
ROCS: A Realtime Optimization and Control
Simulator

Andreas Britzelmeier1, Matthias Gerdts1, Omid Moslehi Rad1, Sonali Rani1, Thomas

Rottmann1

1Institute of Applied Mathematics and Scientific Computing, Universität der Bundeswehr München, Werner-
Heisenberg-Weg 39, 185577 Neubiberg, Germany;
{andreas.britzelmeier,matthias.gerdts,omid.moslehi,sonali.rani,thomas.rottmann}@unibw.de

Abstract. The Realtime Optimization and Control
Simulator (ROCS) is a software package written with
Qt. It is conceived to be a versatile tool to develop, in-
vestigate, and visualize control and trajectory optimiza-
tion tasks for automated vehicles, aircrafts, and robots in
multi-modal scenarios. It is also conceived as a platform
which allows to combine real driving data with virtual
simulation using a vehicle in the loop.

1 Introduction
The task of simulating and modeling physical systems
has always been an important instrument of scientific
and industrial research and development. It allows to
study and to evaluate the behavior of proposed mod-
els and to compare the outcome with the performance
of the actual system under consideration. Therein, we
can distinguish two major types of simulation tasks, that
is, with and without real time requirements and visu-
alization. Often computations are undertaken and af-
terwards visualized through graphs or non-immersive
types of representation. However, with advancements
in hardware technology and the increase in digitiza-
tion in many systems, like cars, planes, and mobile
robots, the requirement for virtual environmental sim-
ulation is drastically increasing. Another aspect which
justifies immersive simulation tools comes along with
automation of systems and the desire to create a dig-
ital twin. Developers are obliged to prove the relia-
bility and safety of newly developed systems, as well
as that the expected increase in utility is guaranteed.
However, building prototypes often is very expensive
as well as intensive testing to generate reproducible re-
sults. Therefore, the need of alternative methods to an-
alyze the behavior and interaction of systems is immi-
nent. Prominent examples of powerful simulation tools
in the automotive industry are Virtual Testdrive (VTD)

[17, 15], and SILAB, [11]. Both are widely used in
the automobile industry, compare [1]. Apart from the
automobile industry, also in aerospace engineering and
flight training simulative tools have a long history and
are widely used. The Flight Simulator from Microsoft,
see [12], as well as X-Plane, see [18], both of which
are certified by the Federal Aviation Administration,
are used in pilot training and research. Hence, immer-
sive simulation tools are not just mere tools of real-time
visualization but necessary tools to develop the tech-
nology of the future. An indispensable advantage of
such tools comes to play whenever new technologies
which require human cooperation or interaction is nec-
essary. Then these simulative tools provide a safe en-
vironment to test acceptance and reliability, compare
[8, 13]. Despite the different types of simulation tools
already available, most of them are limited to a specific
use case, may it be cars or planes.

In addition, there are very popular game engines,
e.g, Unity [16], which are applicable to both, gaming
and simulation applications. Such game engines have
numerous advantages, e.g. fast and agile development,
huge asset stores, optimized graphics, physics and au-
dio engines. However, these platforms come with some
specific limitations that can hinder scientific simula-
tion purposes. Few of those complications are licensing
and costs for activation of desired features, difficulty in
organizing its complex directory hierarchy, non-public
source code, making it difficult to track or debug is-
sues, increase in consumption of hardware resources
due to complex environment, and finally it is convenient
to use only with C Sharp as the primary scripting lan-
guage. Moreover, downward compatibility issues ow-
ing to new versions may arise and can make it difficult
to maintain a long term project. Finally, the addition of
one’s own particular models, controllers, or optimizers
can be cumbersome or even impossible.

These potential drawbacks motivated us to build a

ARGESIM Report 59 (ISBN 978-3-901608-93-3), p 193-200, DOI: 10.11128/arep.59.a59026

193



research and development tool called Real-time Opti-
mization and Control Simulator (ROCS). The idea was
to build a versatile research tool which allows for in
time visualization and testing of our online optimiza-
tion algorithms and feedback controllers for automated
agents in multi-model scenarios. A further goal was
to include control interfaces to real systems. ROCS is
build as a modular tool which allows for simple exten-
sion by further optimizers and controllers, and the inte-
gration of sensor data. Further it is able to visualize sce-
narios and conduct experimental validation with a vari-
ety of vehicles like cars, industrial or mobile robots, and
flying platforms like drones, planes or quadrocopters.
Owing to the modularity of the tool it is comparatively
simple to add models for every required type of vehicle.
Different modes of simulation are implemented. One
can either provide precomputed data, use feedback con-
trollers in combination with model simulation or em-
ploy an optimizer to perform online path planning tasks.
ROCS already provides a set of vehicular controllers as
well as different models for cars and integrators.

The outline of the paper is as follows. In Section
2 we discuss the overall conceptual design of ROCS.
Simulation aspects and two selected vehicle models in
ROCS are discussed in Section 3. Section 4 addresses
the controller design, while Section 5 presents the 3D
simulation environment. Some simulation results are
presented in Section 6. Finally, a summary and an out-
look with future developments conclude the paper.

2 Design

Realtime Optimization and Control Simulator (ROCS)
is designed in a modular way. We decided to imple-
ment it in C++ with Qt as it is a programming language
widely used in industry and academia and facilitates in-
tegration of algorithms and modules. In addition it pro-
vides convenient 3D visualization capabilities and the
slots and signal mechanism is very well suited for the
realtime control purposes.

The main components of ROCS are depicted in Fig-
ure 1. The core class objects are a vehicle class, a
control class, an input/output class, and a visualization
class. The vehicle class contains all vehicle relevant
parameters, numerical integrators for motion prediction
and simulation, interfaces to controllers and graphical
objects describing the shape. The control class contains
a collection of tracking controllers and optimization-
based path planning tools as detailed in Section 4. The
visualizaton class serves to display the simulation and
control outputs in a 3D view or in chart plots. It is also

possible to store the simulation results or measurements
in a file. Likewise it is possible to use ROCS in an
offline mode in oder to visualize external data from a
data file. The central control unit is the User Control
Interface (UCI) described in Section 2.1. An automatic
world generator class is part of the concept, but not fully
realized up to now.

I/O Handling
• Track Data
• Log Control Data
• Offline Simulation

Visualization
• Render the scene
• update the scene

UCI
• Timer
• User Inputs
• Settings

World Generator
• Objects
• Textures
• Effects

Vehicle
• Integrator
• Model
• Controller
• Sensor

Figure 1: Information flow between simulation models and
controllers.

2.1 The User Control Interface (UCI)

The central control panel of ROCS is the User Con-
trol Interface (UCI) in Figure 2. This panel allows to
load reference paths, environments, and models. More-
over it provides an overview on the number and type
of agents within the simulation. The properties of the
agents can be edited through additional dialogs, com-
pare Figures 4, 5. The UCI furthermore allows to select
a camera perspective, to switch on or off a data logging
mode, and it permits to adjust the scene timer for 3D
vizualization. Finally it offers options for saving and
loading in order to conveniently store or re-store com-
plex scenarios and settings.

Figure 2: Central user control interface.

194



2.2 Handling of Multiple Agents

Due to the object oriented programming style the vehi-
cle class can be sub-classed to differentiate among ve-
hicle types. Furthermore, multiple objects of one ve-
hicle can be created inheriting the same properties and
functions, controlling their visualization. On top, each
object is stored in a list such that each vehicle appear-
ing in the scene can also be customized. Customization
includes changing the objects model, linking to differ-
ent controllers or integrators or changing the pipeline of
data acquisition.

Secne Modifier

Data Acquisition

Vehicle 1

Vehicle 2

...

Vehicle N

Sim.
Model

Integrator

Offline
Data

Optimizer

Figure 3: Customizable linking of different data structures
for Simulation.

Data can be acquired three ways. The first is to load
offline created data from text files which provide data
required for simulation. The second method consists
in online computation of simulative data through inte-
gration and feedback controllers. The computed data is
then pipelined by a signal to a slot in the scene modifier
class. Thereby, each individual vehicle object and the
corresponding controller run in a separate thread and
do no interfere with the update of the scene or other
operations of the tool. Threads are managed in a syn-
chrnous and threadsafe way. The last option includes
the data generation by an optimization-based path plan-
ner, which repeatedly solves optimal control problems
within a model-predictive control loop. The output data
can also be directed to the scene modifier by addressing
the same slot from the optimizer class. Hence, we have
a uniform connection through signal and slots which
can be used to adjoin further modules as well.

In summary, ROCS is centered around the feedback
control loops for the agents. These control processes
run at a specified frequency in their own threads and are
decoupled from the visualization, which is able to run at
its own frequency and merely accesses simulation data
generated by the control loops. Both frequencies can
be synchronized in which case visualization and control
work in realtime, if the hardware permits it.

3 Simulation of Multi-Agent
Systems

ROCS allows to investigate heterogeneous multi-agent
systems consisting of, e.g. cars, robots, or aircrafts.
These agents or vehicles, respectively, can be derived
from a basic vehicle class, which inherits core func-
tionalities for any type of agent. The derived objects
allow to set particular features of the individual agents.
The individual agents can be added to the simulation
through a dialog window, compare Figure 4.

Figure 4: Dialog for adding agents.

The individual properties, models, and parameters
of the agents can be adjusted and selected in an editing
dialog, compare Figure 5.

Figure 5: Dialog for editing agents.

Once all agents have been configured (including dy-
namics, initial states, controller types) and added to the
scenario, it remains to simulate the whole multi-agent
system. To this end let N ∈ N agents be given. We
assume that each agent can be controlled and for each
agent i ∈ {1, . . . ,N} we denote the control input at time
t by ui(t) and the state at time t by xi(t). The motion of
the i-th agent is modelled mathematically by an initial
value problem of type

x�i(t) = fi(t,xi(t),ui(t)), xi(ti,0) = xi,0, (1)

195



with initial time ti,0 for i = 1, . . . ,N. The agents can
be controlled either in open-loop, i.e., by providing the
control input ui = ui(t) as a given function of time as
in (1), or in closed-loop by providing a feedback law
ui = µi(t,x), where x = (x1, . . . ,xN)

� is the combined
state of all agents. This leads to the closed-loop system

x�i(t) = f (t,xi(t),µi(t,x(t))), xi(ti,0) = xi,0,(2)

for i = 1, . . . ,N. In both cases the overall dynamic
system will be solved numerically by a Runge-Kutta
method. ROCS uses standard solvers with fixed step-
sizes (Euler method, Heun’s method, classic 4-th or-
der Runge-Kutta method) and variable step-sizes (DO-
PRI5(4)), see [10].

The outcome of the simulation can be stored in a
data logging file or in a chart window, compare Fig-
ure 6.

Figure 6: Chart window for detailed view of sensors, states,
and controls.

The design of the feedback laws µi for the agents
i= 1, . . . ,N, will be outlined in Section 4. Currently, we
only have individual controllers implemented, which do
not take into account the behavior of the other agents.
In the future we will add controllers and optimization
strategies for interacting systems as outlined in [4]. This
will require to set up an agent-to-agent or agent-to-
cloud communication procedure, in which, e.g., posi-
tion data or driving intentions are exchanged.

3.1 Vehicle Models

At the current state of development, due to the focus on
autonomous driving, two vehicle models, a single track
model and a kinematic model of a two wheel driven
mobile robot have been implemented. The equations of
motion of the single track model read as,

x� =vcos(ψ −β ) , (3)

y� =vsin(ψ −β ) , (4)

v� =
1
m
[(Fuh −FLx)cosβ +Fuv cos(δ +β ) (5)

−(Fsh −FLy)sinβ −Fsv sin(δ +β )] ,

β � =wz −
1

mv
[(Fuh −FLx)sinβ +Fuv sin(δ +β ) (6)

−(Fsh −FLy)cosβ −Fsv cos(δ +β )] ,
ψ � =wz, (7)

w�
z =

1
Izz

[Fsh�v cosδ −Fsh�h −FLyeSP +Fuv�v sinδ ] ,

(8)

δ � =
δc −δ

Tc
. (9)

Herein, x and y are the spacial coordinates and v de-
notes the velocity. The side slip angle is given by β ,
the yaw angle is ψ and the steering angle δ . The sin-
gle track model is already a quite detailed model of a
car, which is frequently used in the automotive indus-
try for the investigation of the lateral motion of cars.
The model includes various forces acting on the vehicle
body. That is, the lateral tyre forces Fsh,Fsv, longitu-
dinal forces Fuv,Fuh as well as air resistance in longi-
tudinal FLx and lateral FLy direction. Further we have
the vehicle mass m and the distance from the centre of
gravity to the drag mount point eSP. The distance from
the centre of gravity to the front and rear wheel are de-
scribed by �v and �h respectively. The control input to
the model are the commanded steering angle δc and a
combined acceleration and decelleration force, which
enters the above force terms. Details of the model can
be found in, e.g., [6, 7]. The constant Tc > 0 is used
to model a delay in the adjustment of the steering angle
towards the commanded steering angle.

Another model in ROCS describes a mobile robot
with two driven wheels on the left and the right, respec-
tively. Its equations of motion read as follows:

x� =
vL + vR

2
cosψ, (10)

y� =
vL + vR

2
sinψ, (11)

ψ � =
vR − vL

B
, (12)

v�L =
vc

L − vL

Tc
, (13)

v�R =
vc

R − vR

Tc
. (14)

Herein, x and y denote the center of gravity of the robot,
ψ the yaw angle, vR and vL the velocity of the right and

196



left wheels, respectively, and B is the width of the robot.
The robot is controlled by the commanded velocities
vc

R and vc
L of the right and left wheels. The constant

Tc > 0 is used to model a delay in the adjustment of the
velocities towards the commanded velocities.

These two models are included in order to illustrate
that heterogeneous agents can be considered. Further
vehicle models and models for mobile robots can be
found in [5]. We like to point out that further models
can be integrated into ROCS in a straightforward way.
This is an important feature for our research purposes.

4 Control and Path Planning

The realtime feature is implemented through timers for
the control loop of each vehicle, i.e., the control loop
runs at a user-defined rate and triggers the import of sen-
sor data and the update of controls. The computed con-
trols are then applied to the vehicle, either for simula-
tion purposes or to control a real vehicle. As for the con-
trol we distinguish between path tracking control and
path planning control. The former aims to track a prede-
fined (spline) path while the latter generates a path and
a trajectory using mathematical vehicle models and on-
line optimization methods in combination with model-
predictive control, see, e.g., [7]. In both, path tracking
and path planning, the aim is to realize the feedback law
µi in (2). Currently, a dynamic inversion controller and
a linear model-predictive controller are used for path
tracking, see [5, 3] for details. These controllers can
be applied to both models in Section 3.1. The model-
predictive control concept is applicable to path planning
as well, compare [7]. Since model-predictive control is
a powerful and versatile control paradigm, especially
for multi-agent systems, we outline in brief the work-
ing principle. Further details can be found in the mono-
graphs [14, 9].

To this end we consider dynamics in discrete time
tn = t0 +nh, n ∈N, where h > 0 is the stepsize given by
the control timer in ROCS. For notational convenience
we restrict the discussion to N = 1 agent with state x,
control u, and dynamics (1). Discretization of the lat-
ter using a suitable Runge-Kutta method leads to a dis-
crete time system. A typical path tracking task requires
to solve a linear-quadratic optimization problem of the
following type at each tn with measured state xn at tn:
Minimize the tracking error

1
2

n+M−1

∑
k=n

�x(tk)− xre f (tk)�2 +�u(tk)−ure f (tk)�2

subject to the constraints

x(tk+1) = Akx(tk)+Bku(tk) (k = n, . . . ,n+M−1)
x(tk) ∈ X (k = n, . . . ,n+M)

u(tk) ∈U (k = n, . . . ,n+M−1)
x(tn) = xn

Herein, the linear dynamics are obtained by lineariza-
tion at the reference path (xre f ,ure f ). The number
M ∈ N denotes the preview horizon, which has to be
chosen appropriately. The sets X and U define state and
control constraints. Likewise a typical path planning
task consists in solving a nonlinear optimization prob-
lem of the following type at tn with measured state xn at
tn:
Minimize the objective

ϕ(x(tn+M))+
n+M−1

∑
k=n

�(x(tk),u(tk))

subject to the constraints

x(tk+1) = F(x(tk),u(tk)) (k = n, . . . ,n+M−1)
x(tk) ∈ X (k = n, . . . ,n+M)

u(tk) ∈U (k = n, . . . ,n+M−1)
x(tn) = xn

Herein, ϕ and � are suitable functions modelling the
control objective, e.g. driving fastly or economically.
Now, the standard model-predictive control (MPC) con-
cept requires to solve one of the above optimization
problems repeatedly on a shifted time horizon. Figure 7
shows the outcome of a path planning task using the sin-
gle track model in Section 3.1 for a track on the campus
of the Universität der Bundeswehr München. Obstacles
can be avoided as well, see [3].

4.1 Sample Vehicle Controller

We outline path tracking controllers for the vehicle
models in Section 3.1. For the implementation of the
controllers we use slightly modified models in terms of
a curvilinear coordinate system:

s�(t) =
v(t)cos(ψ(t)−ψm(t))

1− r(t)κm(s(t))
, (15)

r�(t) = v(t)sin(ψ(t)−ψm(t)), (16)
ψ �(t) = v(t)κ(t), (17)
κ �(t) = u(t), (18)

ψ �
m(t) = v(t)κm(s(t)). (19)

197



-400

-300

-200

-100

 0

-400 -200  0  200  400

y
 [
m

]

x [m]

Figure 7: Nonlinear MPC result of a path planning task.

where s is the arc length along a given reference spline
curve and r is the lateral offset from the reference
spline. The actual heading is given by ψ(t) and the cor-
responding reference heading is given by ψm(t). The
curvature of the driven path is denoted by κ and the
curvature of the reference path is κm.

Both controllers are based on a simple kinematic
model, Eqs. (15) to (19) and are designed to control
the curvature deviation to track a given reference path.
Herein, the controller class provides a control input to
the vehicle models through a signal and slot connection.
This allows for an easy extension with additional con-
trollers, since the user only needs to provide an output
signal. Then, the output is transformed for the respec-
tive model and eventually can be integrated employing
one of the integrators, provided by the integration class,
see Fig. 8.

The aforementioned transformations are model de-
pendent. The single track model could be controlled
through the steering angle δ , the commanded steering
angle δc or the steering angle rate δ � = ωδ respectively.
Hence, we require a relation between the output of the
controller, i.e., κ , and the control variables. For the
commanded steering angle and the steering angle ve-
locity, respectively, these relations are given by

δc = arctan(�κ) ,ωδ = �κ � · cos2 (δ ) . (20)

Herein, δ � = ωδ = δc−δ
Tc

with constant Tc > 0. The
two wheeled robot is steered through the velocities of
the left and right wheel. Exploiting physical relations
yields,

vc
L = vd −

1
2

B · v ·κ, vc
R = vd +

1
2

B · v ·κ, (21)

with B the width of the robot, vd the desired longitudinal
velocity, and v = (vL + vR)/2 the current velocity. Both
controllers are discussed in detail in [4] and [3].

Controller

Controller
inputs

Simulation Models

Dynamic Inversion
output: curvature κ

LMPC
output:
- curvature κ or
- derivative of curvature
κ �

Eq. (20) Eq. (21)

Single Track Model
control input:

1. steering angle δ or
steering angle
velocity ωδ or
commanded
steering angle δc

2. target velocity vd

Robot Model
control input:

1. velocity left wheel
vl

2. velocity right
wheel vr

Figure 8: Information flow between simulation models and
controllers.

5 Visualization

For the visualization of the control and simulation re-
sults we utilize the Qt Framework, which provides an
OpenGL high level interface and allows for performant
rendering in C++ applications. To visualize certain ob-
jects the data structure is based on a scene graph defined
by a system of entities, where the scene graph is a tree
structure made of these entities and other components.
The entities to be rendered can be assigned through ob-
ject files containing 3D models of, e.g., a car, an air
plane, a robot, or buildings. Therefore we implemented
an overloaded class of QSceneLoader addressing our
requirements and managing the entities, as well as in-
terfacing the rendering canvas. Herein, the rendering
is solely a data driven process. Prebuild camera enti-
ties are provided by Qt providing viewpoints through
which the scene is rendered. Multiple cameras are im-
plemented in ROCS to capture different perspectives,
e.g., the ego person’s view in 9, the third person view,
see Figure 10, where the camera follows in a fixed dis-
tance behind the object and a birds view in Figure 11.

198



Figure 9: Ego person’s view of a scene.

Figure 10: Third person’s view of a scene.

Figure 11: Bird’s view of a scene.

6 Evaluation and Results
Figure 12 shows selected car data stored by the data log-
ger function of ROCS. The virtual RAM used by ROCS
for this simulation amounts to 2.37 GB and the RAM
to 3.67 GB for a total of 12 simultaneously controlled
cars. The GPU load amounts to 35.2 %. The com-
putations were performed on a system with 16 GB of
memory, Intel i7-8700 processor with 3.2 GHz (6 cores,
12 threads) and a Nvidia Geforce FTX 1060GB (6 GB
RAM) graphic card.

The results show the output of the single track model
with a linear model-predictive path tracking controller
for the track depicted in Figure 7. This controller is able

to track a given geometric reference path even for com-
paratively high velocities with a maximum deviation of
0.15 m (see r in Figure 12).

� ��� ���� ���� ���� ���� ����

��������������

����

����

����

����

����

��
��

�

�����������������

� ��� ���� ���� ���� ���� ����

��������������

����

����

����

����

�
�
��
�
��
��
�
�

��������������

� ��� ���� ���� ���� ���� ����

��������������

�

�

��

��

��

�
��
�
��
�

���������������

� � �� �� ��

��������

�

�

��

��

��

��

��

�
�
�
��
�
�
�
��
�
�

����������������������������������������

Figure 12: Data logger output (from top to bottom): lateral
deviation r, steering angle δ , target velocity, and
average CPU load per thread (12 threads, 12
vehicles).

199



7 Current Developments and
Future Extensions

The development of ROCS is on-going and vehicle
models from different disciplines (mobile robots, flight
systems, space systems) of different complexity with
appropriate controllers and path planning tools will be
added step-by-step. The interfaces of ROCS will allow
to directly import real sensor measurements of vehicles
and to generate data to control a vehicle. This option
allows to run simulation and real vehicle motion in par-
allel in order to overlap the two motions with the aim to
design accurate digital twins. At the same time it allows
to simulate a virtual world for a research vehicle at the
Universität der Bundeswehr called Vehicle-in-the-loop
[1, 2]. This research platform is based on a real car
(Audi A6 Avant) and uses virtual environments to cou-
ple real driving experience and virtual scenarios. This
concept is ideal for testing potentially dangerous sce-
narios in a safe way and we aim to integrate ROCS into
the vehicle in the loop (VIL) for visualization, but also
as an automatic control tool.

Acknowledgement

Copyright and ownership of ROCS and its derivatives
solely resides with its founders Andreas Britzelmeier
and Matthias Gerdts.

References
[1] Berg, G., Karl, I., Färber, B. Vehicle in the loop -

validierung der virtuellen welt. In Nichtred. Ms.-dr.,
editor, Der Fahrer im 21. Jahrhundert: Fahrer, Fahre-
runterstützung und Bedienbarkeit, volume 6. Verein
Deutscher Ingenieure, VDI-Verl., November 2011.

[2] Berg, G., Nitsch, V., Färber, B. Vehicle in the loop. In:
Winner H., Hakuli S., Lotz F., Singer C. (eds), Hand-
book of Driver Assistance Systems, Springer, 2015; pp.
199–210.

[3] Britzelmeier, A., Gerdts, M. A Nonsmooth Newton
Method for Linear Model-Predictive Control in Track-
ing Tasks for a Mobile Robot With Obstacle Avoidance.
in IEEE Control Systems Letters, 2020; Vol. 4(4), pp.
886–891, doi: 10.1109/LCSYS.2020.2996959.

[4] Britzelmeier, A., Gerdts, M., Rottmann, T. Control
of interacting vehicles using model-predictive control,
generalized Nash equilibrium problems, and dynamic
inversion. 2020 IFAC World Congress, 2020.

[5] Burger, M., Gerdts, M. DAE aspects in vehicle dynam-
ics and mobile robotics. Applications of differential-
algebraic equations: examples and benchmarks,

Differential-Algebraic Equations Forum, Springer,
2019; pp. 37–80.

[6] Gerdts, M. Solving mixed-integer optimal control prob-
lems by branch&bound: a case study from automobile
test-driving with gear shift, Optimal Control Applica-
tions and Methods, Vol. 26, pp. 1–18, 2005.

[7] Gerdts, M., Karrenberg, S., Müller-Beßler, B., Stock,
G. Generating locally optimal trajectories for an au-
tomatically driven car. Optimization and Engineering,
2009; Vol. 10, pp. 439–461.

[8] Graichen, M., Graichen, L., Rottmann, T., Nitsch, V.
Using the projection-based vehicle in the loop for the
investigation of in-vehicle information systems: First
insights. In Proceedings of the 4th International Con-
ference on Vehicle Technology and Intelligent Trans-
port Systems - Volume 1: VEHITS,, pages 231–237.
INSTICC, SciTePress, 2018.

[9] L. Grüne, J. Pannek. Nonlinear Model Predictive Con-
trol – Theory and Algorithms. 2nd Edition, Springer,
2017

[10] Hairer, E., Norsett, S. P., Wanner, G. Solving Ordinary
Differential Equations I: Nonstiff Problems. Springer
Series in Computational Mathematics, 2nd Ed., Vol. 8,
Berlin-Heidelberg-New York, 1993.

[11] Krueger, H.P., Grein, M., Kaussner, A., Mark, C.
SILAB – A Task Oriented Driving Simulation. North
America, page 9, 2005.

[12] Microsoft Corporation. Microsoft flight simulator.
www.flightsimulator.com, 04 2020.

[13] Nitsch, V., Färber, B., Rüger, F. Automatic eva-
sion seen from the opposing traffic - an investigation
with the vehicle in the loop. In IEEE 18th Interna-
tional Conference on Intelligent Transportation Sys-
tems, 2015.

[14] J. B. Rawlings, D. Q. Mayne, M. Diehl. Model Predic-
tive Control: Theory, Computation, and Design. 2nd
Edition, Nob Hill Publishing, Madison, 2018.

[15] Roth, E., Dirndorfer, T., Knoll, A., von Neumann-
Cosel, K., Ganslmeier, T., Kern, A., Fischer, M.-O..
Analysis and validation of perception sensor models
in an integrated vehicle and environment simulation.
Proceedings of the 22nd Enhanced Safety of Vehicles
Conference, 2011.

[16] Unity 3D. Unity website. unity.com, 04/2020.
[17] VIRES Simulationstechnologie GmbH. Virtual test

drive. vires.com/vtd-vires-virtual-test-drive, 04/2020.

[18] Laminar Research. X-plane 11. www.x-plane.com,
04/2020.

200




