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Abstract.  In the coming years, electromobility will be con-
fronted with increasing demands regarding the reliability of 
electrical machines. In this paper a modeling methodology is 
presented, which allows to estimate the reliability and lifetime 
of the insulation system of electrical machines. Different sta-
tistical and physical modeling methods are presented, which 
are transformed for the later multiple regression. The meth-
odology of Design of Experiments (DoE) is used to describe 
the insulation system. Since the effort for the experimental 
design of the DoE varies strongly with the number of effects 
to be investigated and the statistical accuracy, different ex-
perimental designs are presented, which can be considered 
for different numbers of factors. Depending on the research 
question, a suitable experimental design can be selected. For 
the calculation of the lifetime, Miner’s rule is used in addition 
to the multiple regression, so that the percentage lifetime 
consumption due to a load spectrum can also be calculated. 

Introduction 
In the future, technologies such as electrified aircraft, 
trolley wire trucks or autonomous driving will be estab-
lished in the field of electric mobility. Reliability, dura-
bility and safety are important criteria for the acceptance 
of new technologies in society. In addition to increased 
safety requirements, these technologies must also be able 
to cope with new, more challenging boundary conditions. 

Whereas bearing damage used to be the most frequent 
cause of failure of electrical machines, the increased re-
quirements and new boundary conditions lead to a more 
varied error pattern [1], [2]. A deep understanding of the 
causes of failure and the relevant damage mechanisms is 
necessary to design electrical machines for these new ap-
plications. In addition to the design of durable machines 
that operate under increased environmental conditions, 
lifetime models, on the other hand, can help electrical 
machines achieve a minimum target lifetime for a given 
load. This offers potential to save resources and reduce 
costs. Lifetime models and reliability analyses are there-
fore becoming increasingly important in the design pro-
cess of electrical machines. 

1 Damage mechanisms 
The damage of electrical machines is caused by various 
mechanisms from different physical disciplines and there 
are various modelling approaches to model these damage 
processes. Since the use of wide bandgap semiconductors 
and the increasing electrical load, the cause of failure of 
electrical machines is increasingly based on faults and 
breakdowns of the electrical insulation system [2]. Be-
cause failures of the electrical insulation system will oc-
cure more frequently in the future, research concentrates 
on lifetime models of these insulation systems. 

Basically, with regard to the aging effects that dam-
age the insulation system, a distinction can be made be-
tween constant stresses and transient stresses. The prob-
ability of a fault in the insulation system at constant 
stresses is proportional to the number of operating hours 
and at transient stresses proportional to the number of 
transient effects. Figure 1 shows as examples for constant 
stresses the ambient temperature and the voltage slope 
oval and for transient stresses partial discharges rectan-
gular.  

Figure 1: Examples of different stresses and their interac-
tions. 

A breakdown in the insulation system often occurs due to 
different combinations of the individual stresses or the 
interactions of these stresses. 
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As an example for the interaction of stresses figure 1 
shows the interaction between the temperature and the 
voltage slope. Insulating materials heat up due to dielec-
tric losses. The dielectric power loss as well as the die-
lectric loss factor are again frequency dependent. Power 
electronic signals with high voltage slope and high fre-
quency harmonics can therefore influence the tempera-
ture of the insulation system.  

An interaction can also become effective by changing 
the properties of the insulation system. Partial discharges 
can damage the insulation system and lead to air-filled 
cavities. Due to the low permittivity of air and the signif-
icantly lower dielectric strength of air compared to insu-
lation materials, increased field strengths in these cavities 
can intensify partial discharges and the aging of the insu-
lation system. In [3] an interaction due to changed prop-
erties of the insulation system is called indirect interac-
tion.  

2 Modeling methodologies 
The modelling approaches can be divided into two dif-
ferent categories. The physical and the statistical ap-
proaches.  

2.1 Physical modeling approaches 

The goal of physical modelling approaches is the mathe-
matical description of the aging effects. A holistic model, 
in which the different aging mechanisms from different 
physical disciplines are integrated, is very complex. In 
addition, at certain activation energies additional phe-
nomena occur, become more dominant or the damage ef-
fect has to be described mathematically completely dif-
ferent.  

The advantage compared to statistical models is that 
no lifetime tests are necessary for the parameterization of 
the model. Only the measurement of single physical 
quantities is necessary. 

One of the first physical models to describe aging ef-
fects was developed by Crine and was originally used for 
extrudet dielectric cables. Crine takes up Artbauer’s the-
ory and assumes that the dielectric strength of amorphous 
insulation materials is essentially determined by the pres-
ence of vacancies induced by electromechanical defor-
mation of molecular chains in the insulation material. In 
these vacancies, the free electrons find more favourable 
conditions to absorb the energy necessary for impact ion-
ization due to the applied electric field [4]. Crine assumes 
that above a critical field strength, the number of these 

vacancies increases and they combine to form larger sub-
microcavities. When submicrocavities have formed, 
electrons or ions are strongly accelerated under the influ-
ence of the electric field and can absorb enough kinetic 
energy to break weak Van der Waals bonds. As the sub-
microcavities expand, the electrons absorb even more en-
ergy and break more molecular bonds until the insulating 
material finally collapses and electrical breakdown oc-
curs [5].  

Crine describes the probability of breaking Van der 
Waals bonds depending on temperature T and electric 
field strength E as follows: 

𝑝+(𝑇,𝐸) ≅
𝑘𝑇

ℎ
 𝑒𝑥𝑝 (−

∆𝐺 − 𝑒𝜆𝐸

𝑘𝑇
) (1) 

Here k is the Boltzmann constant, h the Planck’s con-
stant, ∆G the critical field strength, e the charge of an 
electron and δ the length of the free path. Additionally 
Crine considers the probability of the backward process 
as 

𝑝−(𝑇,𝐸) ≅
𝑘𝑇

ℎ
 𝑒𝑥𝑝 (−

∆𝐺 + 𝑒𝜆𝐸

𝑘𝑇
) (2) 

The net destruction rate is the subtraction of these proba-
bilities 

𝑝 = 𝑝+ − 𝑝− ≅
2𝑘𝑇

ℎ
 𝑒𝑥𝑝 (−

∆𝐺

𝑘𝑇
) sinh (

𝑒𝛿𝐸

𝑘𝑇
) (3) 

In Crines physical model, the lifetime of the insulation 
system is given as the reciprocal of the destruction rate 

𝐿 ≅
ℎ

2𝑘𝑇
 𝑒𝑥𝑝 (

∆𝐺

𝑘𝑇
) csch (

𝑒𝜆𝐸

𝑘𝑇
) (4) 

At high fields, equation (4) reduces to 

𝐿 ≅
ℎ

2𝑘𝑇
 𝑒𝑥𝑝 (

∆𝐺 − 𝑒𝜆𝐸

𝑘𝑇
) (5) 

After Crine, Lewis developed a new physical model 
that is also based on the formation of microcavities and 
the breaking of molecular bonds. Just like Crine, Lewis 
also takes into account the temperature T and the electric 
field strength E. The destruction rate Kb and the for-
mation rate Kr of the bonds are determined as follows: 

𝐾𝑏(𝑇,𝐸) =
𝑘𝑇

ℎ
𝑒𝑥𝑝 (−

𝑈𝑏 − 𝛾𝑏𝜀𝐸
2

𝑘𝑇
) (6)

𝐾𝑟(𝑇,𝐸) =
𝑘𝑇

ℎ
 𝑒𝑥𝑝 (−

𝑈𝑟 + 𝛾𝑟𝜀𝐸
2

𝑘𝑇
) (7) 

Ub and Ur are the critical energies at which the bonds 
break or form again. ε is the dielectric permittivity and γb 
or γr are fitting parameters with the dimensions of a vol-
ume. The aging of the insulation system is equated with 
the propagantion of cracks and voids in the insulation 
system according to the Griffith criterion [6] 
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𝐿 = ∫
1

𝐾𝑏(1 − 𝑏)− 𝐾𝑟 𝑏

𝑏𝑐

0

𝑑𝑏 (8) 

bc represents the critical number of broken molecular 
bonds above which insulation failure occurs.  

2.2 Statistical modeling approaches 

In contrast to physical models, statistical lifetime models 
are based on accelerated lifetime tests. The most popular 
statistical lifetime model was developed by Arrhenius
and describes the quantitative dependence of the chemi-
cal reaction rate r on the temperature T  

𝑟 = 𝐴 · 𝑒−
𝐸𝐴
𝑘𝑇 (9) 

where A is a constant and EA is the activation Energy. 
Dakin used Arrhenius’ equation to describe the processes 
taking place in the insulation material as a function of 
temperature. Except for the constants Dakin uses the 
same equation as Arrhenius [7]: 

𝐿 = 𝐴𝐷𝑎𝑘𝑖𝑛 · 𝑒
𝐵𝐷𝑎𝑘𝑖𝑛

𝑇 (10) 

Partial discharges are often cited in the literature as 
the cause of electrical aging of electrical insulation sys-
tems. Their frequency and effects on service life increase 
exponentially with increasing voltage V. Mathematically, 
this realationship can be described using the inverse 
power model  

𝐿 = 𝑐 · 𝑉−𝑛 (11) 

here c > 0 is a material constant and n > 0 is the power 
law constant.  

3 Design of Experiments 
As mentioned before, the parameterization of the models 
from chapter 2.2 is done by accelerated lifetime tests. De-
spite the increased conditions compared to real operation, 
these tests are complex and time consuming. Physical 
models, on the other hand, are mathematically very com-
plex and often only consider the electric field strength 
and temperature. The physical modelling of additional 
aging effects and the modelling of the individual interac-
tions leads to an exponential increase in complexity and 
to the failure of the purely physical modelling approach. 
With the methodology of Design of Experiments (DoE) 
it is possible to model many effects including their inter-
actions and to reduce the number of necessary life tests 
to a minimum. 

The basic idea is that the insulation system, or even 

any deterministic system, can be described with a math-
ematical model. Different approaches can be used as 
mathematical models. Some were presented in chapter 2. 
The parameterization of the model is done after the com-
plete evaluation of the experimental design. DoE is there-
fore one of the statistical model approaches. In the fol-
lowing different experimental designs are discussed. 

3.1 Full factorial design 

In an experimental design, the number of effects to be 
investigated, the number of measuring points and the 
number oof measured values per measuring point are de-
fined. The advantage of an experimental design com-
pared to a one-factor-at-a-time-plan is that each test result 
can be used to calculate several effects. This considerably 
reduces the test effort. 

If, for example, eight measured values per measure-
ing point are necessary to determine the influence of a 
factor on the service life of the insulation system with ac-
ceptable accuracy, a “one factor at a time” plan requires 
32 tests.  In the first 8 tests the lifetime would be deter-
mined for the factors x1, x2 and x3 at a low level. Then 
eight tests would be carried out on each factor at an in-
creased level to investigate the influence of a factor on 
the service life. This is shown in figure 2a. With a full 
factorial design, 16 tests would be sufficient to determine 
the effect of a factor with the same accuracy. Instead of 
examining the effect once by comparing eight value 
pairs, the effect is examined four times by comparing two 
value pairs. The number of value pairs used to calculate 
an effect and the statistical validation are identical. Fig-
ure 2b shows the full factorial design. Since the test spec-
imens can only be used once in the accelerated lifetime 
tests, the full factorial design reduces costs and time. In 
addition, the information content obtained from the 
measurements is increased, because the effect of the fac-
tors can be analyzed at different levels. 

Figure 2: Comparison of a “one factor at a time” plan a) with 
a full factorial design b). 

With each additional factor added to an experimental 
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design, the information content of the DoE increases. 
With increasing information content, the effort of the ex-
perimental design increases with Fm. F is the number of 
measuring points in one dimension and m the number of 
factors. The experimental design in figure 2b has 23 = 8

measuring points. The number of measurements per 
measuring point determines the accuracy of the experi-
mental design. The experimental design in figure 2b has
a total of 16 measurement values with which the influ-
ence of the effects on the service life of the insulation 
system can be determined. If the number of tests per 
measurement point is increased from two to eight, 64 
measurement values can be used. The accuracy increases, 
but also the effort. Information content, accuracy and ef-
fort of an experimental design are inseparably linked. 
The optimal experimental design must be adapted to the 
respective requirements. Figure 3 shows the combination
of the three basic properties of an experimental design. If 
the point is further outside the triangle, an increase in in-
formation, an increase in accuracy or a reduction in effort 
is meant. 

Figure 3: Variation of an experimental design by an in-
creased number of tests. 

With statistical models there is always the risk of er-
rors. There are two possible types of errors that can occur. 
The influence of a factor on the aging of the insulation 
system could be assumed to be significant, although in
reality it is not responsible for the aging or a significant 
effect on the aging of an insulation system could be over-
looked. In a hypothesis test these errors are called first 
type errors and second type errors. In order to determine 
the number of test specimens required in a design for a 
given accuracy, such a hypothesis test should be per-
formed. 

The hypothesis is as follows: The factor has no effect 

on the lifetime of the insulation system. In table 1 the four 
possible decisions of this hypothesis test are shown. The 
accuracy of the experimental design is determined by the 
errors of the first α and second type β and the change in 
lifetime ∆L to be detected. Table 2 shows the number of 
tests to achieve the desired accuracy. 

Table 1: Possibilities of a hypothesis test. 

Table 2: Necessary number of tests for a certain accuracy 
when each factor has two levels. 

If a significant effect is to be detected at (1 − 𝛽) =

90%, if it changes the lifetime by at least one standard 
deviation σ on average, and a non-significant effect is to 
be falsely assumed to be significant only at 𝛼 = 1%, 64 
tests are required for this experimental design. This cor-
responds to the experimental design shown in figure 3 on 
the right. The experimental design in figure 3 left is less 
complex with 16 tests, but a significant effect is detected 
only at (1 − 𝛽) = 60% and the probability of errone-
ously assuming a non-significant effect as significant is 
𝛼 = 10%. Since the standard deviation σ influences the 
accuracy of the DoE, the test specimens should be man-
ufactured as identically as possible and the accelerated 
lifetime tests should be performed under the same bound-
ary conditions. 

3.2 Fractional factorial design 

Not only a high accuracy requires a high number of tests 
but also with increasing information content and the con-
sideration of further influencing factors the effort of an 
experimental design increases with Fm. One possibility to 
efficiently investigate several effects despite the expo-
nentially growing effort is the use of fractional factorial 
designs. The correlation between information content, 
accuracy and effort from figure 3 can not be avoided, but 

322



 

in experimental designs that take many factors into ac-
count, some information is irrelevant or can be excluded 
in advance as a cause for the aging of the insulation sys-
tem. This is especially true for the i-fold interactions be-
tween the factors m, which can be calculated as follows 

(
𝑚
𝑖
) =

𝑚!

𝑖! · (𝑚 − 𝑖)!
(12) 

The larger m the more interactions are predominantly in-
vestigated. 

To investigate the effect of a factor on the lifetime of 
the insulation system is the primary goal of the lifetime 
model. Also the effect of the interaction of two factors on 
the lifetime is of interest. The influence of higher inter-
actions is physically difficult to assess and often negligi-
ble compared to two-fold interactionsor simple effects. 
Instead of these higher interactions additional single or 
double interactions could be investigated. In the case of 
fractional factorial designs not all measureing points are 
executed. Figure 4 shows the comparison of full factorial 
design and a fractional factorial design.

Figure 4: Comparison of a full factorial design a) and a frac-
tional factorial design b). 

This leads to a loss of information and to the fact that 
individual effects mix with each other. It is later not pos-
sible to distinguish which of these mixed effects is re-
sponsible for the aging of the insulation system. How-
ever, if simple factors and two-fold interactions are 
mixed exclusively with higher interactions whose effect 
on the lifetime is negligible, the question of how to dis-
tinguish between these effects is unnecessary. Table 3 
lists and evaluates various fractional factorial designs. 

4 Lifetime modeling 
After different modelling methods were described in 
chapter 2 and the DoE was described in chapter 3, this 
chapter focuses on the development of the lifetime model 
based on the DoE.  

4.1 Multiple regression 

As a mathematical model to describe the insulation sys-
tem, multiple regression is used. With this model it is 
possible to adapt the relationship between the influencing 
variables xi and the lifetime as target variable y to the 
measured values. For the description a full factorial de-
sign with two measured values per measuring point is 
used, as shown in figure 4a. The formula for the calcula-
tion of the lifetime is given with the multiple regression 
as follows 

𝑦 = 𝑧0 + 𝑧1𝑥1 + 𝑧2𝑥2 + 𝑧3𝑥3 + 𝑧12𝑥12 + (13) 

𝑧13𝑥13 + 𝑧23𝑥23 + 𝑧123𝑥123 

where zi is the influence of factor xi. The measured values 
required to parameterize equation (13) are designated ci 
in table 4. In the experimental design in figure 4a, each 
factor has two levels, designated by the values -1 for the 
lower level and 1 for the higher level in table 4. For two 
measured values, the mean value could also be used in-
stead of the expected value. If there are several measured 
values, the expected value should be used. The measured 
values in life cycle investigation are usually Weibull dis-
tributed.  

Table 4: Necessary number of tests for a certain accuracy 
when each factor has two levels. 

To determine the influence of the factors zi on the life-
time of the insulation system, equation (13) can be con-
verted to matrix notation 

𝑍 = 𝑋−1 · 𝑌𝑖 (14) 

 𝑋 and  𝑌𝑖 are shown in green and blue in table 4. The

relation of the individual factors with the lifetime of the 
insulation system is not linear but can be described with 
the models from chapter two. These non-linear correla-
tions must be transformed and used in the linear equation 
(13). In equation (15) this is represented for three factors 
which were described with the statistical approaches 
from chapter 2.2 
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log 𝑦 = 𝑧0 + 𝑧1 · 𝑒
𝐵𝐷𝑎𝑘𝑖𝑛·𝑥1 + 𝑧2 · log 𝑥2 +

𝑧3 · log 𝑥3 + 𝑧12 · 𝑒
𝐵𝐷𝑎𝑘𝑖𝑛·𝑥1 · log 𝑥2 +

𝑧13 · 𝑒
𝐵𝐷𝑎𝑘𝑖𝑛·𝑥1 · log 𝑥3 +   (15) 

𝑧23 · log 𝑥2 · log 𝑥3 +       

𝑧123 · 𝑒
𝐵𝐷𝑎𝑘𝑖𝑛·𝑥1 · log 𝑥2 · log 𝑥3

The effect of the individual factors and the respective in-
teraction, can be read off at the parameters zi. A compar-
ison of these parameters provides information about 
which effect contributes significantly to the aging of the 
insulation system and which effects are negligible with 
respect to service life. When designing robust insulation 
systems, special attention should be paid to the effects 
with a high contribution to aging.  

4.2 Miner’s rule 

With the mathematical description of the insulation sys-
tem by multiple regression and the efficient parameteri-
zation with the DoE, the lifetime of the insulation system 
at a certain load can be estimated. The lifetime model will 
now be extended to estimate the percentage of lifetime 
consumption due to a variable load spectrum. This is es-
pecially useful for applications with strong load fluctua-
tions such as in the automotive industry.  

Using the Miner’s rule, the lifetime consumption of 
individual loads of a load spectrum can be calculated. It 
is assumed that the insulation system is loaded with a 
constant load for a short period of time. The duration of 
the constant load li is related to the total lifetime of the 
insulation system at the same load Li. The sum of the in-
dividual loads result in the percentage lifetime consump-
tion. The closer the sum of the individual loads ap-
proaches the value 1, the more lifetime is consumed and 
the more likely the insulation system is to fail. Miner’s 
rule is given in equation (16) 

∑
𝑙𝑖
𝐿𝑖

𝑛

𝑖=1
= 𝐿% (16) 

where L% is the percentage lifetime consumption. 

5 Conclusion 
In this paper a methodology for the lifetime calculation 
of the insulation system of electrical machines is pre-
sented. Besides the prediction of the lifetime, the effects 
of individual factors and the interactions considered in 
the modelling can be evaluated and compared. The model 
can be used in the design process of electrical machines 
or can be used as a virtual test bench, where the lifetime 
can be investigated at different loads. Figure 5 shows an 
overview of the entire methodology. The WLTP is shown 
as an example of the load spectrum, since the model can 
be used particularly well in the automotive industry. 

Figure 5: Overview of the modelling methodology. 

Currently, durability tests are being carried out to apply 
the model to a real machine. Since the focus of this article 

Table 3: Overview and evaluation of fractional factorial designs for the lifetime of the insulation system [8]. 
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is on modelling, the results and aging effects will be pub-
lished in a separate article.  
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