
A Simulator for NSA-DEVS in Matlab
David Jammer1,2*, Peter Junglas2, Thorsten Pawletta1, Sven Pawletta1

1Research Group Computational Engineering and Automation, University of Applied Sciences Wismar, Philipp-
Müller-Straße 14, 23966 Wismar, Germany;
*david.jammer@cea-wismar.de
2PHWT-Institut, PHWT Vechta/Diepholz, Am Campus 2, 49356 Diepholz, Germany;

Abstract. The PDEVS formalism is widely used for the
description and analysis of discrete event systems. But
PDEVS has some drawbacks in modeling Mealy behavior.
A revised version (RPDEVS) has been invented to resolve
them, but it has problems of its own, mainly because its
complicated simulator structure. The recently proposed
NSA-DEVS scheme tries to unite the advantages of both
formalisms by using infinitesimal time intervals.

To further substantiate this claim we describe an ab-
stract simulator for NSA-DEVS, implement it in Matlab
and simulate a simple queue-server system. This shows
that NSA-DEVS combines the Mealy-like model descrip-
tion of RPDEVS with the simple simulator structure of
PDEVS, making it a promising approach to implement an
improved modeling and simulation system.

Introduction
The DEVS formalism [1] and its most popular variant

PDEVS [2] are a well established approach for the mod-

eling and analysis of discrete event systems. Although

a few modeling and simulation tools exist that are us-

ing PDEVS [3], the usual formalism does not directly

support the implementation of component-based simu-

lation programs.

A few formal problems can be fixed by simple vari-

ations of the basic formalism [4], a well-known exam-

ple being the introduction of input and output ports. A

more serious flaw has been found by Preyser et al. [5]:

Due to the Moore-like structure of PDEVS the com-

bination of Mealy-type components can sometimes be

difficult to implement. Using the standard workaround

of transitory states (i. e. states with transition times of 0)

the behaviour of a complete system can always be mod-

eled with PDEVS. But the description of the underlying

components as individual (“atomic”) blocks can lead to

an ordering of concurrent events in the complete sys-

tem, which does not agree with the intended behaviour.

Therefore Preyser et al. have introduced a Revised

PDEVS (RPDEVS) formalism [6] that uses a Mealy-

like scheme directly – without the introduction of tran-

sitory states – and allows for direct modeling of Mealy-

like components, which behave correctly in the context

of a larger system. To make this possible they had to

define an abstract simulator for RPDEVS [7] that uses

a complicated scheme of internal iterations.

However, for systems with a complex causal struc-

ture of concurrent events this iteration leads to prob-

lems, as has been shown in [8] using the example of

a queue-server system. To solve these problems and

to bring the modeling process closer to the underlying

ideas of the modeler, the NSA-DEVS (“Non-Standard

Analysis DEVS”) formalism has been introduced in

[8], which is a variant of RPDEVS and uses con-

cepts of non-standard analysis [9]. Another approach

has been suggested to cope with the ordering of con-

current events by augmenting the real time line [10],

but it doesn’t adress the Mealy-related problems that

RPDEVS and NSA-DEVS try to solve.

The objective of the work presented here is to further

investigate the soundness and usefulness of the NSA-

DEVS formalism by defining a proper abstract simula-

tor. To this end we first review the model and simulator

specifications in PDEVS, then shortly introduce the hy-

perreal numbers and define the NSA-DEVS modeling

formalism. Next we describe the abstract NSA-DEVS

simulator and highlight some crucial points of its imple-

mentation in Matlab. Finally we implement the queue-

server system from [8] and demonstrate that it works as

intended.

1 Short review of the PDEVS
formalism

The Discrete Event System Specification (DEVS) for-

malisms are divided into model specification and ab-

stract simulator which are explained in more detail in

the following for Parallel DEVS (PDEVS). The model

specification differentiates between atomic and coupled

models, which together form a hierarchical structure.

In the following, we introduce a simplified model spec-

ification for PDEVS that uses ports instead of input

ASIM 2022 Proceedings Langbeiträge, 26. Symposium Simulationstechnik, TU Wien, 25.7.-27.7.2022

ARGESIM Report 20 (ISBN 978-3-901608-97-1), p 93-100, DOI: 10.11128/arep.20.a2005 93



bags [11, p.108]. The model specification of an atomic

model is an 8-tupel < X ,S,Y,δint ,δext ,δcon,λ , ta > with

X set of input ports and values,

Y set of output ports and values,

S set of sequential states,

δint : S → S internal transition function,

δext : Q×X+ → S external transition function,

δcon : S×X+ → S confluent transition function,

λ : S → Y+ output function,

ta : S → R
≥0 ∪{∞} time advance function.

Here Q = {(s,e)|s ∈ S, 0 ≤ e < ta(s)} and e is the

elapsed time since the last transition. The input and out-

put sets are defined as

X = {(p,v)|p ∈ Pin,v ∈ Xp}
Y = {(p,v)|p ∈ Pout ,v ∈ Yp}

where Pin and Pout are the sets of input and output names

and Xp and Yp are the sets of possible values at input or

output port p. Since inputs can arrive simultaneously at

different ports, one needs the set

X+ :=
{{(p1,v1), . . . ,(pn,vn)}|n ∈ N0, pi ∈ Pin,

pi �= p j for i �= j, vi ∈ Xpi

}
and similarly Y+ for simultaneous outputs at several

ports. Unlike in [11] simultaneous inputs at the same

port are not allowed here. This makes the formulation

of external transition functions easier, but prohibits the

direct connection of several output ports to one input

port. This is not a real limitation though, since one can

insert an appropriate atomic component (multiplexer)

for this purpose.

The formal specification of coupled models has

changed several times in the development of DEVS. For

practical purposes, the following specification is used in

this article: N =< X ,Y,D,{Md},EIC,EOC, IC >

X set of input ports and values,

Y set of output ports and values,

D set of component names,

{Md} set of dynamic systems with d ∈ D,

EIC set of external input couplings,

EOC set of external output couplings,

IC set of internal couplings.

Furthermore, the PDEVS formalism defines an ab-

stract simulator, which describes the execution of a

specified model [11, p.197]. It consists of the modules

root coordinator, coordinator and simulator. They are

combined in a hierarchical structure, which is shown in

Fig. 1 for a simple example. The abstract simulator al-

root coordinator

coordinator

simulator coordinator

simulator simulator

coupled
DEVS

coupled
DEVS

atomic
DEVS

atomic
DEVS

atomic
DEVS

Coupling:
Message:

Figure 1: Hierarchical and distributed concept of the

abstract simulator.

ways consists of exactly one root coordinator as the top-

most instance. This is always followed by a coordinator

that is attached to the uppermost coupled model. In ad-

dition, a coordinator is assigned to each coupled model

of the underlying layers of the hierarchical structure,

whereas a simulator is assigned to each atomic model.

The coordinators and simulators form a tree structure

that parallels the model structure (cf. Fig. 1), where the

leaves on the left side are the simulators and on the right

(model) side the atomic components.

The simulation is organized with a message con-

cept. Messages are exchanged between root coordina-

tor, coordinators and simulators, all downwards mes-

sages contain the current simulation time t. The follow-

ing message types are used:

• i-message: downwards for initialization,

• *-message: downwards to initiate internal events,

• y-message: upwards to distribute outputs,

• x-message: downwards to trigger events,

• d-message: upwards to return information.

This terminology follows [7], in [11] the d-messages

(“done”) are only implicitly mentioned in the pseu-

docode.

The simulation starts with an i-message that is sent

by the root coordinator to the topmost coordinator and

distributed downwards. Each simulator initialises its

atomic model and returns the time of its next internal

ASIM 2022 Proceedings Langbeiträge, 26. Symposium Simulationstechnik, TU Wien, 25.7.-27.7.2022

94



event to its parent coordinator. All coordinators collect

the times of their children and report the smallest value

upwards, until the root coordinator is reached, which

stores the received value as the current simulation time.

Next the root-coordinator sends a *-message, which

is forwarded according to the hierachical structure to all

simulators that are imminent, i. e. the time of their next

event is equal to the current simulation time. Each of

these simulators executes the λ -function of its atomic

model and sends the output to its coordinator via a y-

message. Using the set IC of its coupled model the co-

ordinator distributes the outputs to the appropriate child

simulators and coordinators via x-messages and sends

additional empty x-messages to the imminent children.

Furthermore the coordinator collects the external out-

puts according to the set EOC of its coupled model and

sends them upwards via a y-message.

On receiving an x-message a simulator executes one

of the three transition functions of its atomic model, de-

pending on the event type. An empty x-message means

an internal event, which causes the execution of the δint
function. A non-empty x-message represents an exter-
nal or confluent event. If the atomic model is not im-

minent, δext is executed, otherwise δcon f . After the ex-

ecution of a transition function, the time advance func-

tion ta is called to compute the time of the next internal

event, which is sent upwards. A coordinator, that re-

ceives an x-message, forwards it to its active children,

i. e. those that get a new input or are imminent.

As a result, the root coordinator receives the next

event time, updates the current simulation time and

sends a new *-message. This procedure is repeated un-

til the root coordinator detects a termination condition.

A complete description of the abstract simulator using

pseudocode is given in [11, p.350-353].

2 The NSA-DEVS modeling
formalism

The basic idea of the NSA-DEVS formalism is to start

with the RPDEVS description, to add infinitesimal de-

lays at the inputs of all components and to replace tran-

sitory states by states with infinitesimal transition times.

This has two immediate advantages: Firstly, the com-

plex iteration, that is necessary in the RPDEVS simu-

lator to handle the transport of events through networks

of Mealy-type components, is obsolete. Secondly, one

can easily define the ordering of concurrent events by

using appropriate delay times.

The introduction of infinitesimals to represent small

real delays avoids an abundance of unknown additional

parameters. Instead one can mainly use a default value

ε , using different values only for special needs. Fur-

thermore, the simulator handles the infinitesimal events

mainly internally, so that from the user perspective, cor-

rect Mealy behaviour can be achieved.

For a precise mathematical description of finite or

infinitesimal time delays we use the totally ordered field

of hyperreal numbers ∗
R. This is an extension of the

real numbers including an infinitesimal ε > 0, which is

smaller than any positive real number. Every finite hy-

perreal a is infinitely close to exactly one real number,

called the standard part of a and denoted by st(a). The

construction of ∗
R relies on advanced results from set

theory and logic, but its use is rather straightforward.

Exact definitions, theorems and proves can be found in

[9]. For the implementation of a simulator, numbers of

the form a+bε with a,b ∈R are sufficient, they can be

stored as a pair of floating point numbers. The standard

part then simply is st(a+bε) = a. To represent passive
states, i. e. states with an infinite transition time, the

hyperreal number ω := 1/ε , represented by the float-

ing point value “infinity”, can be used. ω is unlimited,

i. e. it is larger than any real number. In the following

we are mainly interested in the subset of positive finite

hyperreals ∗
R
>0
fin .

One can now formally define an atomic NSA-DEVS
as a 7-tuple < X ,S,Y,τ, ta,δ ,λ > in the following way:

X set of input ports and values,
S set of states,
Y set of output ports and values,

τ ∈ ∗
R
>0
fin input delay time,

ta : S → ∗
R
>0
fin ∪{ω} time advance function,

δ : Q×X+ → S transition function,
λ : Q×X+ → Y+ output function.

where the sets X , Y are defined as in section 1, but Q is

changed slightly to Q = {(s,e)|s ∈ S, 0 ≤ e ≤ ta(s)}.

The main difference to the PDEVS formalism de-

scribed above is the restriction to only one transition

function and the extension of the output function, which

is now called at all three kinds of events. This is iden-

tical to the RPDEVS definition in [6] and allows for a

direct formulation of Mealy-type components. The for-

mal difference to RPDEVS is small: All time values

and intervals are now meant as subsets of the hyper-

reals ∗
R and ta is always > 0. But the semantics are

slightly different: When an external event, i.e. a set of

ASIM 2022 Proceedings Langbeiträge, 26. Symposium Simulationstechnik, TU Wien, 25.7.-27.7.2022

95



inputs x ∈ X+, occurs at time t, the output function λ
is called at t + τ , followed by an immediate call of δ .

An internal event, i.e. a state change after a waiting

time ta(s), leads to a direct (undelayed) call of λ and

δ . A concurrent incidence of a (delayed) external event

and an internal event can be detected by both functions

directly and doesn’t need a special mechanism.

A coupled NSA-DEVS is defined just like in

RPDEVS and PDEVS, outputs are transported as usual

and a coupled component has no additional input de-

lays. For the usual confirmation of closure under cou-

pling, i. e. the formulation of a coupled system as an

atomic component, one simply uses the smallest delay

of all internal components that are connected to external

inputs, and adds additional delays where necessary.

3 The abstract NSA-DEVS
simulator

The general concept of the abstract simulator is the

same as for PDEVS, it uses the hierarchical structure,

the message system and the three modules that have

been introduced in section 1. The algorithms of the

coordinator and the root coordinator for NSA-DEVS

are identical to the PDEVS versions described in [11,

p.205] and [11, p.352-353], the only difference are the

type of the current simulation time and the event times,

which are now hyperreals instead of real numbers.

The basic difference lies in the algorithm of the sim-

ulator module: Though it looks similar to the PDEVS

simulator in [11, p.351], it implements the NSA-DEVS

scheme, which directly supports Mealy-like behaviour

using infinitesimal input delays. Its simplified pseu-

docode description is presented in Listing 1.

Listing 1: NSA-DEVS Simulator.

1 properties:
2 parent
3 tl
4 tn
5 model (NSA-DEVS incl. τ and

total state (s,e))
6 y
7 x∗

8

9 when receive i-message(i,t) at time t
10 tl = t - e
11 tn = tl + ta(s)
12

13 when receive *-message(*,t) at time t
14 e = t - tl

15 y = λ(s,e,x∗)
16

17 send y-message(y,t) to parent
coordinator

18

19 when receive x-message(x,t) at time t
20 if x == ∅

21 e = t - tl
22 s = δ(s,e,x∗)
23 x∗ = ∅

24 if ta(s) == ω
25 tn = ω
26 else if st(ta(s)) == 0
27 tn = t + ta(s)
28 else
29 tn = st(t + ta(s))
30 tl = t;
31 else
32 if not (x∗ == ∅)
33 add events from x to x∗

34 else
35 x∗ = x
36 tn = t + τ

Lines 1–7 list the variables used by the simulator.

The first five are the same as for PDEVS: the parent co-

ordinator, the times of the last and the next event, the

attached model – with the atomic NSA-DEVS structure

and its complete state – and the output values. Since the

input delay is realized inside the simulator, input values

must be stored temporarily, using the variable x∗. In

lines 9–11 the i-message is handled, which just com-

putes the times of the last and the next events. The *-

message is processed in lines 13–18, where the elapsed

time is calculated, the λ function is executed and the

y-message is sent to the parent coordinator. In contrast

to the PDEVS algorithm λ is now a function of the to-

tal state (s,e) and the input value x∗ that has been stored

before.

The new part - compared to PDEVS - is the way the

x-message is processed, which is shown in lines 19–

36. It discriminates between an internal event (lines

21–30, x == ∅) and an external event (lines 32-36). In

the latter case it stores all incoming values in x∗ and

schedules a new internal event at the delayed time t +

τ . All internal events are handled by calling the transi-

tion function δ and computing the time of the next event

using ta in lines 24–29. This calculation deserves spe-

cial attention: It guarantees that “real” time steps (i. e.

non-infinitesimal ones) lead to real valued time values

in order to implement a correct timing and to prohibit

an accumulation of infinitesimal delays.

To better understand the operation of the abstract

simulator, especially how it creates a proper Mealy be-

ASIM 2022 Proceedings Langbeiträge, 26. Symposium Simulationstechnik, TU Wien, 25.7.-27.7.2022

96



haviour, we introduce a simple example model N: It

consists of a generator G, which outputs a value t/10

at times t = 1, 2, 3 . . . , a multiplication block M, which

multiplies its input by a factor 3, and a terminator com-

ponent T, which acts as a sink for the incoming values

(cf. Fig. 2).

ta = ω ta = ωta = 1
τ = ε τ = ε

G TM

N

Figure 2: Simple example model.

The messages that are sent between the root coordi-

nator RC, the coordinator CN of coupled model N and

the three simulators SG, SM and ST with the associated

models G, M and T are shown as a sequence diagram

in Fig. 3. Downwards messages are denoted as (msg
type, current time), for the x-messages the input value

is added. Upwards messages are shown as (msg type,

result).
In the initialisation step at t = 0, an i-message is sent

and distributed to the simulators, returning the time t

= 1 of the first internal event to RC. This is followed

at t = 1 by a *-message sent to the simulator of the

only imminent component G, which generates an out-

put event and sends a y-message with its output 0.1 back

to CN . The coordinator now sends an empty x-message

to SG, which returns the time t = 2 of its next internal

event. Moreover, CN sends a non-empty x-message to

SM , which stores the value internally and schedules a

new internal event according to the input delay time.

The next *-message at t = 1 + ε arrives at the sim-

ulator of the imminent component M, which calls its λ
function and sends the output value 0.3 as a y-message

to its coordinator. CN now sends an empty x-message

to SM , which calls its δ and ta functions and returns t =

ω to CN . M is now in a passive state. The rest of the

diagram shows how the output value propagates to ST ,

which just terminates the incoming events. Since the

coordinator stores all future event times of its children,

it finally returns t = 2 (originally coming from SG) as

the time of the next event, which will repeat the whole

cycle.

This example shows precisely, how the two parts of

0

RCt
(i,0)

(i,0)
(d,1)

(i,0)
(d, )

(d, 1)

1
(*,1)

(*,1)

(i,0)

(x, ,1)
(d,2)

(d, 1+ )
(d, 1+ )

1+ (*,1+ )
(*,1+ )

(x, ,1+ )

(d, 1+2 )

1+2 (*,1+2 )

(d, )

(d,2)

2

(y,0.1)

(x,0.1,1)

(y,0.3)

(x,0.3,1+ )

(d, )

(d,1+2 )

SG SM ST

(*,1+2 )
(y, )

(x, ,1+2 )
(d, )

CN

Figure 3: Example of message flow.

the x-message algorithm in the simulator module work

together to implement the time delay and the Mealy be-

haviour of a simple Mealy block such as a multiplica-

tion function.

4 Implementation of the
NSA-DEVS simulator

The “infinitesimal cloud” of hyperreal numbers around

each real number has a complex structure with lots of

different layers of smallness, e. g. using ε2 or
√

ε . The

purpose of using ∗
R in the formulation of NSA-DEVS

is the possibility to introduce short time intervals with-

ASIM 2022 Proceedings Langbeiträge, 26. Symposium Simulationstechnik, TU Wien, 25.7.-27.7.2022

97



out defining their size explicitly, but still being able to

order them. Therefore times of the form a+bε are suf-

ficient here, they are stored as two-element vectors. The

implementation of time comparisons and sorting has to

be adapted accordingly.

Since the goal of NSA-DEVS is to provide a good

basis for the concrete modeling of discrete event sys-

tems, an implementation should free the modeler from

the tedious task of defining lots of additional infinitesi-

mal parameters. Therefore the concrete simulator con-

tains a variable τde f = rε (usually r = 1) that is used

as a default value of τ for all atomic components. Fur-

thermore the user can still define transitory states with

a transition time ta(s) = 0, which is replaced automati-

cally by setting ta(s) = rε .

For debugging purposes it would be useful to make

the infinitesimal delays explicitly visible. To this end

the simulator contains a real (i. e. floating point) param-

eter μ , which is 0 normally, but can be set to a value

larger than zero for debugging. In this case the infinites-

imal ε is replaced by μ and all times are real values

computed as

t ′ =

{
(t(1), t(2)) if μ = 0,

(t(1)+μ t(2),0) if μ > 0.

In complex models the value of μ has to be chosen care-

fully: It should be large enough to make the infinitesi-

mal internal processes visible, but small enough to not

induce any changes into the behaviour of the model. As

a result of this extension, the implementation of the x-

message gets more complicated, as can be seen in List-

ing 2.

Listing 2: Implementation of the x-message algorithm.

1 when receive x-message(x,t) at time t
2 if x == ∅

3 e = [t(1) - tl(1), t(2) - tl(2)]
4 s = δ(s,e,x∗)
5 x∗ = ∅

6

7 tb = ta(s)
8 if tb == [0,0]
9 tb = [0, r]

10 if tb(1) == 0
11 if μ == 0
12 tn = [t(1), t(2) + tb(2)]
13 else
14 tn = [t(1) + μ*tb(2), 0]
15 else
16 tn = [t(1) + tb(1), 0]
17 tl = t;

18 else
19 if not (x∗ == ∅)
20 add events from x to x∗

21 else
22 x∗ = x
23 if μ == 0
24 tn = [t(1) + tau(1), t(2) + tau(2)]
25 else
26 tn = [t(1) + tau(1) + μ*tau(2), 0]

The special case of passive states in Listing 1 (l. 24f) is

done automatically in line 16 due to the handling of the

value “infinity” in floating-point arithmetic.

5 Case study: A simple
queue-server system

To test the operation of the complete NSA-DEVS for-

malism – model specification and simulator –, a proto-

type has been created in Matlab, which is named NSA-

DEVSforMATLAB. It contains all features introduced

in section 4 and is implemented in an object-oriented

way. To show its functionality, the singleserver exam-

ple from [8] has been chosen as an example for this ar-

ticle; it is shown as a block diagram in Figure 4. The

TW TW TWTW

gen queue termserver

bl

in in inout

blnq

outout

N

Figure 4: Example model singleserver.

following atomic models are used for the example:

• Generator: produces entities with an interval of

one second,

• Queue: infinite queue,

• Server: service time 1.5 s,

• Terminator: terminates the entities,

• ToWorkspace (TW): logging data.

The special feature of this model is that the queue

should only send entities to the server when it is not

busy. The server announces this information via port

blocked (bl), which is sent to port bl of the queue.

ASIM 2022 Proceedings Langbeiträge, 26. Symposium Simulationstechnik, TU Wien, 25.7.-27.7.2022

98



For functionality, the input delay of the queue must be

greater than the input delay of the server. The input de-

lays of the generator and terminator do not matter. A

special role is played by the four ToWorkspace models,

which are connected to the outport ports out and nq ac-

cording to Fig. 4 and store the output values. They too

– like every atomic model – have an input delay.

0

10

20

ou
t

Generator

0 5 10 15 20
t

0

10

20

ou
t

Queue

0 5 10 15 20
t

0 5 10 15 20
t

0

2

4

6

8

nq

Queue

0

10

20

ou
t

Server

0 5 10 15 20
t

Figure 5: Simulation results with high input delay at

ToWorkspace.

For the first simulation run, a large infinitesimal in-

put delay was chosen for the ToWorkspace models. The

result can be seen in Figure 5, which displays generator

output (top left), queue output (top right), queue load

(bottom left) and server output (bottom right).

The high input delay has the effect that output

changes, which happen during a series of infinitesi-

mal time intervals, are discarded inside a ToWorkspace

block and only the final value before a finite time step is

shown. This can be seen, for example, at time 10: The

server has finished processing and is idle. Therefore the

queue sends an entity to the server. At the same time,

the generator also outputs an entity and sends it to the

queue. In total, the load of the queue does not change.

However, if one uses a low input delay for the

ToWorkspace models, one sees that the queue load at

time 10 has the values 3 and 4 simultaneously. This

means that the new entity enters the queue first and then

an entity is sent to the server. This behavior is shown in

Figure 6. One could use the debug mode, i. e. set the

parameter μ to a finite value, to dissolve the “spike” at

t=10 into a small step, thereby clearly showing the in-

ternal ordering of the events.

0

10

20

ou
t

Generator

0 5 10 15 20
t

0

10

20

ou
t

Queue

0 5 10 15 20
t

0 5 10 15 20
t

0

2

4

6

8

nq

Queue

0

10

20

ou
t

Server

0 5 10 15 20
t

Figure 6: Simulation results with low input delay at

ToWorkspace.

6 Conclusion

With the specification of an abstract simulator, which

defines the behaviour of a model consisting of atomic

and coupled components, the description of the NSA-

DEVS formalism is now formally complete. We have

shown that NSA-DEVS is able to directly describe

Mealy-like models in the same way as RPDEVS, but

with a much simpler simulator algorithm similar to the

original PDEVS version. In this way NSA-DEVS com-

bines the best of the two preceding formalisms.

Its principle usability has been demonstrated by the

implementation of the simulator and a non-trivial exam-

ple model in Matlab. The notoriously difficult modeling

of concurrent events has been substituted by a clear def-

inition of an ordering based on infinitesimal delays. The

inclusion of a debugging mode further helps to under-

stand the corresponding difficulties. An interesting side

effect is the possibility to easily model systems with fi-

nite time delays.

At first sight, the NSA-DEVS approach seems to

be very similar to the concept of superdense time [10],

where a real time value is augmented by a natural num-

ber to order concurrent events. But the much richer

structure of ∗
R – even of the small part that is used in

the implementation – has profound consequences: On

the practical side, one can use real infinitesimal delays

to squeeze an event between existing ones, without the

need to reorder the complete sequence. The conceptual

difference, however, is the dynamic structure of NSA-

DEVS: The order of concurrent events is defined by the

infinitesimal delays in the complete model, which add

up in a “realistic” way. While the fixed ordering of su-

perdense time is similar to the Select function in Clas-

sical DEVS [11, p.104], NSA-DEVS – like PDEVS –

ASIM 2022 Proceedings Langbeiträge, 26. Symposium Simulationstechnik, TU Wien, 25.7.-27.7.2022

99



allows concurrent events on the infinitesimal scale and

parallelism.

To further examine the practical usefulness of the

NSA-DEVS formalism, one should next study a set of

standard examples with complex event cascades and

real-world case studies. This could help answering the

crucial question, whether an abundance of new parame-

ters is necessary in real models or if the use of a default

delay is sufficient in many cases. Another interesting

question is, whether one delay for an atomic model suf-

fices, or if one needs port specific delay times.

Finally one should address the practical usefulness

of the simulator and its implementation: How does it

perform in comparison to existing PDEVS or RPDEVS

simulators? Suitable benchmarks would address simu-

lation times as well as the number of internal messages

used inside a simulator. Although the definition of the

simulator is a large step forward, much remains to be

done before NSA-DEVS can be considered a solid ap-

proach for practical discrete event modeling and simu-

lation.

References

[1] Zeigler BP. Theory of Modeling and Simulation. New

York: Wiley-Interscience, 1st ed. 1976.

[2] Chow ACH. Parallel DEVS: A Parallel, Hierarchical,

Modular Modeling Formalism and its Distributed

Simulators. Transactions of The Society for Computer
Simulation International. 1996;13(2):55–67.

[3] Franceschini R, Bisgambiglia PA, Touraille L,

Bisgambiglia P, Hill D. A survey of modelling and

simulation software frameworks using Discrete Event

System Specification. In: Proc. of 2014 Imperial
College Computing Student Workshop. Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik. 2014; pp.

40–49.

[4] Goldstein R, Breslav S, Khan A. Informal DEVS

conventions motivated by practical considerations. In:

Proc. of Symposium on Theory of Modeling
&Simulation – DEVS Integrative M&S Symposium.

2013; pp. 10:1–10:6.

[5] Preyser FJ, Heinzl B, Raich P, Kastner W. Towards

Extending the Parallel-DEVS Formalism to Improve

Component Modularity. In: Proc. of ASIM-Workshop
STS/GMMS. Lippstadt. 2016; pp. 83–89.

[6] Preyser FJ, Heinzl B, Kastner W. RPDEVS: Revising

the Parallel Discrete Event System Specification. In:

9th Vienna Int. Conf. Mathematical Modelling. Wien.

2018; pp. 242–247.

[7] Preyser FJ, Heinzl B, Kastner W. RPDEVS Abstract

Simulator. SNE Simulation News Europe. 2019;

29(2):79–84. doi: 10.11128/sne.29.tn.10473.

[8] Junglas P. NSA-DEVS: Combining Mealy Behaviour

and Causality. SNE Simulation News Europe. 2021;

31(2):73–80. doi: 10.11128/sne.31.tn.10564.

[9] Goldblatt R. Lectures on the Hyperreals. New York:

Springer. 1998.

[10] Sarjoughian HS, Sundaramoorthi S. Superdense time

trajectories for DEVS simulation models. In: SpringSim
(TMS-DEVS). 2015; pp. 249–256.

[11] Zeigler BP, Muzy A, Kofman E. Theory of Modeling
and Simulation. San Diego: Academic Press, 3rd ed.

2019.

ASIM 2022 Proceedings Langbeiträge, 26. Symposium Simulationstechnik, TU Wien, 25.7.-27.7.2022

100


