
Reducing response time with data farming and
machine learning

Falk Stefan Pappert1*, Oliver Rose1
1Fakultät für Informatik, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85579 Neubiberg,
Germany *falk.pappert@unibw.de

Abstract. In industry, there are numerous applications for
simulation. However, simulation in our area usually takes
some time even if a preexisting model just needs to be
parameterized; there is still the run time, which will usually
take at least a few minutes if not hours. In our current
case, a planner wanted to know for a given product mix
situation and for an equipment group with specific charac-
teristics how much he can utilize the equipment without
violating flow factor targets. A question, which arises sever-
al times during a typical workday as new orders are coming
in and the situation on the shop floor is continuously chang-
ing. Since the user is usually asking the same question just
with different parameters we are able to solve the waiting
time problem while still giving good decision support. In-
stead of simulating every scenario at the time the user
actually needs these answers, we use data farming to gen-
erate a large set of data points that are then used to train a
neural network. This neural network then substitutes for the
simulation and responds to the user immediately.

Introduction

A crucial task in modern industry is capacity planning.
Robinson et al. [1] point out why accurate capacity
planning is so important, yet so difficult to achieve in
the highly sophisticated semiconductor industry. A
planner faces numerous questions every day from short-
term operative questions to long-term strategic ones. A
necessary starting point to make any reasonable dec-
sions is to know the available equipment capacity and
how its’ utilization influences the material flow.
As cycle times vary from product to product flow fac-
tors (cf. Equation 1) are good indictors to evaluate a
production system.

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓 𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐 𝑓𝑓𝑡𝑡𝑡𝑡𝑐𝑐

𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑝𝑝𝑝𝑝 𝑓𝑓𝑡𝑡𝑡𝑡𝑐𝑐
(1)

 The trade off between utilization and flow factor can be
visualized as operating curves (cf. [2]), which relate a
system’s flow factor against its utilization. Operating
curves are an important tool in managing semiconductor

fabs (cf. [3]).

Figure 1: Operating Curve of a basic single equipment with-
out any special features

Figure 2: Operating Curve of a single batch-equipment with
infrequent but long breakdowns

Examples of operating curves are shown in Figures 1
and 2. Although these curves represent the behavior of
the system at all utilization levels, usually not the whole
operating curve is relevant to a planner. What typically
is of interest to our collegues is whether there is enough
capacity for a given product mix or load. In modern
days, this question has changed to whether it is possible
to maintain a given flow factor with the given product
mixes and loads. Therefore, it is important to know until
which point an equipment group can be utilized before
it violates flow factor targets. These thresholds are basi-

ARGESIM Report 59 (ISBN 978-3-901608-93-3), p 113-120, DOI: 10.11128/arep.59.a59016

113

cally what we are looking for. Figure 1 and Figure 2
also show that whether a system can handle a given
material flow is not just based on its’ utilization. Nu-
merous factors are influencing equipment behavior;
batching, breakdowns, and maintenance are just some
examples. Based on these characteristics equipment
groups are able to handle different utilization levels
before reaching certain flow factors. As this differs from
equipment to equipment this question needs to be an-
swered often for different equipment groups.
It is the goal of our research to develop an approach that
answers this question in a most timly fashion while still
being sufficiently accurate to base planning and invest-
ment decisions upon. Traditionally, this is done at our
industry partner with a calculation based on look up
tables, which only included some factors. Although the
look up is quite quick, the results were far from optimal
since too few influencing factors were considered. A
typical solution approach would simply be to build or
generate a simulation model for a given equipment
group and run some simuation experiments. But this
would still take some time, with large equipment groups
maybe even a few minutes. Hence, this approach would
not meet the response time requirement for the given
problem. Byrne [4] proposed an approach to limit the
number of necessary design points to calculate an oper-
ating curve. Althougth this would speed up simulation,
there would still be some waiting time for results.
In the first section of this paper, we will give an intro-
duction to the general idea behind our approach. In
Section two, we will discuss some software develop-
ment aspects of creating such a system. In the third
section, we will briefly show the features considered in
our current project. In the following sections, we will
furthermore discuss the simulation model, data farming,
and training of our artificial neural networks. In Section
seven, we will shortly show our current results and give
an outlook on our future plans in Section eight.

1 System overview
As we have previously discussed, we aim to build a
system which is able to quickly provide answers to the
same question with changing parameters or configura-
tions, that is repeatedly asked during a normal workday.
If these questions would only be asked from time to
time or a response would not be that time critical a
common approach would be to build a simulation model
and answer the question after analyzing a simulation

experiment.

Figure 3: Generalization of discussed approach for a fast

response system based on data farming and ma-
chine learning

If short response times are very important, Figure 3
shows a generalized approach on how we answer this
question. The challenge column would be the normal
simulation experiment approach. The user has a ques-
tion about a given system configuration. A simulation
model representing this system configuration is built
and its’ performance is evaluated. After a reasonable
number of simulation runs the user gets the answer.
As the simulation runs are the time consuming part we
changed the system. Instead of creating or parameteriz-
ing a simulation model each time the user needs an
answer to the question we move the simulation runs to a
point in time long before the user asks our system. We
use data farming to create the results to a huge number
of possible factor combinations. The resulting data set is
then used as the supporting points for machine learing
algorithms, in our case neural networks, to approximate
a function that reproduces a response to a given config-
uration and therby replaces the simulation in the mo-
ment the user queries the system. Instead of directly
asking for the results of a time-consuming simulation
experiment, the user asks the neural network that is able
to respond almost immediately.
Figure 4 shows a basic overview of our system.

114

Figure 4: System overview

2 System architecture
In this section, we will discuss our system architecture
from a software development point of view. We will
start with the initial basic design and point our changes
we have done to improve the system.

Figure 5: Basic system architecture

Basing our architecture (cf. Figure 5) on the system
overview shown in Figure 4 we planned for one big
simulation-based data farming component, which would
generate a huge set of supporting points. These data
points would be transferred as a file to an R (cf. [5])
script handling data preparation and training of the
neural network. With this setup, we were able to obtain
reasonable results but we found that there is still a lot of
room for improvement. One of our first and surprisingly
valuable changes was a switch from using R to train our
neural networks to Keras (cf. [6]). With R, depending
on our data set, we were sometimes observing training
times of a couple of days, which we attributed to reach-
ing some memory boundaries. We often had to abort

after some time as no further progress was visible and it
was hard to predict the remaining training time. Howev-
er, even training times of a few hours considerably limit
the amount of network configurations one can test in the
hopes of improving results. The switch to Keras with an
underlying Tensorflow (cf. [7]) library immediately
improved training times incredibly. Furthermore, being
able to utilize GPUs (graphics cards) for training im-
proved training speeds to a point where instead of sev-
eral hours or days we were looking at seconds and
minutes for training. This new dimension of training
times opened up the opportunity to consider neural
architecture search to further improve the results of the
neural network and thereby the whole system in the
future.
A second big change to our system is the move from a
monolithic piece of software to a service-based architec-
ture using RESTful Web Services (cf. [8]). In this
change, we see three major benefits to our system:
1. Ease of communication between system parts,
2. Scalability and distribution on multiple machines,
3. Replaceability of components.

In the beginning of the project, we made the conscious
decision to implement different parts of our system with
different languages. We see benefits in developing in
Java with its object-oriented concept and type system
paired with available IDEs supporting numerous ways
of testing and debugging that make it very suitable to
larger and more complex software projects. R on the
other hand offered much easier access to mathematical
functionality and neural networks. Nowadays, Python
basically is the de facto standard language for data anal-
yses and machine learning with a number of libraries
and frameworks available and new systems usually
being accessible only or at least first with Python.
Communication across these language barriers is often
not easy with “direct calls”. As most modern languages
nowadays offer libraries, to easily implement web ser-
vices, this is an elegant approach to handle communica-
tion between system parts written in different program-
ming languages without much additional implementa-
tion overhead. Gone were complicated command line
calls and file-based communications.
Most parts in our system can be quite computation in-
tensive. While it is still reasonable to run small test
cases on a single office PC, larger experiments benefit
from good scalability and distribution. Furthermore,
different parts of the system benefit differently from

115

available hardware. While the simulation is mostly CPU
and memory intensive, training neural networks signifi-
cantly benefits from the availability of modern graphics
cards. Being able to assign services to machines with
the best fitting hardware is therefore another aspect,
which is easily taken care of with services. Besides
distributing the different services on different machines,
some services may in the future need additional compu-
ting power. With a service-oriented architecture, it is
also easy to introduce load balancers which distribute
requests of the same type on several machines offering
the same service without any necessary changes to the
client side. This makes setting up such a system very
comfortable for different experimental environments.

Figure 6: Service based system architecture

Replaceability without the need to touch any other sys-
tem component is also a great benefit. As we try differ-
ent frameworks and approaches the current architecture
offers us to simply replace some services while others
stay the same. Changing the simulator, the persistence
approach or even the machine learning technique are all
simply done by putting the new component up as a
service replacing the old one. Hence, with this change
we gained a lot of scalability and flexibility for future
experiments.

3 Factors
Starting with Robinson et al. [1] and Hopp and

Spearmean [9] and a review of the previous planning

methods we defined relevant features for our equipment
group model. Values for our factor levels were chosen
based on a fab dataset from our industrial partner by
looking for natural clusters and using representatives
thereby capturing realistic workings points.

Most factors can be easily defined with single nu-
merical values. These are shown as quantitative factors.
Some factors shown as categorical in Table 1 represent
more complex definitions. Product mix for example
represents the number of different products as well as
their percentage of the released material flow. For cate-
gorical features we selected three levels based on real
equipment groups going from a low impact to a high
impact setting with regard to the resulting flow factors.

Feature Factor # Type

Batching MaxBatch
MinBatchPercentage

5
3

Quant.
Quant.

Breakdown MeanTimeBetweenFailure
BreakdownCapaLoss%

3
2

Quant.
Quant.

Dedication Dedication 3 Cat.

Equipment # ToolCount 7 Quant.

Maintenance TimeToMaintenance
MaintCapaLos%

3
2

Quant.
Quant.

Product Mix ProductMix 3 Cat.

Rework ReworkPercentage 3 Quant.

Process Time RPT 6 Quant.

Setup SetupDuration 3 Quant.

Table 1: Feature and factor overview

While initially considering only one factor per feature
we now split some features into two factors for better
scalability. This makes it easier for a future algorithm to
generate new test points to validate and improve the
resulting model. Additionally, the effect of some fea-
tures is hard to capture with a single factor. For exam-
ple, when considering two systems suffering from 25%
loss of capacity due to breakdowns; one breaking down
after 3 hours of productive time for about an hour while
the other one runs fine for 3 weeks followed by a week
of repair. We would expect the second system to per-
form worse with regard to cycle time and flow factor.
Hence, we split breakdown into capacity loss and mean
time between failures. As the increase in factors brings a
significant increase in design points considering a full
design, we have not yet updated our training data set to
include all new points. Although the training data set
does not include all these points, we are still able to
address them better and test for them.

116

4 Evaluation and Simulation
We use an inhouse developed factory simulator for

all simulation runs in this project. As we have men-
tioned before the simulator is currently running as a
service and simulation runs can be started by calling the
service and handing over parameter values for each
factor under consideration.

The simulation service will then automatically gen-
erate a simulation model based on the given parameters.
Figure 7 shows a visualization of the equipment group
model. As the goal of the simulation is to determine
reasonable utilization values for the lowest flow factor
possible and the location of defined flow factor thresh-
holds, the next step is a static capacity analysis. This is
necessary to run the simulation only with reasonable
loading scenarios without wasting calculation time for
extremely low utilization settings or incredibly over-
loaded systems. Based on the static capacity analysis we
can now simply calculate the necessary lot releases to
run the model at a specific utilization point.

We use a search strategy akin to binary search to
look for the location with the lowest possible flowfac-
tor. For each utilization point under evaluation simual-
tion runs are performed until the sample size for this
point is determined to be large enough for a stable esti-
mation. Flow factor thresholds are searched for similar-
ly while reusing the results of previously tested plus
new utilization points. Once the lowest flow factor val-
ue and all requested flow factor thresholds are deter-
mined the results are handed back.

Verification and validation are difficult when con-
sidering data farming, as it is almost impossible to eval-
uate every single simulation run. We deployed different

strategies to ensure our simulation results reflect real
world behaviour. The basis for this were unit tests to
continuously check the simulation software during de-
velopment. This was done to avoid unintended effects
during programming. We additionally compared sample
simulation results with the results from other simulation
software packages. Additionally, we had a panel of
experts reviewing results generated by the simulator and
compare them to real factory data of equipment groups
with similar characteristics. Of course, this cannot be
done for all data points but helps to validate the system.

5 Data farming
When considering the number of factors and factor

levels, we are looking at a huge number of data points to
evaluate. In addition to all these data points, we are also
looking at several simulation runs per data point. As we
have mentioned before each data point is determined by
calculating several utilization points for which we run a
number of simulations each. Not all utilization points
take the same amount of repetitions as we determine
this number on the fly during the evaluation. After
simulating an initial set of replications, we calculate the
confidence interval half-length and mean. Then, we
compare their quotient with the relative error we aim
for. If the quotient is still larger than the relative error,
we run another set of replications. We repeat this until
the relative error is smaller than the quotient (cf. [10]).

 On average, we ran about 825 simulations for a sin-
gle data point to determine the location of the lowest
flow factor value and three thresholds. Considering even
just one factor per feature we were looking at almost
460000 data points which total in almost 380 million
simulation runs just to generate the supporting points for

Figure 7: Simulation model structure

117

our project.
Although the evaluation of single data points is fea-

sible on a normal PC, running these almost 460000 of
data points on one of our simulation servers took several
weeks. With our change in architecture and therefore
much better scalability, we hope any future additions to
our current data set will be available much faster.

6 Training
With all these data points from simulation, we were still
only looking at the supporting points for our system. As
we have mentioned before we moved from using R to
Keras to implement the training of our neural networks
which considerably increased training speed and made it
much easier to test different layer configurations. Typi-
cally, we aim to minimize the mean squared error
(MSE) of our testset. When trying to evaluate the use-
fulness of any trained network we additionally present
the predicted results graphically.

Figure 8: Visualization of the distance between predicted

and simulated value; example 1

Figure 9: Visualization of the distance between predicted

and simulated value; example 2

Figure 10: Visualization of the distance between predicted

and simulated value; example 3

Figures 8 to 10 show the results of network configura-
tion and training parameter sets we tested. The diagrams
are historgrams of how successful the predictions have
been. Starting from the left results are grouped by the
error in prediction compared to the simulation result.
The first bar represents less than 1% distance and each
following bar an additional 1%. E.g., a scenario for
which the network predicted 75.5 but the simulation
estimated 73 would fall into the third bin. Please be
aware that the x-axis in Figure 8 is using a different
range from the other shown results. We chose to do this
to be able to show the set of extremly poor predictions
that is not present in the other results.

Although the quality of the trained networks can dif-
fer greatly between network configurations, all of the
results shown here were able to reduce the MSE contin-
uously during training and on a first glance seemed to
work quite well. Only when visualizing what the results
meant with regard to the actual problem at hand, it be-
came obvious that some of these networks are not use-
full at all to solve our problem.

Besides network architecture we found that training
parameters like batch sizes and the number of episodes
have a significant impact on result quality. In fact, Fig-
ures 8 and 9 are based on the same network configure-
tion but used different batch parameters for training.

7 Results
We set out to achieve two objectives. First, we wanted
to create a system, which is able to respond immediately
to a user query. Second, we needed to have sufficiently
good results to base planning and investment decisions

118

upon.
On the first objective, we are where we want to be.

The application server running on a better office PC
with a modern graphics card responds within 300ms to a
user query. The majority of this time is actually spent on
allocating the graphics card. Running the network for
the prediction just on the CPU without GPU support this
response time could actually be reduced even more as
predicting is quite fast with just the CPU.

Figure 11: Visualization of the distance between predicted

and simulated value; current results

Looking at the second objective, Figure 11 shows

our currently best results derived just with manual test-
ing of different network architectures and training pa-
rameters.
About 80% of our test points are predicted with an error
of less than 3%. Almost all datapoints are predicted with
less then 10% error from our simulation results. Fur-
thermore, we are no longer seeing any artifacts as in
Figure 8. Althoug these are reasonably good results and
a prediction quality of 3% or better for a majority of
data points would be good enough to base planning on
these numbers, we are still looking at 20% of predic-
tions being off by up to and 10%. Considering high
utilization scenarios overestimating possible utilization
by 10% error could have a serious impact on the per-
formance of the material flow and ability to maintain
promised delivery dates. On the other hand, underesti-
mating utilization thresholds by 10% would mean sig-
nificant loss of production capacity or triggering an
investment in equipment before it is actually necessary.
We therefore still see some need for improvement.

8 Summary and Outlook
In this paper, we presented our approach to create a

system with minimal response time to a user query,
which we would usually answer by simulation. We
discussed some aspects of software architecture to im-
prove scalability and flexibility of the software. The
presented system uses a simulation model to do data
farming for supporting points, which are then presented
as training data set to machine learning methods like
neural networks. The resulting trained system is able to
respond to the user queries within moments.

Although the system already works as a proof of
concept, the accuracy is still not where it would need to
be to be applicable in an industrial setting. We are
working on two approaches to improve prediction quali-
ty for all points.

First, we have seen during our manual configuration
of the the neural network that network architecture and
training parameters tend to have a big impact on result
quality. With our improved training speeds, we are
planning to improve prediction quality by automating
the process of finding a good network configuration.
There are several promising approaches to do this. We
are currently working on adding a neuroevolution (A
broader explanation can be found in [11]) service to our
system. As an alternative, we are also looking at Auto-
Keras (cf. [12]).

The second approach targets the somewhat infre-
quent supporting points within our training data set.
Since adding additional levels to factors drastically
increase the number of total points to calculate for a full
design, simply adding more levels would be a very
computation intensive approach. Instead, we are seeking
to improve the quality of the systems response by auto-
matically searching for points with bad predictions and
adding additional supporting points near those points to
our training data set. Idealy, this would improve predic-
tion quality in those areas and therefore for the whole
system.

Ackowledgements
We would like to thank Dr Thomas Mayer for many
interesting discussions on system architecture and ma-
chine learning.

References

[1] Robinson, J.K., Fowler, J., Neacy E. Capacity Loss Fac-
tors in Semiconductor Manufacturing. FabTime Inc 2003

119

https://www.fabtime.com/files/CapPlan.pdf.

[2] Aurand, S., Miller, P. The operating curve: a method to
measure and benchmark manufacturing line productivity.
1997 IEEE/SEMI Advanced Semiconductor Manufactur-
ing Conference and Workshop ASMC 97 Proceedings.
1997 IEEE/SEMI Advanced Semiconductor Manufactur-
ing Conference and Workshop; 1997 Sep; Cambridge,
MA, USA. IEEE. 391-397. doi:
10.1109/ASMC.1997.630768.

[3] Fayed, A, Dunnigan B. Characterizing the Operating
Curve — how can semiconductor fabs grade them-
selves?.. 2007 International Symposium on Semiconduc-
tor Manufacturing; 2007 Oct; Santa Clara, CA, USA.
Place of Publication: publisher. 1-4.

doi: 10.1109/ISSM.2007.4446827.

[4] Byrne, N.M. A framework for generating operational
characteristic curves for semiconductor manufacturing
systems using flexible and reusable discrete event simu-
lations [dissertation]. School of Mechanical and Manu-
facturing Engineering. Dublin City University; 2012.

[5] Verzani, J. Using R for Introductory Statistics. 2nd Edi-
tion. New York, USA: CRC Press; 2014.518p

[6] Géron, A. Hands-On Machine Learning with Scikit-
Learn, Keras, and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems. 2nd Edition. Se-
bastopol: O’Reilly; 2019. 600p

[7] Abadi, M., Barham, P. et.al. TensorFlow: A System for
Large-Scale Machine Learning. Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI ‘16). 12th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI ‘16); 2016 Nov; Savannah, GA, USA. 265-283.
ISBN: 978-1-931971-33-1.

[8] Fielding, R.T. Architectural Styles and the Design of

Network-based Software Architectures [dissertation].
University of California, Irvine; 2000.

[9] Hopp W.J., Spearman, M.L.. Factory Physics. 3rd Edi-
tion. New York: McGraw-Hill; 2008.

[10] Law, A.M., Kelton,W.D. Simulation Modeling and
Analysis. 3rd Edition. New York: McGraw-Hill; 2000.
760p

[11] Stanley, K.O., Clune, J., Lehman, J. et al.. Designing
neural networks through neuroevolution. Nat Mach In-
tell. 2019; 1: 24-35. doi: 10.1038/s42256-018-0006-z.

[12] Jin, H., Song, Q.,Hu, X. Auto-Keras: An Efficient Neu-
ral Architecture Search System. Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Min-
ing; 2019; Anchorage, AK, USA, NY, USA: Association
for Computing Machinery. 1946-1956. doi:
10.1145/3292500.3330648.

120

