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Abstract. In this paper we investigate the performance
of projection-based low-rank approximations in Kalman
filtering. For large-scale gas pipeline networks structure-
preserving model order reduction has turned out to be
an advantageousway to compute accurate solutionswith
much less computational effort. For state estimation we
propose to combine these low-rank models with Kalman
filtering and show the advantages of this procedure to
established low-rank Kalman filters in terms of efficiency
and quality of the estimate.

Introduction

Efficient state estimation plays an important role for

model-predictive control of gas pipeline networks, [1,

8, 18]. Gas network models are large-scale systems of

high complexity. They consist of nonlinear partial dif-

ferential equations coupled with algebraic constraints,

whose simulation is computationally very expensive.

To reduce the effort, model hierarchies have been estab-

lished [3] and, recently, structure-preserving model or-

der reduction has been developed [6, 14]. The reduced

(low-rank) models are in particular mass-conserving

and energy-dissipating.

In state estimation Kalman filtering is popular. The

Kalman Filter, developed in the 1960s [10], is still one

of the most prominent filtering algorithms because of

its optimality property for linear systems. Since it is not

suitable for large-scale systems due to computational

reasons, low-rank Kalman filters have been developed,

see [16] and references within. They reduce the com-

putational effort by simplifying the costly and memory-

demanding calculations of the error covariances in the

filtering process. For example, the Compressed State

Kalman Filter [12] reduces the covariance matrices via

projection techniques and the Spectral Kalman Filter

[7] by help of a Taylor expansion, whereas the Ensem-

ble Kalman Filter [9] considers a sample covariance by

collecting an ensemble of possible states with a Monte-

Carlo method. Recent work addresses the use of a

reduced-order model in the filtering process for linear

and nonlinear parabolic systems [5, 17].

In this paper we investigate the use of a structure-

preserving reduced (low-rank) model in Kalman fil-

tering for gas networks. Since a reduced nonlinear

model has proven to be still too computationally expen-

sive in the application [19], we consider a linearized

model variant. We deduce our low-rank approxima-

tion by projection-based model order reduction. Our

approach has hence similarities with the Compressed

State Kalman Filter being a projection-based low-rank

filter. However, we show that our approach is signif-

icantly superior to established low-rank Kalman filters

in terms of computational speed and memory demands,

while the obtained state estimates are of competitive ac-

curacy. We also study the combination of a low-rank

model with a low-rank filter.

The paper is structured as follows: After introduc-

ing a model hierarchy for gas pipeline networks and the

filtering in Sec. 1, we present our Kalman filtering ap-

proach with a reduced model and discuss its similarities

and differences to the Compressed State Kalman Fil-

ter in Sec. 2. A numerical performance study for the

low-rank approximations – in terms of quality and ef-

ficiency – is carried out in Sec. 3, using an academic

benchmark example as well as a real gas pipeline net-

work from western Germany.

1 Problem setting

Modeling a gas pipeline network, we proceed from the

nonlinear isothermal Euler equations and establish a

model hierarchy by help of linearization and structure-

preserving reduction.
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1.1 Hierarchical gas network models

The gas pipeline network is described by a directed

graph G = (V ,E ), where the pipes are represented by

the edges E and the junctions VI and inlets/outlets VB
by the nodes V , in particular V = VI ∪VB, VI ∩VB = /0.

The gas dynamics in a pipe e of length le is mod-

eled by nonlinear isothermal Euler-type equations for

pressure pe and mass flux qe, i.e., for e ∈ E , (x, t) ∈
[0, le]× [0,T ],

ae∂t pe =−∂xqe, be∂tqe =−∂x pe −de |qe|
pe qe, (1)

with constant pipe parameters ae, be, de and coupled via

Kirchhoff’s conditions in every junction v ∈ VI

∑
e∈δ−

v

qe(le, t) = ∑
e∈δ+

v

qe(0, t),

pe(le, t) = pv(t),e ∈ δ+
v , pe(0, t) = pv(t),e ∈ δ−

v ,

where δ+
v , δ−

v denote the sets of all topologically ingo-

ing and outgoing edges to v. At inlets/outlets v ∈ VB we

prescribe the pressure pv as

pv(t) = uv(t) = uv
D(t)+uv

S(t),

duv
S = κv(μv −uv

S)dt +σ vdW v
t .

The time-varying input uv consists of a deterministic

part uv
D and a stochastic one uv

S, where we particularly

model uv
S by an Ornstein-Uhlenbeck process with con-

stant parameters κv, μv, σ v and a standard Wiener pro-

cess W v
t . The stochastic boundary data allows the in-

corporation of, e.g., market strategies or the concept of

Power-to-Gas [4]. Certainly, also other boundary types

can be considered, see e.g., [14]. We initialize the tran-

sient model with the stationary solution associated to

the unperturbed input uv = uv
D(0), v ∈ VB. A linear

model variant is obtained when considering a simplified

linearized friction term in (1) with respective constant

de
l ,

ae∂t pe =−∂xqe, be∂tqe =−∂x pe −de
l qe. (2)

For an overview on further hierarchical models see, e.g.,

[3].

1.2 Structure-preserving reduced models

The unperturbed network models can be embedded in

a port-Hamiltonian framework and allow for structure-

preserving and robust spatial Galerkin approximations.

The Galerkin approximation is applicable to finite el-

ement discretization and projection-based model or-

der reduction. Under mild assumptions on the ansatz

spaces, mass conservation and energy dissipation are

ensured [6, 14, 15].

As in [6], we use mixed finite elements and the mo-

ment matching method proposed there for the network

model (2), yielding linear time-invariant descriptor sys-

tems of the form

EEE ẋ = AAAx+BBB(uD +uS), (3a)

y =CCC x, (3b)

duS =K(μ −uS)dt +ΣΣΣdWt . (3c)

The input functions uD, uS account for the boundary

conditions with diagonal matrices K, ΣΣΣ ∈ R
|VB|×|VB|

containing the entries κv and σ v, respectively, and μ =
(μv)v∈VB . The output y(t) ∈ R

R with certain pressure

or flux values corresponds to measurement data in the

context of filtering, t ∈ [0,T ]. In case of the full order

model the state x(t) ∈ R
N represents the space-discrete

pressure and flux, its size is determined by the number

of pipes and finite elements for each pipe. In the model

reduction the system structure is kept. We introduce an

orthonormal projection matrix VVV ∈ R
N×n, n � N with

the property x ≈ VVV x̂, i.e., VVV TVVV = I, I identity. The re-

duced quantities are indicated by ,̂ the system matrices

particularly read

ÊEE =VVV T EEEVVV , ÂAA =VVV T AAAVVV , B̂BB =VVV T BBB, ĈCC =CCCVVV . (4)

Note that we preserve a block structure by setting up

the reduced spaces for pressure Vp and flux Vq sep-

arately. Imposing a compatibility condition on the

spaces, ∂xVp = Vq, ensures stable reduced models [6,

15].

1.3 Stochastically forced model for filtering

The state estimation is based on a filtering model, for

which we use the linear spatially discretized network

model in the full or a reduced version. Uncertainties

are incorporated via a system noise being modeled as

(driving) uncorrelated Gaussian process in (3a).

Let x(t) = (xT ,uT
S )

T (t) ∈ R
N+|VB|, t ∈ [0,T ], we

consider equidistant time points tk = kτ , τ = T/K,

k = 0, ...,K, then our filtering model in time-discrete
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form reads

xk+1 = ΦΦΦxk +ΨΨΨuk +wk (5)

ΦΦΦ =

(
AAA−1

τ (EEE + τ(1−θ)AAA) τAAA−1
τ BBB

(I+ τK)−1

)

ΨΨΨ =

(
τAAA−1

τ BBB
τ(I+ τK)−1Kμ

)
.

with AAAτ = EEE − τθAAA. Here, xk denotes the ap-

proximation xk ≈ x(tk), and uk = ((θuD(tk+1) + (1−
θ)uD(tk))T ,1T )T the respective input at time tk with

vector of ones 1 ∈ R
|VB|. The underlying time-

integration is based on a θ -scheme for (3a) and an

Euler(-Maruyama)-scheme for (3c). Our different treat-

ment is motivated by the observation that the Euler-

scheme is sufficient for the computation of the bound-

ary data, whereas the more sophisticated θ -scheme al-

lows for a better capturing of the dynamic behavior of

the flow quantities. The state noise wk ∼ N (0,QQQ) is a

normal distributed centered random variable with con-

stant diagonal covariance matrix QQQ for every time tk, in

particular

QQQ = τ
(

ZZZZZZT

ΣΣΣΣΣΣT

)
.

It results from the system noise with amplitude ZZZ ∈
R

N×N (diagonal matrix) added to (3a) and the scaled

Wiener process in (3c).

The output is assumed to be measurable with suit-

able devices. To account for measurement errors, noise

is added to the output equation (3b), i.e.,

yk = HHH xk +vk (6)

with yk output at time tk and HHH = (CCC,000). The discrete

time noise vk ∼N (0,RRR), with constant covariance ma-

trix RRR ∈ R
R×R, is assumed to be uncorrelated in time

and to be component-wisely independent of wk. In this

study the measurement data {yk} for the filtering is pro-

vided by the outputs of the nonlinear network model

(1).

Using the reduced-order model for filtering, the sys-

tem matrices are replaced by their reduced counter

parts, yielding Φ̂ΦΦ, Ψ̂ΨΨ and ĤHH in (5) and (6). Since the

input process is not affected by the model order reduc-

tion, the reduced covariance of the state noise is given

by Q̂QQ =VVV T
x QQQVVV x with

VVV x =

(
VVV

I

)
. (7)

2 Low-rank approximations
The focus of this work is on Kalman filtering algo-

rithms, since our filtering model is linear. The Kalman

Filter (KF) is known to be optimal for linear systems

with white noise as state and measurement noise in the

sense that it is unbiased and minimizes the error vari-

ance [10]. However, it is not applicable to large-scale

systems for computational reasons. We investigate a fil-

tering approach based on projection-based model order

reduction involving low-rank models and discuss its re-

lation to the established Compressed State Kalman Fil-

ter [12, 13] being a projection-based low-rank Kalman

filter.

Kalman filtering consists of a prediction and a cor-

rection step. In each of these steps a state estimate and

its error covariance are computed. At time point tk, the

state and the error covariance matrix of the prediction

step are denoted by xk|k−1 and PPPk|k−1, where the first

index indicates the current time point tk and the sec-

ond index stands for the time up to which measurement

data is considered, i.e., tk−1. In the correction step ad-

ditional measurement data of the current time point is

taken into account, yielding the state estimate xk|k and

the corrected error covariance matrix PPPk|k. The correc-

tion ratio between prediction and correction is given by

the so-called Kalman gain KKKk, see Algorithm 1.

2.1 Kalman Filter using reduced-order models

In the Kalman Filter the computational effort comes

from the determination of the error covariances (and

the Kalman gains) being fully occupied matrices of the

system’s size. The matrix evaluations become memory-

intensive and expensive for large-scale systems. Es-

tablishing a model hierarchy, we derive a low-rank ap-

proximation from projection-based model order reduc-

tion. Using a low-rank model to estimate the state and

to compute the error covariances significantly reduces

the effort and makes the Kalman Filter applicable. Pro-

longating the resulting low-rank estimate to the high-

dimensional space yields then the desired state estimate

for the large-scale system.

The Kalman Filter applied to the reduced-order

model (RKF) gives an estimate for the reduced state x̂k|k
and its associated error covariance matrix P̂PPk|k of small

size. To get the quantities xk|k and PPPk|k of the full order

(large-scale) system, we exploit the linearity of the ex-

pectation value and the approximation property of the

reduced state x ≈VVV x x̂. This leads to xk|k ≈VVV x x̂k|k and
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Algorithm 1: Kalman Filter

// initialization
1 x0|0 = x0,PPP0|0 = PPP0;

2 for k = 0, . . . ,K −1 do
// prediction

3 xk+1|k = ΦΦΦxk|k +ΨΨΨuk;

4 PPPk+1|k = ΦΦΦPPPk|kΦΦΦT +QQQ;

// correction

5 KKKk+1 = PPPk+1|kHHHT (HHHPPPk+1|kHHHT +RRR)−1;

6 xk+1|k+1 = xk+1|k +KKKk+1(yk+1 −HHHxk+1|k);
7 PPPk+1|k+1 = (I−KKKk+1HHH)PPPk+1|k;

8 end

PPPk|k ≈VVV xP̂PPk|kVVV T
x .

2.2 Compressed State Kalman Filter

The idea of the Compressed State Kalman Filter

(CSKF) to overcome the computational complexity of

the (classical) Kalman Filter is to replace the error co-

variance matrix with a low-rank approximation. Thus,

it is assumed that there exists a constant orthonor-

mal projection matrix VVV P, VVV T
PVVV P = I, such that PPPk|l ≈

VVV PP̃PPk|lVVV T
P holds for both the predicted (l = k− 1) and

the corrected error covariance matrix (l = k) with P̃PPk|l
being of much smaller size. For the filter matrices,

low-rank versions are precomputed offline, i.e., Φ̃ΦΦ =
VVV T

PΦΦΦVVV P, H̃HH = HHHVVV P and Q̃QQ = VVV T
PQQQVVV P, that are then

used for the determination of the low-rank error covari-

ance P̃PPk|k and the respective low-rank Kalman gain K̃KKk
in each time step (cf., Algorithm 1, lines 4, 5 and 7).

The calculations for the state estimate are performed

with the full-rank filter matrices. They stay the same

as in the (classical) Kalman Filter, except for prolon-

gating the Kalman gain to the high-dimensional space

(KKKk ≈VVV P K̃KKk).

2.3 Relation between projection-based
filtering variants

The Kalman Filter on a reduced-order model and the

Compressed State Kalman Filter seem to be very simi-

lar at first glance, since they both deal with projection-

based low-rank approximations. However, there exist

severe differences.

CSKF still uses the large-scale system for the com-

putation of the state estimates, while the reduction

only affects the error covariance matrices and thus the

Kalman gain. In contrast, RKF uses a low-rank model

for the entire filtering process, including the state com-

putation. This is expected to further improve the com-

putational speed, but probably at the cost of accuracy

compared to CSKF. For a numerical study on this point

see Sec. 3.

As far as the projection is concerned, there exist

multiple techniques in the field of model order reduc-

tion on how to construct the projection matrix VVV x for

a low-rank model, e.g., with Moment Matching, Bal-

anced Truncation or Proper Orthogonal Decomposition

(see, e.g., [2] for an overview). Usually, the special

structure of the underlying large-scale system (differ-

ential, algebraic or additional input equations) is taken

into account to achieve the best possible approximation

quality. In CSKF, the choice of VVV P is not obvious, as

it exclusively acts on a statistical quantity (error covari-

ance matrix). In the following investigations we use

VVV x =VVV P.

Applying the same projection matrix, one might ex-

pect the same low-rank approximations for the error co-

variances in both filtering variants when starting with

the same initialization. But this is in general not the

case, as a closer look at their computation in the predic-

tion step reveals. We find

P̂PPk+1|k = Φ̂ΦΦP̂PPk|kΦ̂ΦΦT
+ Q̂QQ for RKF,

P̃PPk+1|k = Φ̃ΦΦP̃PPk|kΦ̃ΦΦT
+ Q̃QQ for CSKF.

While the state noise covariances satisfy Q̃QQ = Q̂QQ, the fil-

ter state matrices differ, Φ̂ΦΦ �= Φ̃ΦΦ, in case of an underlying

implicit time-discretization. See, e.g., the first diagonal

block matrix for our pipe network model and the pro-

jection matrix (7),

Φ̂ΦΦ11 = (VVV T (EEE − τθAAA)VVV )−1VVV T (EEE + τ(1−θ)AAA)VVV
�= VVV T (EEE − τθAAA)−1(EEE + τ(1−θ)AAA)VVV = Φ̃ΦΦ11.

In this context, the projection might be interpreted as a

model reduction before or after time-discretization for

RKF and CSKF, respectively.

2.4 Reduced Ensemble Kalman Filter

Additionally to the projection-based approaches, we

consider the Ensemble Kalman Filter on a reduced-

order model (REnKF) for comparison reasons in Sec. 3.

The Ensemble Kalman Filter is probably the most used
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Kalman filter variant for large-scale systems, [9]. This

filtering algorithm avoids the costly evaluation of the al-

gebraic expression of the error covariance matrix in the

prediction step (matrix-matrix-matrix product of full

occupied matrices of system’s size, cf. Algorithm 1,

line 4). Applying a Monte-Carlo method, the error co-

variance is numerically approximated on basis of an en-

semble of samples of the stochastic filter model. The

calculation of Kalman gain and corrected error covari-

ance follows the procedure of the classical Kalman Fil-

ter. The state estimate is given as ensemble average.

This procedure usually requires only a very small

amount of memory, as not the whole covariance ma-

trix, but only a few samples, whose numbers are usu-

ally much less compared to the state dimension, have

to be stored. Moreover, there exist observation matrix-

free implementations. As for computational time, there

is not much gain to be expected from parallelizing the

ensemble filter, since collecting all samples after each

time step involves a massive overhead. The Ensemble

Kalman Filter can be combined straightforward with a

reduced-order (low-rank) model, as filter model and fil-

ter technique are independent of each other.

3 Numerical investigations

We investigate the performance of the low-rank filtering

techniques in terms of accuracy of the state estimates

and computational effort. As gas pipeline networks we

consider an academic example of small size (diamond

topology) for which the classical Kalman Filter is still

applicable as well as a large-scale real network from

western Germany. As measurement data we take the

mass flux values at the boundary nodes obtained from

the nonlinear network model which also serves as refer-

ence. For REnKF we always use 100 samples in accor-

dance to the recommendations in [9]. All computations

are performed in MatlabR2017b on an Intel Xeon with

2.2GHz using 12 Cores.

3.1 Academic diamond network

The small diamond network of 7 edges and 6 nodes

serves as academic benchmark setting, see Fig. 1. The

pipe parameters are taken from [4]. For the linear model

we use de
l = de|qe

av|/pe
av, where pe

av and qe
av are the av-

erage pressure and mass flux on edge e of the stationary

solution associated to the input uv = uv
D(0), v ∈ VB. In

the subsequent example each pipe is discretized with

e1

e 2

e
3

e
4

e
5

e 6

e7

v1 v2

v3

Figure 1: Academic example: diamond network topology.

250 equidistant finite elements, yielding a full order

system with N = 3511 degrees of freedom. The reduced

model is of size n = 29, which implies a low-rank fil-

ter model of size n+ |VB| = 31 when adding the two

equations for the boundary data. The reduction error

is of order O(10−4). Concerning the filter model, the

system noise is exclusively added to the dynamic equa-

tions, it is set up with respect to the maximal deviation

of the stationary solution from its average values (pres-

sure, mass flux) on each pipe. The algebraic constraints

are not perturbed, as they describe mass conservation

across junctions. Note that they are preserved under the

applied model order reduction. The measurement noise

accounts for 1% deviation from the maximal measured

flux values. As input functions we choose

uv1
D (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2+ t, 0 ≤ t < 1,

3, 1 < t < 5,

1.5−0.1t, 5 ≤ t < 10,

2, t ≥ 10,

uv2(t)≡ 2,

(μ,κ,σ)v1 = (0,3,0.2)

for t ∈ [0,20]. We apply 1000 time steps and set θ =
0.51.

Figure 2 illustrates the temporal evolution of the

mass flux at the inner node v3 on edge e2 (cf., Fig. 1)

that is obtained from the nonlinear network model (1)

(reference solution) and from the linear model (2) as

well as is estimated by the different low-rank filtering

techniques. Although the estimates are computed on

basis of the linear model whose solution differs strongly

from the nonlinear one, they capture the nonlinear be-

havior being included via the measurements very well.

Regarding the estimation errors (i.e., temporal mean

of the relative spatial L2-errors wrt. reference) in Ta-

ble 1, the (classical) Kalman Filter shows the best ap-

proximation properties. CSKF achieves a comparable

error, whereas the errors of the other low-rank filters

(Kalman and Ensemble Filter on reduced-order model)
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Table 1: Errors and CPU time for diamond network

Filter mean j
‖E[x j−x j| j ]‖L2

‖E[x j ]‖L2
Offline [s] Online [s]

KF 3.7 ·10−2 8.4 ·102 5.2 ·101

RKF� 6.0 ·10−2 0.2 ·100 7.4 ·10−2

CSKF 3.8 ·10−2 2.1 ·100 1.5 ·100

REnKF� 9.8 ·10−2 1.2 ·10−1 3.2 ·10−1

� additional post-processing for prolongation is required
 offline time refers to sampling of random variables

0 5 10 15 20
Time

-0.5

0

0.5

1

1.5

2

2.5

M
as

s 
Fl

ux

Nonlinear
Linear
RKF

CSKF
REnKF

Figure 2: Simulation and estimation results for mass flux

qe2 (v3), cf., Fig. 1.

are of same order but slightly worse. The better accu-

racy of CSKF towards the other low-rank filters might

be expected as it estimates the states on basis of the

large-scale model. However, all results are astonish-

ingly good regarding the underlying model order reduc-

tion error (cf., Fig. 3).

Concerning the computational time, RKF – but

also REnKF – clearly outperforms the filters operat-

ing on the large-scale model by several orders of mag-

nitude, Table 1. We distinguish between offline (pre-

computation) and online (actual runtime) phases. For

the (classical) Kalman Filter as well as its projection-

based low-rank variants, the error covariance matrices

and the Kalman gains are precomputed offline. So, the

runtime only consists of the state estimation taking into

account the actual inputs and measurements. In the

ensemble filtering this pre-computation of covariances

and Kalman gains is not possible, since all quantities

depend on the chosen samples. Changing input or mea-

surement data hence requires a completely new filtering

process. The effort of REnKF to approximate the sam-

Figure 3:Model order reduction error for p and q (L2 in

space, L∞ in time) over system size.

ple covariance is slightly higher as running the online

phase of RKF. REnKF scales here with the number of

samples. As a low-rank filtering method operating on a

low-rank model, better performance could possibly be

achieved by tuning. For sophisticated tuning of the fil-

ter, i.e., reducing the required sample size for a compar-

atively good approximation and achieving better run-

times, we refer to [9, 11]. The offline time of REnKF

listed in Table 1 refers to the sampling of the random

variables which can become time-consuming for large

vectors in Matlab. Note that filtering on a reduced-order

model requires an additional post-processing step, i.e.,

prolongation of the reduced variables, to obtain the esti-

mate for the high-dimensional state and its error covari-

ance.

3.2 Large-scale real pipeline network

The partDE network from western Germany consists of

636 pipes connected in 487 junctions with 47 in-/out-

lets, see Fig. 4. The pipes have a maximal length of

about 120 km, the specific pipe parameters can be found

in [20]. In the subsequent example each pipe is dis-

cretized equidistantly with a maximal element length

of 100 m, yielding a full order model of dimension

N = 86160. The reduced model is of size n = 1356,

the reduction error is of order O(10−4). As input we

prescribe the pressure in bar, particularly we impose

uv1
D (t) = 60+5sin(0.03t),

uv2
D (t) = 70+7cos(0.1t),
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Figure 4: Gas pipeline network from western Germany

"partDE" [20].

uv3
D (t) = 65+2sin(0.05t),

uv4
D (t) = 80+4sin(0.008t),

uv5
D (t) = 55+5sin(0.017t),

(μ,κ,σ)vi = (0,3,0.2), i = 1, ...,5, at the boundary

nodes marked in Fig. 4 and uv j ≡ 60 at all others,

j = 6, ...,47. A time horizon of 12 hours is covered

by 720 time steps of 1 minute length. The other model

parameters are set and the computations are performed

in the same way as in the academic example.

This real large-scale network makes it necessary for

computational reasons to use low-rank approximations

for state estimation. The performance of the filters is

as in the academic example, see Table 2. Compared to

filtering with the reduced-order (low-rank) model, the

approximation quality of CSKF is slightly better (by

less than one order) since the state is estimated on the

large-scale model. The price to pay, however, is a sig-

nificantly longer computing time. An additional draw-

back, getting more importance the larger the full order

model becomes, is the amount of memory needed. This

results from the Kalman gains being matrices in dimen-

sion of the large-scale model, which are saved in the

pre-computation. The other two methods do not have

this disadvantage, since they operate exclusively on the

Table 2: Errors and CPU time for partDE network

Filter mean j
‖E[x j−x j| j ]‖L2

‖E[x j ]‖L2
Offline [s] Online [s]

RKF � 2.2 ·10−1 2.5 ·102 3.4 ·101

CSKF 6.3 ·10−2 2.6 ·104 2.5 ·104

REnKF � 3.5 ·10−1 7.1 ·101 1.4 ·102

� additional post-processing for prolongation is required
 offline time refers to sampling of random variables

low dimension and the Kalman gains are hence of small

size. The time for prolongation of state and error covari-

ance is not included in the listed CPU time as it can be

performed for selected time points in a post-processing

step.

RKF and REnKF yield comparable results in terms

of accuracy and efficiency. For ensemble filtering, one

might expect that the computational costs could be fur-

ther reduced by tuning (sample selection), but this is

left to future research. However, RKF – with its separa-

tion in offline and online phases – is clearly preferable,

when input or measurement data changes, as is the case

for control of gas pipeline networks.

4 Conclusion

In this work we presented an efficient approach for state

estimation in gas networks. Using a low-rank model

derived by linearization and projection-based model or-

der reduction, the Kalman Filter, which is unfeasible

for the original large-scale system, becomes applica-

ble. We compared our approach to the Compressed

State Kalman Filter whose low-rank also comes from

projection-based reduction. Although the underlying

approximation idea is very similar, our approach yield-

ing estimates of comparable accuracy proved itself to

be much more efficient and less memory-intensive in a

numerical study on a German pipeline network. More-

over, the structure-preserving model order reduction

can be straightforward combined with other low-rank

Kalman filter variants, such as the Ensemble Kalman

Filter.
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