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Abstract. This contribution investigates a feed-forward
neural network approach for event detection in hybrid
dynamical models. Machine learning algorithms are
commonly used in software development. In recent
years these approaches have also been increasingly ap-
plied in modelling and simulation of physical systems. A
significant amount of these models use artificial neural
networks. However, hybrid dynamical systems describe
a combination of different methods to describe a contin-
uous process, which experiences behavioural changes at
discrete events. Accordingly, the models of such systems
are based on a combination of discrete and continuous
methods and are often illustrated as automaton. Based
on these two areas an approach, to predict the event time
of the discrete processes, is presented. The different re-
quired elements are defined and a general approach is
outlined. The feasibility of this concept is examined on
the basis of one examples. If the given imbalanced data
is resampled, training can be successful. Unfortunately,
even then, the generalised classification of events often
does not work sufficiently. The evaluation of the approx-
imation results of the discrete events in hybrid systems
suggests that neural networks are not suitable to clas-
sify the system states with regard to the occurrence of an
event. In the outlook we suggest an alternative approach
to predict the event with neural networks.

Introduction

The goal of this contribution is to investigate the appli-
cability of artificial neural networks in the event detec-
tion for hybrid dynamical systems. On the one hand,
the use of neural networks has increased, especially
in fields such as pattern recognition and software de-
velopment. In recent years neural networks are also
applied in different engineering applications. On the

other hand, hybrid approaches present a possibility to
model complex systems. A hybrid model benefits from
combining the advantages of different methods. In the
case of hybrid dynamical systems, a dynamical pro-
cess, characterised by finite changes of the model de-
scription, is described. These changes are called dis-
crete events. This contribution focuses on autonomous
events where no external factors are involved initiating
the event.

Based on the hybrid dynamical automaton, as dis-
cussed in [7, 9], a model for applying neural networks
is formulated. Additionally, the basic structure of neu-
ral networks will be presented. A multi-layered neural
network will be applied to substitute the event in the
hybrid dynamical model. Combining continuous, dis-
crete and machine learning approaches, a model will be
defined.

For the hybrid system in the case study the bounc-
ing ball is chosen. The state space of this examples
is one-dimensional and the automaton of the simpli-
fied assumption consists of one dynamical process. The
goal of the trained network will be to determine if a
state vector is initiating an event or not. One of the
challenges of this approach is to create a useful learn-
ing dataset. In hybrid systems, states without an event
are more frequent than states where an event occurs.

1 Artificial Neural Networks

Neural networks and machine learning are a central part
of modern technology. Various software packages in
computer science and engineering apply machine learn-
ing methods. In system identification problems for ex-
ample, neural networks are used to approximate suit-
able model structures. In the early 1950s the first neu-
ral network was introduced and consisted of so-called
perceptrons [13]. The task of a perceptron is to test in-
coming signals against a predefined threshold, whereas
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exceeding this value results in 1 and otherwise in 0.
Despite the application purpose, the structure of a neu-
ral network always consist of three different types of
layers: the input layer, the hidden layer and the output
layer.
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Figure 1: The structure of a basic artificial neural network,

called multi-layer perceptron (MLP).

ers are arbitrary. The connections between the neurons
in the different layers are called edges. Each edge car-
ries an individual weight wl

i j, where l ∈ � defines the
target layer of the connection and i, j specify the end
and starting neuron, respectively. The weighted sum of
the inputs together with a bias bl

j form the input of the
neuron in most applications. The neurons of the hidden
layer as well as the neurons of the output layer apply an
activation function to the incoming signal.

In order to obtain a good performing neural network,
it is necessary to determine the biases and weights of
the network structure. The iterative process determin-
ing these parameters is called training. The complexity
of the model, the number of parameters as well as the
accessibility, size and range of the given datasets affect
the success of the training. In this study only supervised
training methods are considered. The iterative optimi-
sation process uses the given dataset to improve the re-
sults of a predefined cost function, also referred to as
loss function. At the beginning of the training the pa-
rameters are initialised randomly using a certain distri-
bution. The loss function of a neural network is similar
to the cost function in optimisation problems. It eval-
uates the performance of the given neural network and
by minimising the loss function the results are improv-
ing. For classification networks, a possible loss func-
tion for convex optimizers is the support vector machine
(SVM) loss or Hinge loss and the cross entropy loss,
respectively. There are different methods to determine
the network parameters w and b. Apart form the Gra-
dient Descent, common optimisation algorithms are the
Newton’s Method, Conjugate Gradient, Quasi Newton
Method, Levenberg Marquardt and Adams Algorithm.
Depending on the size of the input-output dataset, an
adequate training algorithm has to be chosen. The loss
function and the optimization algorithm are embedded
in a learning method. The most common method is the
back-propagation.

2 Hybrid Dynamical Automaton

In applied mathematics and computer science the cre-
ation of modelling standards is an important aspect. The
advantage of a modelling frameworks is that they can be
applied not only to one unique problem description but
to an entire class of problems. Based in related work the
structural and graphical framework for hybrid dynami-
cal systems is defined. Characterisations of different
event formulations and transitions are given.

Each layer consists of a particular number of nodes, 
referred to as perceptrons or neurons. If every neuron 
of each layer is interconnected to every neuron in the 
following layer, the network is called fully connected 
[6]. Artificial n eural n etworks ( ANN) c an b e char-
acterised by the way the signals are processed. If a 
neural network is executed and the signal flows from 
the input layer through the hidden layer and exits at 
the output layer, the network structure is categorised 
as feed-forward. Such networks are often called multi-
layer perceptrons (MLP). For most of the applications, 
a multi-layer feed-forward network is sufficient [8]. In 
Figure 1 a one layered feed-forward network is de-
picted. It consists of one input, one hidden and one 
output layer. The shape of the input and output layer is 
defined by the given inputs x ∈ � n and the correspond-
ing outputs y ∈ �m. In contrast, there is no predefined 
structure for the hidden layers. The number of hidden 
layers as well as the amount of neurons in these lay-
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The complex structure of hybrid systems is com-
monly illustrated using an automaton [9, 4]. Automata
are often applied to depict abstract machines as well as
theoretical concepts in computer science, such as com-
binational logic. It supports structuring mathematical
tasks and illustrating finite state machines [2]. It shows
current states, update rules as well as transition condi-
tions. By expanding the description possibilities of the
update rules, the automata concept can be applied to
model hybrid dynamical systems, as shown in Figure 2.

d1
Fd1(xd1 ,ud1 ,wd1 , t)

x(t) ∈ Inv(d1)

d2
Fd2(xd2 ,ud2 ,wd2 , t)

x(t) ∈ Inv(d2)

d3
Fd3(xd3 ,ud3 ,wd3 , t)

x(t) ∈ Inv(d3)

b1

b2

b4

Guardd1,d3

Jumpd1,d3

b5

b3

Figure 2: Conceptional structure of a hybrid automaton

based on the work of [10].

In terms of layout, an automaton is an ambiguous
description. It just characterises the basic structure of
the model in a compact way. The nodes of the automa-
ton describe different local dynamics whereas the con-
necting lines, called edges, define transition conditions.
If fulfilled, the transition from one location (node) to
the next is initiated.

Focusing on modelling of hybrid dynamical sys-
tems, a mathematical definition of the hybrid automaton
is given [7, 4, 10].

Each node of the hybrid automata contains an in-
dividual model description, e.g. differential-algebraic
equations. The state and time events, respectively, en-
able the transition from one node to the next. A char-
acterisation of the different possible changes during the
event, transitioning from one subsystem to the next, is
formulated based on [10].

3 Artificial Hybrid Events

3.1 Idea & Concept

The illustration of the hybrid dynamical automaton in
Figure 2 suggests a possible scenario to apply neural
network for event detection in hybrid dynamical mod-
els. It proposes to apply neural networks to administrate
the event handling.

d1

d2

d3

a1 a2

a3

NN1 NN2

NN3

NN

Figure 3: Three framework applications for including neural
network concepts (red dashed rectangles) in
modelling hybrid dynamical systems.

3.2 Network Approach

The definition is given independently from any spe-
cific feed-forward network structure and facilitates ev-
ery event type. The characterisation of the event, as
introduced in the hybrid dynamical automaton, requires
at least three elements. The mapping Act is considered
to be a-priori knowledge since the local processes and
descriptions are accessible. The guard G defines the set
of states initiating the events, whereas the jump map J
executes the actual changes happening during the tran-
sition from one local description to the next.

Considering that the local dynamics are known, the
jump relation is already implicitly defined. An investi-
gation of the given dynamical descriptions determines
a-priori if J describes a coordinate transform. A neu-
ral network approximation of that transform is unneces-
sary. Secondly, assuming a hybrid system with chang-
ing parameters and variables the dynamical behaviour
of the system can be characterised mathematically and
the jump relation is a consequence of the model descrip-
tion. Hence, the following framework focuses on the
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approximation of the guard region.
The local descriptions and their state variables are

known, whereas the guard region has to be determined.
In contrast to both previously explained applications,
the output data for the training set of the ANN has to
be defined differently. There is no feasible output of
the system, which can be directly applied for training.
Instead the data has to be analysed and classified. Two
different categories can be defined:

O j =

�
0, no event occurred at x j,

1, an event occurred at x j.

With this classification a training set for the network
Ab

ae can be given. The input data for training the neural
network include

• the state vector of the system x(t), t ∈ T ⊂�+,

• the given initial conditions x0,

• input u and

• external variables w including any system parame-
ters p.

the applicability and the experimental results are anal-
ysed and compared with the original data.

4.1 Example Description

he bouncing ball, as defined in [11] and [1], describes
a ball, bouncing off the ground. The state variable of
interest is the height over time t. The acting force in the
observed system is the gravity, accelerating the ball to
the ground. Thus, the ODE of the dynamical behaviour
of the bouncing ball can be described as

ḧ(t) =−g, (1)

where g is the gravitational constant. Considering an
initial height h0 and velocity v0, two state variables
can be defined, namely the height h(t) =: x1(t) and the
velocity x2(t) := ẋ1(t). Hence, using the state vector
x = (x1,x2)

T ∈�2 equation (1) can be transformed into
a state space description resulting in

ẋ(t) =
�

0 1
0 0

�
x(t)+

�
0
−g

�
, x(0) =

�
h0
v0

�
. (2)

An advantage of the chosen academic example re-
sides in the existence of an analytical solution given as

x(t) =
�
− g

2 t2 + v0t +h0
−gt + v0

�
. (3)

In Figure 4 (a), the height of the ball is depicted over
time. Two different processes can be distinguished, the
flying and falling phase of the ball, respectively and the
bounce. The latter affects the behaviour of the ball and
therefore defines the state event of the system.

Due to the fact that the free fall phase is interrupted
when the ball reaches the ground, the event guard Gd,d
can be defined. An event occurs if the state vector fulfils

x ∈ Gd,d :=
�

x(t) ∈�2 : x1(t) = 0∧ x2(t)≤ 0
�
. (4)

This state event can be given in all three forms. The
event function can be defined as eb(x) := x1 with
eb(x) = 0 initiates the event, whereas the threshold for
the event can be given as Δx1 := 0.

Model descriptions are often implying a certain de-
gree of abstraction. In this application, the bounce is de-
scribed by a simplified assumption without modelling
the physical process in detail. When the ball hits the
ground the behaviour of the ball is affected. The friction
is realised as simple damping factor λ with 0 < λ < 1.

Hence, the input can be given as I(x0,x,u,w, t). The 
output data for the training process is O ∈ {0,1}q,q ∈ 
�, where q depends on the number of classified state 
values included in the dataset. After embedding the 
trained network into the model structure, at each time 
step the state vector of the dynamical process is classi-
fied by the network and an event is initiated if the state 
vector is labelled 1.

Both previous definitions a ttempt t o approximate 
the relation between input and output values. In con-
trast, the approximation of the event guard represents 
a classification t ask. Hence, neural network structures 
such as EQL and HONN are not applicable instead 
MLP suited for classification tasks are required for this 
framework application. Therefore, datasets containing 
past state vectors classified w ith r egards t o t he occu-
rance of an event can be very imbalanced [4]. As sug-
gested in [5], resampling methods for training will be 
applied to level out the imbalance and its results will be 
compared.

4 Case Study
For the application of the approach a hybrid dynamical 
systems is chosen. The example is used to investigate
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Figure 4: (a) Height of the ball over time. (b) Hybrid

dynamical automaton of the bouncing ball.

The reflection of the ball results in inverting the velocity
component. Hereby, the time delay due to any deforma-
tion work is neglected. Thus, the jump map Jd,d at the
event can be characterised by the linear transform

x(t+) = Jd,d(x(t−)) :=
�

1 0
0 −λ

�
x(t−). (5)

4.2 Event Classification Results

Focusing on the problem of event detection with neu-
ral networks, possible datasets consist of different state
values of the system and its label if an event occurred.
A MLP is chosen as network structure. The framework

application to replace the guard region in the hybrid
model of the bouncing ball is given as

Ahae = ({d};�2;{b};Wae;Eae = (d,b,Gae,Jd,d ,d); Inv;Act),

Act(d) := Fd ,

Gae(b) := Ab
ae.

(6)
where W, Inv and Jd,d remain as defined in the hybrid
automaton. The network definition does not depend on
the application example. Therefore one network defini-
tion can be used for events of both systems, occurring
during the bounce, the free fall and the pendulum phase.

The framework application for the network is given
as

Ai
ae = (4, I,O,Ni,{u(l)j }l=2,3,4

j=1,...,nl
,T ), i ∈ {d,r, p},

u(l)j (z(l)j ) = σ(z(l)j ), l = 2,3, j = {1, . . . ,nl},
u(4)(z(4)) = z(4),

T = (M,A,C,S,V ),

C = Lcross,

(7)

where A is the Scaled Conjugate Gradient Algorithm, M
is the back-propagation method and Ni depends on the
application example. The input data consists of the state
vector for various initial conditions and various points
in time. For each data point the occurrence of an event
is evaluated

Oi =

�
0, no event at Ii,

1, event occurs at Ii.

The resulting dataset Oi ∈ {0,1}, i∈� forms the output
data for training. The size and structure of the state
vector depends on the application example. Hence, the
input for the training data is given as

Ii =
�
ti,x1(ti),x2(ti),g

�

The event classification is especially challenging. In
most hybrid systems the occurrence of an event is rather
rare. A dataset for the pendulum with various initial
conditions results in ≈ 0.6% events. This problem is
often referred to as binary classification of imbalanced
datasets [16, 5]. In [3] different resampling methods are
discussed, to balance the dataset and enable successful
classification. One method suggests to create synthetic
observations drawn from a uniform distribution within
the data of the small category. Due to the fact that the
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Ex S = (E/NoE) k V

BB1 98485/6010853 − [0.75,0.15,0.15]
BB2 49243/49243 1

2 [0.75,0.15,0.15]
BB3 49243/49243 1

2 [0.75,0.15,0.15]

Ex Corr. pos. Corr. neg. False. pos. False. neg.

BB1 1.2% 98.4% 0% 0.4%
BB2 49.9% 50% 0% 0.1%
BB3 50% 50% 0% 0.001%

Ex S = (E/NoE) k N

BB1 98485/12021707 − [4,30,20,1]
BB2 98485/98485 1 [4,30,20,1]
BB3 98485/147728 3

2 [4,30,20,1]

Ex Corr. pos. Corr. neg. False. pos. False. neg.

BB1 0.6% 49.6% 49.6% 0.2%
BB2 49.9% 50% 0% 0.001%
BB3 40% 0.6% 59.4% 0.001%

Table 1: Comparision of the classification MLP for both

examples.

’no event’. This procedure results in an imbalanced
dataset with two classes, the majority class ’no event’
and the minority ’event’. The results listed in Table 1
show the results of a trained MLP for the classifica-
tion of imbalanced binary datasets. If the data is re-
sampled, as suggested in [15] and [3], the training can
be successful. Unfortunately, even then, the generalised
classification of events often does not work sufficiently.
The case study confirms the findings in [14], that the
traditional feed-forward neural network has difficulties
to learn from imbalanced datasets [16]. To cope with
imbalanced binary datasets in classification scenarios
possible alternatives to neural networks are presented
in [12]. Therefore, facilitating methods such as regres-
sion and projection into the third framework application
is a future objective.

The focus of the framework was, to investigate dif-
ferent application scenarios for neural networks. In
the case of classifying state vectors in ’event’ and ’no
event’, the neural network performance was not suf-
ficient. The classification experiments for both appli-
cation examples have shown, that neural networks are
not applicable for imbalanced datasets like this. Other
methods might be more effective. Therefore, adding
elements to the framework to enable an inclusion of
other methods in the hybrid dynamical model is a fu-
ture objective. In this context, also the preprocessing of
the input data in neural network applications can be in-
cluded in the framework definition. A future review of
networks other than feed-forward, might require adding
new elements. For example a recurrent network might
require more descriptive elements than defined in the
framework at the moment. If the dynamical description
of each node involves several implicit formulations, it
might be laborious or even impossible to formulate an
explicit jump relation. In such cases, the measured out-
put and input data of the different nodes could be used
to train another network Jb

ae to replace the jump rela-
tion J in the model description. In addition, a combined
framework application, to facilitate the replacement of
events and local dynamics at the same time, can be one
of the next steps.
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