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Abstract.  In industry, there are numerous applications for 
simulation. However, simulation in our area usually takes 
some time even if a preexisting model just needs to be 
parameterized; there is still the run time, which will usually 
take at least a few minutes if not hours. In our current 
case, a planner wanted to know for a given product mix 
situation and for an equipment group with specific charac-
teristics how much he can utilize the equipment without 
violating flow factor targets. A question, which arises sever-
al times during a typical workday as new orders are coming 
in and the situation on the shop floor is continuously chang-
ing. Since the user is usually asking the same question just 
with different parameters we are able to solve the waiting 
time problem while still giving good decision support. In-
stead of simulating every scenario at the time the user 
actually needs these answers, we use data farming to gen-
erate a large set of data points that are then used to train a 
neural network. This neural network then substitutes for the 
simulation and responds to the user immediately. 

Introduction 

A crucial task in modern industry is capacity planning. 
Robinson et al. [1] point out why accurate capacity 
planning is so important, yet so difficult to achieve in 
the highly sophisticated semiconductor industry. A 
planner faces numerous questions every day from short-
term operative questions to long-term strategic ones. A 
necessary starting point to make any reasonable dec-
sions is to know the available equipment capacity and 
how its’ utilization influences the material flow.  
As cycle times vary from product to product flow fac-
tors (cf. Equation 1) are good indictors to evaluate a 
production system.  

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓 𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐 𝑓𝑓𝑡𝑡𝑡𝑡𝑐𝑐

𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑝𝑝𝑝𝑝 𝑓𝑓𝑡𝑡𝑡𝑡𝑐𝑐
(1) 

 The trade off between utilization and flow factor can be 
visualized as operating curves (cf. [2]), which relate a 
system’s flow factor against its utilization. Operating 
curves are an important tool in managing semiconductor 

fabs (cf. [3]). 

Figure 1: Operating Curve of a basic single equipment with-
out any special features 

Figure 2:  Operating Curve of a single batch-equipment with 
infrequent but long breakdowns 

Examples of operating curves are shown in Figures 1 
and 2. Although these curves represent the behavior of 
the system at all utilization levels, usually not the whole 
operating curve is relevant to a planner. What typically 
is of interest to our collegues is whether there is enough 
capacity for a given product mix or load. In modern 
days, this question has changed to whether it is possible 
to maintain a given flow factor with the given product 
mixes and loads. Therefore, it is important to know until 
which point an equipment group can be utilized before 
it violates flow factor targets. These thresholds are basi-
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cally what we are looking for. Figure 1 and Figure 2 
also show that whether a system can handle a given 
material flow is not just based on its’ utilization. Nu-
merous factors are influencing equipment behavior; 
batching, breakdowns, and maintenance are just some 
examples. Based on these characteristics equipment 
groups are able to handle different utilization levels 
before reaching certain flow factors. As this differs from 
equipment to equipment this question needs to be an-
swered often for different equipment groups.  
It is the goal of our research to develop an approach that 
answers this question in a most timly fashion while still 
being sufficiently accurate to base planning and invest-
ment decisions upon. Traditionally, this is done at our 
industry partner with a calculation based on look up 
tables, which only included some factors. Although the 
look up is quite quick, the results were far from optimal 
since too few influencing factors were considered. A 
typical solution approach would simply be to build or 
generate a simulation model for a given equipment 
group and run some simuation experiments. But this 
would still take some time, with large equipment groups 
maybe even a few minutes. Hence, this approach would 
not meet the response time requirement for the given 
problem. Byrne [4] proposed an approach to limit the 
number of necessary design points to calculate an oper-
ating curve. Althougth this would speed up simulation, 
there would still be some waiting time for results. 
In the first section of this paper, we will give an intro-
duction to the general idea behind our approach. In 
Section two, we will discuss some software develop-
ment aspects of creating such a system. In the third
section, we will briefly show the features considered in 
our current project. In the following sections, we will 
furthermore discuss the simulation model, data farming, 
and training of our artificial neural networks. In Section 
seven, we will shortly show our current results and give 
an outlook on our future plans in Section eight. 

1 System overview 
As we have previously discussed, we aim to build a 
system which is able to quickly provide answers to the 
same question with changing parameters or configura-
tions, that is repeatedly asked during a normal workday. 
If these questions would only be asked from time to 
time or a response would not be that time critical a 
common approach would be to build a simulation model 
and answer the question after analyzing a simulation 

experiment. 
 
 

 
Figure 3: Generalization of discussed approach for a fast 

response system based on data farming and ma-
chine learning 

 
If short response times are very important, Figure 3 
shows a generalized approach on how we answer this 
question. The challenge column would be the normal 
simulation experiment approach. The user has a ques-
tion about a given system configuration. A simulation 
model representing this system configuration is built 
and its’ performance is evaluated. After a reasonable 
number of simulation runs the user gets the answer. 
As the simulation runs are the time consuming part we 
changed the system. Instead of creating or parameteriz-
ing a simulation model each time the user needs an 
answer to the question we move the simulation runs to a 
point in time long before the user asks our system. We 
use data farming to create the results to a huge number 
of possible factor combinations. The resulting data set is 
then used as the supporting points for machine learing 
algorithms, in our case neural networks, to approximate 
a function that reproduces a response to a given config-
uration and therby replaces the simulation in the mo-
ment the user queries the system. Instead of directly 
asking for the results of a time-consuming simulation 
experiment, the user asks the neural network that is able 
to respond almost immediately. 
Figure 4 shows a basic overview of our system. 
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Figure 4: System overview 

2 System architecture 
In this section, we will discuss our system architecture 
from a software development point of view. We will 
start with the initial basic design and point our changes 
we have done to improve the system. 

 
Figure 5: Basic system architecture 

 
Basing our architecture (cf. Figure 5) on the system 
overview shown in Figure 4 we planned for one big 
simulation-based data farming component, which would 
generate a huge set of supporting points. These data 
points would be transferred as a file to an R (cf. [5]) 
script handling data preparation and training of the 
neural network. With this setup, we were able to obtain 
reasonable results but we found that there is still a lot of 
room for improvement. One of our first and surprisingly 
valuable changes was a switch from using R to train our 
neural networks to Keras (cf. [6]). With R, depending 
on our data set, we were sometimes observing training 
times of a couple of days, which we attributed to reach-
ing some memory boundaries. We often had to abort 

after some time as no further progress was visible and it 
was hard to predict the remaining training time. Howev-
er, even training times of a few hours considerably limit 
the amount of network configurations one can test in the 
hopes of improving results. The switch to Keras with an 
underlying Tensorflow (cf. [7]) library immediately 
improved training times incredibly. Furthermore, being 
able to utilize GPUs (graphics cards) for training im-
proved training speeds to a point where instead of sev-
eral hours or days we were looking at seconds and 
minutes for training. This new dimension of training 
times opened up the opportunity to consider neural 
architecture search to further improve the results of the 
neural network and thereby the whole system in the 
future. 
A second big change to our system is the move from a 
monolithic piece of software to a service-based architec-
ture using RESTful Web Services (cf. [8]). In this 
change, we see three major benefits to our system: 
1. Ease of communication between system parts, 
2. Scalability and distribution on multiple machines, 
3. Replaceability of components. 

 
In the beginning of the project, we made the conscious 
decision to implement different parts of our system with 
different languages. We see benefits in developing in 
Java with its object-oriented concept and type system 
paired with available IDEs supporting numerous ways 
of testing and debugging that make it very suitable to 
larger and more complex software projects. R on the 
other hand offered much easier access to mathematical 
functionality and neural networks. Nowadays, Python 
basically is the de facto standard language for data anal-
yses and machine learning with a number of libraries 
and frameworks available and new systems usually 
being accessible only or at least first with Python. 
Communication across these language barriers is often 
not easy with “direct calls”. As most modern languages 
nowadays offer libraries, to easily implement web ser-
vices, this is an elegant approach to handle communica-
tion between system parts written in different program-
ming languages without much additional implementa-
tion overhead. Gone were complicated command line 
calls and file-based communications. 
Most parts in our system can be quite computation in-
tensive. While it is still reasonable to run small test 
cases on a single office PC, larger experiments benefit 
from good scalability and distribution. Furthermore, 
different parts of the system benefit differently from 
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available hardware. While the simulation is mostly CPU 
and memory intensive, training neural networks signifi-
cantly benefits from the availability of modern graphics 
cards. Being able to assign services to machines with 
the best fitting hardware is therefore another aspect, 
which is easily taken care of with services. Besides 
distributing the different services on different machines, 
some services may in the future need additional compu-
ting power. With a service-oriented architecture, it is 
also easy to introduce load balancers which distribute 
requests of the same type on several machines offering 
the same service without any necessary changes to the 
client side. This makes setting up such a system very 
comfortable for different experimental environments. 

 
Figure 6: Service based system architecture 
 

Replaceability without the need to touch any other sys-
tem component is also a great benefit. As we try differ-
ent frameworks and approaches the current architecture 
offers us to simply replace some services while others 
stay the same. Changing the simulator, the persistence 
approach or even the machine learning technique are all 
simply done by putting the new component up as a 
service replacing the old one. Hence, with this change 
we gained a lot of scalability and flexibility for future 
experiments. 

3 Factors 
Starting with Robinson et al. [1] and Hopp and 

Spearmean [9] and a review of the previous planning 

methods we defined relevant features for our equipment 
group model. Values for our factor levels were chosen 
based on a fab dataset from our industrial partner by 
looking for natural clusters and using representatives 
thereby capturing realistic workings points.  

Most factors can be easily defined with single nu-
merical values. These are shown as quantitative factors. 
Some factors shown as categorical in Table 1 represent 
more complex definitions. Product mix for example 
represents the number of different products as well as 
their percentage of the released material flow. For cate-
gorical features we selected three levels based on real 
equipment groups going from a low impact to a high 
impact setting with regard to the resulting flow factors. 

Feature Factor # Type 

Batching MaxBatch 
MinBatchPercentage 

5 
3 

Quant. 
Quant. 

Breakdown MeanTimeBetweenFailure 
BreakdownCapaLoss% 

3 
2 

Quant. 
Quant. 

Dedication Dedication 3 Cat. 

Equipment # ToolCount 7 Quant. 

Maintenance TimeToMaintenance 
MaintCapaLos% 

3 
2 

Quant. 
Quant. 

Product Mix ProductMix 3 Cat. 

Rework ReworkPercentage 3 Quant. 

Process Time RPT 6 Quant. 

Setup SetupDuration 3 Quant. 

Table 1: Feature and factor overview 
 

While initially considering only one factor per feature 
we now split some features into two factors for better 
scalability. This makes it easier for a future algorithm to 
generate new test points to validate and improve the 
resulting model. Additionally, the effect of some fea-
tures is hard to capture with a single factor. For exam-
ple, when considering two systems suffering from 25% 
loss of capacity due to breakdowns; one breaking down 
after 3 hours of productive time for about an hour while 
the other one runs fine for 3 weeks followed by a week 
of repair. We would expect the second system to per-
form worse with regard to cycle time and flow factor. 
Hence, we split breakdown into capacity loss and mean 
time between failures. As the increase in factors brings a 
significant increase in design points considering a full 
design, we have not yet updated our training data set to 
include all new points. Although the training data set 
does not include all these points, we are still able to 
address them better and test for them.  
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4 Evaluation and Simulation 
We use an inhouse developed factory simulator for 

all simulation runs in this project. As we have men-
tioned before the simulator is currently running as a 
service and simulation runs can be started by calling the 
service and handing over parameter values for each 
factor under consideration.  

The simulation service will then automatically gen-
erate a simulation model based on the given parameters. 
Figure 7 shows a visualization of the equipment group 
model. As the goal of the simulation is to determine 
reasonable utilization values for the lowest flow factor 
possible and the location of defined flow factor thresh-
holds, the next step is a static capacity analysis. This is 
necessary to run the simulation only with reasonable 
loading scenarios without wasting calculation time for 
extremely low utilization settings or incredibly over-
loaded systems. Based on the static capacity analysis we 
can now simply calculate the necessary lot releases to 
run the model at a specific utilization point.  

We use a search strategy akin to binary search to 
look for the location with the lowest possible flowfac-
tor. For each utilization point under evaluation simual-
tion runs are performed until the sample size for this 
point is determined to be large enough for a stable esti-
mation. Flow factor thresholds are searched for similar-
ly while reusing the results of previously tested plus 
new utilization points. Once the lowest flow factor val-
ue and all requested flow factor thresholds are deter-
mined the results are handed back.  

Verification and validation are difficult when con-
sidering data farming, as it is almost impossible to eval-
uate every single simulation run. We deployed different 

strategies to ensure our simulation results reflect real 
world behaviour. The basis for this were unit tests to 
continuously check the simulation software during de-
velopment. This was done to avoid unintended effects 
during programming. We additionally compared sample 
simulation results with the results from other simulation 
software packages. Additionally, we had a panel of 
experts reviewing results generated by the simulator and 
compare them to real factory data of equipment groups 
with similar characteristics. Of course, this cannot be 
done for all data points but helps to validate the system. 

5 Data farming 
When considering the number of factors and factor 

levels, we are looking at a huge number of data points to 
evaluate. In addition to all these data points, we are also 
looking at several simulation runs per data point. As we 
have mentioned before each data point is determined by 
calculating several utilization points for which we run a 
number of simulations each. Not all utilization points 
take the same amount of repetitions as we determine 
this number on the fly during the evaluation. After 
simulating an initial set of replications, we calculate the 
confidence interval half-length and mean. Then, we 
compare their quotient with the relative error we aim 
for. If the quotient is still larger than the relative error, 
we run another set of replications. We repeat this until 
the relative error is smaller than the quotient (cf. [10]). 

 On average, we ran about 825 simulations for a sin-
gle data point to determine the location of the lowest 
flow factor value and three thresholds. Considering even 
just one factor per feature we were looking at almost 
460000 data points which total in almost 380 million 
simulation runs just to generate the supporting points for 

Figure 7: Simulation model structure 
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our project. 
Although the evaluation of single data points is fea-

sible on a normal PC, running these almost 460000 of 
data points on one of our simulation servers took several 
weeks. With our change in architecture and therefore 
much better scalability, we hope any future additions to 
our current data set will be available much faster. 

6 Training 
With all these data points from simulation, we were still 
only looking at the supporting points for our system. As 
we have mentioned before we moved from using R to 
Keras to implement the training of our neural networks 
which considerably increased training speed and made it 
much easier to test different layer configurations. Typi-
cally, we aim to minimize the mean squared error 
(MSE) of our testset. When trying to evaluate the use-
fulness of any trained network we additionally present 
the predicted results graphically.  

 
Figure 8: Visualization of the distance between predicted 

and simulated value; example 1 

 
Figure 9: Visualization of the distance between predicted 

and simulated value; example 2 

 
Figure 10: Visualization of the distance between predicted 

and simulated value; example 3 

 
Figures 8 to 10 show the results of network configura-
tion and training parameter sets we tested. The diagrams 
are historgrams of how successful the predictions have 
been. Starting from the left results are grouped by the 
error in prediction compared to the simulation result. 
The first bar represents less than 1% distance and each 
following bar an additional 1%. E.g., a scenario for 
which the network predicted 75.5 but the simulation 
estimated 73 would fall into the third bin. Please be 
aware that the x-axis in Figure 8 is using a different 
range from the other shown results. We chose to do this 
to be able to show the set of extremly poor predictions 
that is not present in the other results. 

Although the quality of the trained networks can dif-
fer greatly between network configurations, all of the 
results shown here were able to reduce the MSE contin-
uously during training and on a first glance seemed to 
work quite well. Only when visualizing what the results 
meant with regard to the actual problem at hand, it be-
came obvious that some of these networks are not use-
full at all to solve our problem.  

Besides network architecture we found that training 
parameters like batch sizes and the number of episodes 
have a significant impact on result quality. In fact, Fig-
ures 8 and 9 are based on the same network configure-
tion but used different batch parameters for training. 

 

7 Results 
We set out to achieve two objectives. First, we wanted 
to create a system, which is able to respond immediately 
to a user query. Second, we needed to have sufficiently 
good results to base planning and investment decisions 
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upon.  
On the first objective, we are where we want to be. 

The application server running on a better office PC 
with a modern graphics card responds within 300ms to a 
user query. The majority of this time is actually spent on 
allocating the graphics card. Running the network for 
the prediction just on the CPU without GPU support this 
response time could actually be reduced even more as 
predicting is quite fast with just the CPU. 

 
Figure 11: Visualization of the distance between predicted 

and simulated value; current results 

 
Looking at the second objective, Figure 11 shows 

our currently best results derived just with manual test-
ing of different network architectures and training pa-
rameters. 
About 80% of our test points are predicted with an error 
of less than 3%. Almost all datapoints are predicted with 
less then 10% error from our simulation results. Fur-
thermore, we are no longer seeing any artifacts as in 
Figure 8. Althoug these are reasonably good results and 
a prediction quality of 3% or better for a majority of 
data points would be good enough to base planning on 
these numbers, we are still looking at 20% of predic-
tions being off by up to and 10%. Considering high 
utilization scenarios overestimating possible utilization 
by 10% error could have a serious impact on the per-
formance of the material flow and ability to maintain 
promised delivery dates. On the other hand, underesti-
mating utilization thresholds by 10% would mean sig-
nificant loss of production capacity or triggering an 
investment in equipment before it is actually necessary. 
We therefore still see some need for improvement. 

8 Summary and Outlook 
In this paper, we presented our approach to create a 

system with minimal response time to a user query, 
which we would usually answer by simulation. We 
discussed some aspects of software architecture to im-
prove scalability and flexibility of the software. The 
presented system uses a simulation model to do data 
farming for supporting points, which are then presented 
as training data set to machine learning methods like 
neural networks. The resulting trained system is able to 
respond to the user queries within moments. 

Although the system already works as a proof of 
concept, the accuracy is still not where it would need to 
be to be applicable in an industrial setting. We are 
working on two approaches to improve prediction quali-
ty for all points. 

First, we have seen during our manual configuration 
of the the neural network that network architecture and 
training parameters tend to have a big impact on result 
quality. With our improved training speeds, we are 
planning to improve prediction quality by automating 
the process of finding a good network configuration. 
There are several promising approaches to do this. We 
are currently working on adding a neuroevolution (A 
broader explanation can be found in [11]) service to our
system. As an alternative, we are also looking at Auto-
Keras (cf. [12]). 

The second approach targets the somewhat infre-
quent supporting points within our training data set. 
Since adding additional levels to factors drastically 
increase the number of total points to calculate for a full 
design, simply adding more levels would be a very 
computation intensive approach. Instead, we are seeking 
to improve the quality of the systems response by auto-
matically searching for points with bad predictions and 
adding additional supporting points near those points to 
our training data set. Idealy, this would improve predic-
tion quality in those areas and therefore for the whole 
system. 
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