to the models used in [16], where histograms are

used to represent a small number of different consump-

tion levels per state, we only used one average power

consumption value per state.

The cumulative consumption trace of May 11th was

extracted from the Smart* data set, as were the state

change points of the MasterLights and the CounterOut-
lets1. The time stamps were normalized to start at 0

with the first item of the trace. An excerpt of the trace

is depicted in Table 1. The ground truth, in terms of

state changes in all three appliances is also known from

the data set and depicted in Table 2, where one can see,

that on the test day, the Dryer was not in use at all, but

stayed in the state with lowest consumption.

Trace
Time Stamp Sample/Symbol

... ...

5169 287789

6175 466894

6175 MLon
6178 467708

6287 498265

6358 518035

6362 519155

6554 529992

6554 MLo f f
6714 538616

... ...

Table 1: Excerpt of the Cumulative Consumption Trace with

Symbols

In the experiments, we want to test, how includ-

ing some symbols in the trace affects the accuracy of
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Generating Path
Time Stamp State Change

6175 ML1T
6554 ML2T
6982 ML1T
7381 ML2T
7659 CO1T
7874 CO2T

Table 2: Ground Truth for Appliance State Changes

the reconstruction, compared to a reconstruction based

only on samples. Therefore, we constructed the model

in different variations: (0) no symbol emissions at all,

(1) state changes of the MasterLights and CounterOut-
lets are detectable, however cannot be distinguished

through the symbol emitted, (2) the state changes of

MasterLights and CounterOutlets are detectable and

can be distinguished from their symbols, which corre-

sponds to the model formalized in the previous section.

In case (0), the trace only contains samples of the con-

tinuous quantity, and the times when they were mea-

sured. In cases (1) and (2) the trace also contains sym-

bols with the time stamps of when they were emitted.

For the experiments, we used a maximum simula-

tion time of 10,000, encompassing all symbols and state

changes in the ground truth, and a Proxel discretization

time step of 60 seconds. For all experiments shown

here, we varied the ε cutoff threshold and Proxel cutoff

number to result in a feasible run, with smallest possible

ε . Both parameters affect the number of paths discov-

ered and the runtime [5, 1], and therefore will not be

compared here directly. The ε parameter had to be cho-

sen at 10,000 or more, since the time step of 60 could re-

sult in large gaps between actual and reconstructed state

change times, resulting in larger deviations between the

actual and the reconstructed consumption.

As a first test, we ran the Proxel analysis algorithm

with the version (0) models and traces without symbol

emissions. The model with Weibull distributions re-

sulted in paths with 166-170 state changes, which cor-

responds to one state change in almost every time step

of the analysis, most of these of MasterLights or Coun-
terOutlet. Thus the reconstructed paths using the model

with Weibull distributions bear no resemblance to the

ground truth path, and are therefore not practically use-

ful. The most likely path reconstructed using the model

with Exponential distributions is shown in Table 3. The

algorithm failed to reconstruct the state changes in the

MasterLights, mis-matching two of them as Counter-

Outlet switches, but at least matching the switch tim-

ings. Considering the ambiguity and large time step size

of the reconstruction, this is a mediocre result.

Reconstructed Path
Time Stamp State Change

6120 CO1to2

6240 CO2to1

7620 CO1to2

7920 CO2to1

Table 3: Reconstructed Path Without Detectable State

Changes

As a next step, we used model variant (2), where

MasterLight and CounterOutlets1 state changes are de-

tectable and can be distinguished by the symbols emit-

ted. Unfortunately, the paths reconstructed using the

model with Weibull distributions again contained one

state change in almost every time step, and were there-

fore not useful here. The most likely path reconstructed

using the model with Exponential distributions is shown

in Table 4. The path resembles the ground truth very

closely, only the Dryer state change from Dr1 to Dr2

at 6120 and back again 2 minutes later does not corre-

spond to the actual system behavior. This shows that,

even if only some state changes are detectable, the re-

construction resembles the ground truth much better

than without detectable state changes.

Reconstructed Path
Time Stamp State Change

6120 DR1T
6120 DR1to2

6180 ML1T
6240 DR2T
6240 DR2to1

6600 ML2T
7020 ML1T
7440 ML2T
7680 CO1T
7920 CO2T

Table 4: Reconstructed Path With Distinguishable State

Changes

In model variant (1) all detectable state changes emit

the same symbol, which decreases the systems degree

of observability by making the state changes indistin-

guishable. The reconstructed most likely path still cor-

responds to the one with distinguishable state changes

depicted in Table 3, correctly matching MasterLight
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and CounterOutlets1 state changes.

We also want to compare the algorithm performance

when including or excluding symbols. We will only use

the two models using Exponential distributions, since

only these resulted in useful reconstructions. When

comparing the runtime for both algorithms with the

same ε and cutoff threshold parameters, the analysis of

the model without symbol emissions needs 20 seconds,

whereas the analysis when including symbols needs

only about 4 seconds.

Figure 2 shows the development of the number of

valid paths over time. The upper graph shows the num-

ber oscillating around 1500 but staying above 500 af-

ter an initial period. The lower graph shows more pro-

nounced drops in this number, some of which can be

associated to observed symbols. This is due to the

higher degree of observability of the model including

detectable state changes, and thus a larger number of

paths becoming invalid throughout the analysis.

Figure 2: Valid Paths Over Simulation Time Without (Top)

And With (Bottom) Detectable State Changes

Figure 3 shows the development of the trace proba-

bility in log scaling over time. In both cases, the proba-

bility decreases gradually, until the first detectable state

change, also in the model without state change detec-

tion. In the lower graph, each detectable state change

leads to a more noticeable drop in trace probability,

since invalidating paths decrease the remaining prob-

ability in the analysis.

Figure 3: Trace Probability Over Simulation Time Without

(Top) And With (Bottom) Detectable State Changes

Since the application example presented here is in-

tended only as a proof of concept for the usefulness of

extended Hybrid-ASPN, improving the results further is

future work, and needs more extensive research. Based

on these experiments, we can conclude, that behavior

reconstruction based on a combination of discrete sym-

bol emissions and samples of continuous measures is

possible using the Proxel-based method. Furthermore,

is the reconstruction accuracy of the method consider-

ably improved by using the combination of symbols and

samples. In the example tested here, the model was to

coarse to allow accurate reconstruction only based on

samples of the continuous quantity. Only the inclusion

of samples resulted in reconstructed paths close to the

ground truth. Increasing the models degree of observ-

ability through the inclusion of symbols, results in a 5

times faster runtime for the example investigated here.

This is due to a smaller number of possible paths that

need to be tracked during the analysis, thus resulting in

a reduction in state space explosion.
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4 Conclusion and Outlook
The paper introduced a user model for virtual stochastic

sensors to perform behavior reconstruction of partially

observable hybrid systems based on observable out-

put. In contrast to the user models so far, the extended

Hybrid-ASPN enable the modeling of two different

types of system output, samples of continuous mea-

sures as well as discrete symbols. The new paradigm

is demonstrated using a NIALM example problem. The

reconstruction experiment shows that being able to uti-

lize both symbols and samples for behavior reconstruc-

tion considerably increases the method performance

and result accuracy. The increase in performance when

including symbols along with sample output shows a

way of making virtual stochastic sensors for hybrid sys-

tems feasible. Future work must include further inves-

tigation of the presented application in NIALM. Com-

plete household models should be tested, as well as a

more detailed representation of the state output. This

and further real world application scenarios can lead to

practically feasible VSS for partially observable hybrid

stochastic systems.
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