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Abstract. This paper is offers an introductory overview
of some methods used for first principle modeling of dif-
ferent structures for the double pendulum. The mathe-
matical models are based on the Euler-Lagrange equa-
tions. The basic simulation study is focused on the pla-
nar double pendulum. Chaotic and periodic behavior is
investigated, together with an influence of the external
force. For initial conditions close to zero a periodic mo-
tion is observable. This model is further extended to a
simplified model of a church bell with a double clapper.
The clapper is modeled as a double pendulum with limi-
tation of movement inside the sides of the bell. Periodic-
ity under different initial conditions is investigated.

Motivation
The pendulum, together with its variations, is a simple
mechanical system that is suitable for applying white-
box modeling techniques, since we know a lot about the
system and its movement. In this paper, we will also ex-
tend the simple pendulum to a double pendulum. The
planar double pendulum is a mechanical system that
shows chaotic behavior even though it is a simple sys-
tem, but its simple construction allows us to observe and
understand the behavior of the chaotic systems more
closely. We are observing a deterministic system, which
means it is defined by its initial conditions, there are no
random elements involved, yet because of its chaotic
nature, it is still not predictable. The definition of chaos
used here is the sensitivity to the change in initial condi-
tion. In this paper, we concentrate on the distinction be-
tween chaotic and periodic behavior of the system and
the initial conditions that influence this, as well as on
influence of an external force to its behavior.

The second model observed in this paper is a model
of a simplified church bell, with a double pendulum as
a clapper. Its purpose is a demonstration of the law of
conservation of momentum, since the energy is trans-

ferred and distributed between the bell sides and the
clapper. It is implemented through modeling the sides
of the bell as a simple pendulum, and they are acting
as a moving constraint to a double pendulum. The pos-
sibility of rhythmic motion is investigated by some pa-
rameter studies. This is all implemented by using the
MATLAB ODE solver ode45 and by incorporating an
event function, which would stop the solver each time
an impact happens, and continue with new initial con-
ditions based on the law of conservation of momentum
and energy.

1 Introductory example
As an introduction to the work, we will start with a
simple pendulum in two dimensions.This is a pendu-
lum with a point-mass m attached to a massless, rigid
rod of the length l, and the equations of motion are de-
rived using the Euler-Lagrange formalism. The system
is constrained by the fixed length l of the rod, so the
points of mass with coordinates (xm,ym) have to satisfy
x2

m + y2
m = l2.

This means the mass point follows a circular path,
and we can use polar coordinates. This is applied on all
the further models in this paper. The position is there-
fore uniquely defined by a position angle ϕ . With this
information we can obtain the Lagrangian and the equa-
tion of the motion of this system, with g as the gravity
acceleration constant.

ϕ̈ =−gsinϕ
l

(1)

The motion is then fully described by the equation
(1).

2 The Double Pendulum
By following the principle described in the introduc-
tion, we can derive the equations of motion for the dou-
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ble pendulum. The setup for this model can be seen on
a sketch in Figure 1.
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Figure 1: Schematic sketch of a double pendulum.

The positions of the two mass points m1 and m2 are
uniquely described by their position angles ϑ1 and ϑ2,
since they are both attached to rigid rods of fixed length
l1 and l2 respectively. The external force is applied on
the first mass point m1. The motion is described by a
system of two non-linear ordinary differential equations
of second order.
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Figure 2: Motion for initial conditions (a) ϑ1,0 =
π
30 and ϑ2,0 = 0,

(b) ϑ1,0 =
29π
30 and ϑ2,0 = 0.
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Figure 3: Motion for initial conditions (a) ϑ1,0 =
π
30 and ϑ2,0 = 0,

(b) ϑ1,0 =
29π
30 and ϑ2,0 = 0.

2.2 Motion with external Stimulation

In this subsection we are observing the behavior of the
double pendulum when an external force is applied, in
the direction of the x-axis. Therefore, the external force
is given by fe = (fe,x,0,0)T . Since the generalized coor-
dinates are (ϑ1,ϑ2), the external force also has two co-
ordinates, fϑ1 and fϑ2 . With this, we obtain an inhomo-
geneous equation system, where the inhomogeneities
correspond to

fϑ1 = fe,xl1 cosϑ1, fϑ2 = fe,xl2 cosϑ2. (3)

In the Figure 4(a) we can see a trajectory of the mo-
tion of the double pendulum with an external force ap-
plied, and compared to the Figure 4(b), where no exter-
nal force is applied, we can observe a limited motion in
the first figure, since the external force represents a pull
in the positive x-direction.

2.1 Autonomous case

Before applying any external forces, we model the be-
havior of the system without the external forces applied. 
We solve the system (2) by using ode45 from MAT-
LAB, and investigate different initial conditions.

For the initial conditions less than ϑi,0 = π
3 , i = 1,2, 

a periodic motion is visible, whereas a non-periodic 
motion is visible for initial conditions larger than ϑi,0 =
π
3 , i = 1,2, see Figure 2. This can be explained with the
small-angle approximations, which lead to linearization 
of equations in the system (2). These linearized equa-
tions have periodic solutions.

In the Figure 3 we can see a demonstration of the 
chaotic motion, with a small change in initial condition 
with no initial velocity. This property is better visible 
in the motion of the second mass point, which is also be 
seen on the graph.
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Figure 4: Trajectories for initial conditions ϑ1,0 =
π
6 and

ϑ2,0 =
π
6 , t ∈ [0,40]. (a) External force fe = (3,0,0)T

applied. (b) No external force applied.

3 Bell With a Double Clapper

The basic model of a double pendulum is further ex-
tended to a simplified bell with a double clapper, as il-
lustrated in Figure 5.
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Figure 5: Mechanical setup for the model of a bell.

The outer part of the bell is observed as two coupled
simple pendulums with a fixed angle between the rods.
The mass of the whole bell is considered concentrated
in the mass points m and the rods are considered to be
massless. The clapper of the bell is modeled as a dou-
ble pendulum, with two mass points m1 and m2. An
external force is applied to the mass m1. The equations
used here correspond to a system with coupled inde-
pendent equations (1) and (2). The angle ϕ determines
the position of the bell sides, and ϑ1 and ϑ2 determine
the positions of the respective mass points of the bell
clapper, all labeled in Figure 5. Depending on which of
the two mass points hits the wall of the bell for i = 1,2,
we are going to use the law of conservation of energy
and momentum, to obtain the new conditions after each

collision, assumed the system is not damped.

mϕ̇(t−)+miϑ̇i(t−) = mϕ̇(t+)+miϑ̇i(t+)
1
2

mϕ̇(t−)2 +
1
2

miϑ̇i(t−)2 = m
1
2

ϕ̇(t+)2 +
1
2

miϑ̇i(t+)2

(4)
The behavior of the bell is investigated by some pa-

rameter studies. Each time the normal distance netween
the mass point and the outer part of the bell would equal
zero, an event is triggered, which would stop the solver.
The mass of the outer part of the bell is held fixed, and
significantly greater than the mass of the clapper. The
opening angle is held fixed at α = π

3 .
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Figure 6: Model of a bell with a double clapper,
m1 = m2 = 40kg, m = 2000kg, l = 3m, l1 = 1m,
l2 = 1.5m, position angles of the clapper plotted
over time.

On the Figure 6 we can see a bell with no external
stimulation, and the bell is brought to ringing by dis-
placing the bell together with the clapper, and letting
it swing rather than pushing with an external influence.
The initial conditions are ϕ0 =

π
3 , ϑ1,0 = π

6 , ϑ2,0 =
π
6 .

The events can be seen on the sharp edges on the plot,
where the movement was interrupted by an impact on
the side of the bell.

Another possibility of ringing a bell, by giving an
initial velocity to the bell, but keeping the position an-
gles of the clapper at zero, i.e. giving the bell a push on
the side instead of letting it swing. The initial velocity
is ϕ̇0 = 1.8rad/s. The motion induced in this way can
be seen on the Figure 7.

The question of the possibility of rhythmic motion
can be answered by making a scatter-plot of time dif-
ferences between consecutive impacts. This can be ob-
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Figure 7: Model of a bell with a double clapper,
m1 = m2 = 40kg, m = 2000kg, l = 3m, l1 = 1m,
l2 = 1.5m, position angles of the clapper plotted
over time.
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Figure 9: Pushed bell.

could be investigated.
The second model was a simplified model of a bell,

where we saw that with a double pendulum as a clapper,
periodic motion is not easy to obtain, due to the chaotic
behavior of the double pendulum. Taking the material
properties of which the bell is made could be an im-
provement, as well as considering a three dimensional
model here as well. Certain parameters were not inves-
tigated and this could be included in the future work.
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Figure 8: Swinging bell.

served on Figure 8 for the swinging bell, and on Figure 
9 for the pushed bell, with initial conditions mentioned 
above. We can see that the swinging bell, after , and 
with the pushed bell it does not happen, with the given 
initial conditions.

4 Conclusion
The main idea of this paper was to investigate the be-
havior of pendulum systems, by modeling them from 
first principles. We started with a double pendulum and 
investigated its chaotic behavior. This model could be 
extended to a three dimensional model, and by using 
the external force, or damping, different surroundings

230




