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Abstract. Within this paper, we present a practical ap-
proach to generate and simulate coupled models for
switching domains in material sciences, for example in
crystal structures of ferroelectric materials or magnetic
shapememory alloys (MSMA). Insteadof developing com-
bined averaged FE-models, we propose an approach by
augmenting existing mechanical and electromagnetic FE-
code. The necessary domain variables and inequalities
are described and the implementation in COMSOL Mul-
tiphysics by smoothing the discontinuities is shown for
MSMA. The simulation results are compared with experi-
mental data and remaining deviations are discussed. The
individual strengths and weaknesses of our approach
compared to averaged models result in different use
cases.

Introduction
With growing computational power, micromechanical
models gain increasing attention in material sciences.
Particularly interesting problems are numerical mod-
els for switching domains, for example in crystal struc-
tures [1]. One typical application are ferroelectric mate-
rials, which include piezoelectric and electrostrictive ef-
fects. The latter are mainly caused by domain reorienta-
tion [2]. Another application of switching domain simu-
lations are magnetic shape memory alloys (MSMA) [3].

Ferroelectric materials and MSMA are made both
of a tetragonal crystal lattice (in the relevant low-
temperature phase) that moves into specific orienta-
tions depending on the external load. Beside the re-
action of both materials to mechanical stresses, ferro-
electric materials are susceptible to electrical fields and
MSMA to magnetic fields additionally [4]. The be-
haviour is mostly analogue and will be first described
using MSMA as an example.

Magnetic shape memory alloys The lattice of
MSMA’s martensitic phase has a shorter c-axis having
a higher magnetic permeability in that direction – the
so-called easy axis, marked with an arrow in Fig. 1 –
compared to the a- and b-axes – denoted as hard axes.
It is advantageous from an energetic point to align the
easy axis with an external magnetic field or compres-
sive mechanical load. The energy difference creates a
driving force towards a reorientation [5]. If the energy
difference exceeds a certain threshold – the so-called
twinning stress σtw – the concerning domain orienta-
tion switches along diagonal twin boundaries as shown
in Fig. 1. Section 1.1 briefly describes a common math-
ematical model by Likhachev and Ullakko [6] with dis-
crete domain variables denoting the lattice orientation
and the governing switching conditions.
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Figure 1: Domain wall movement of a MSM-element under

magnetic influence and mechanical load.

Ferroelectric materials The lattice of ferroelec-
tric materials has a longer c-axis with an ionic dipole

ARGESIM Report 59 (ISBN 978-3-901608-93-3), p 107-112, DOI: 10.11128/arep.59.a59015

107



moment, which translates to a polarization on a con-
tinuum scale [7]. For MSMA, the direction of the c-
axis is typically neglected, because the magnetic 180◦-
domain motion is almost unconstrained [8]. In contrast,
for ferroelectric materials the polarization direction is
important. It is advantageous from an energetic point
to align the polarization with an external electric field
and to move the c-axis out of a compressive mechanical
load. An example of each case is shown in Fig. 2. Sec-
tion 1.1 presents a corresponding mathematical model
by Hwang and McMeeking [7] with discrete domain
variables denoting the lattice orientation and the gov-
erning switching conditions.
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Figure 2: 180◦-domain motion of ferroelectric material
under electrical influence (left) and 90◦-domain
motion under compressive mechanical load (right).

Modelling An efficient way to model the macro-
scopic behaviour of switching domain materials are av-
eraged energy-based models, using continuous phase
variables denoting multiple lattice orientations coexis-
tent in a continuum. Their simulation procedure is typ-
ically a magneto-static analysis with a special constitu-
tive material model including the continuous phase vari-
ables.

For MSMA, one of the most popular models is given
by Kiefer and Lagoudas [8]. It formulates the Gibbs
free energy as the sum of the Gibbs energy of all possi-
ble martensitic variants weighted by their domain vari-
ables and a mixing term. The magnetic part contains
the magnetic anisotropy energy for a crystal alignment
different from the external field and the Zeeman energy
for a magnetization direction outside the magnetic easy
axis. The mixing term is approximated by analytical
hardening functions. Section 1.2 presents some of the
necessary equations.

A different modelling approach is presented in [9].
There, the mechanical energy is expressed as a piece-
wise quadratic function in terms of the strain instead of
the stress. A Stoner-Wohlfarth hysteresis model covers

the magnetic anisotropy energy and the Zeeman energy.
Additionally, all three possible crystal orientations are
taken into account instead of the two-dimensional sim-
plification. [10] gives a more comprehensive overview
of the different models available.

In contrast to the averaged concepts, section 2
presents the proposed approach of using fundamental
mechanical and electromagnetic models that are cou-
pled with discrete phase variables and the inequalities
from section 1.1. To improve convergence, adequate
smoothing techniques are applied. In section 3, for
validation our approach is compared with experimental
data. Finally, the presented modelling techniques are
categorised for different use cases in section 4.

1 Mathematical models
This section extends the literature work and presents the
used mathematical description of MSMA and ferroelec-
tric materials as well as different averaged models of
MSMA.

1.1 Material behaviour

MSMA One way to model the magnetic (FM) and me-
chanical (Fmec) driving forces for a typical configuration
with a unidirectional magnetic field using the energy dif-
ferences is given in [6] by

FM(H) = Gh(H)−Ge(H)

=−
� H

0
Mh(H̃)dH̃ +

� H

0
Me(H̃)dH̃, (1)

Fmec(σσσ) = ε0
�
σxx −σyy

�
, (2)

with the free magnetization energy G, the magnetiza-
tion curves M(H) in the easy (e) and hard (h) direction,
as well as the absolute value H of the magnetic field.
The transformation strain ε0 = 1− c

a can be calculated
from the lattice lengths, σi j are components of the stress
tensor σσσ .

The magnetic driving force can be generalized to a
magnetic stress for different field directions Hi (again,
only the absolute value is used) [3]:

σM,i(Hi) =
1
ε0

�
Gh(Hi)−Ge(Hi)

�

=
1
ε0

�
−
� Hi

0
Mh(H̃)dH̃ +

� Hi

0
Me(H̃)dH̃

�
.

(3)
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In typical applications, the loads act in one plane as
shown in Fig. 3. Therefore, only two domain states are
relevant, modelled with a variable p ∈ {0,1} with p = 0
for the easy axis in x-direction and p = 1 for y-direction.
The switching conditions are then described by

σM,x(Hx)+σxx > σtw +σyy +σM,y(Hy)→ p = 0,

σM,y(Hy)+σyy > σtw +σxx +σM,x(Hx)→ p = 1.
(4)

If none of these inequalities is true, the phase variable
p remains constant.
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Figure 3: Directional magnetic and mechanical loads of an

MSM-element.

Ferroelectric materials For ferroelectric materi-
als, the electric field E and the polarization P have to be
considered instead of magnetic field and magnetization.
With three lattice axes and two polarization directions
each, six states are possible in general. The critical field
energy WE = 2P0E0 for the switching can be calculated
from the so-called spontaneous polarization P0 and field
E0, at which the polarization switches [7]. To switch to
one of the six states, the electrical or mechanical work
has to exceed the corresponding threshold

Ei∂Pi +σ jk∂ε jk ≥ 2P0E0. (5)

If multiple switches are possible, the energetically most
favourable is chosen.

1.2 Averaged energy-based models

As the full model of Kiefer and Lagoudas [8] is rather
complex, we only show a simplified version not taking
into account 180◦-domain walls (which have already

been neglected in section 1.1). The Gibbs energy is in
this case

G =− 1
2ρ

σσσ ::: SSSσσσ − µ0

ρ
Msat

�
(1− p)ex + pey

�
� �� �

M

·H

+Gan(p,θθθ)+
1
ρ

f (p,εεε r)+G0(T ), (6)

with the mass density ρ , the stress σσσ , the isotropic elas-
tic compliance S, the vacuum permeability µ0, the mag-
netization M the magnetic field H, the saturation mag-
netization Msat, the phase p, the magnetic anisotropy
energy Gan dependent on the angle θθθ between the mag-
netization and the easy axes of both phases, the harden-
ing function f dependent on the phase p as well as the
reorientation strain εεε r and a reference state G0 which is
constant for isothermal problems. The term M ·H de-
scribes the Zeeman energy.

From this energy, the driving force πp =−ρ ∂G
∂ p can

be derived, which can be solved for the closed-form so-
lution of the phase p(σσσ ,H). The hardening function
describes the hysteretic nature with two different analyt-
ical expressions dependent on the direction of the phase
change

��� ∂ p
∂ t

���. The required fitting parameters can be ob-
tained from a single constant-stress hysteresis loop.

2 Extended fundamental
models

Different techniques to directly simulate the switching
as described in section 1.1 are used. For ferroelec-
tric materials, in [7] and [2] a basic linear piezoelec-
tric model is applied and extended with specific code
for the respective switching criterion. Only one domain
can change per analysing step. The switched domains
are used to update some of the effected parameters in
the linear stiffness matrix, other changes are only up-
dated every loading step to speed up the convergence.
The highly nonlinear model demands that only a few
domains – each represented by a single element – can
be simulated effectively.

For MSMA, a finer mesh inside the diagonal do-
mains (also called slices, shown in Fig. 3) is required to
accurately capture the local flux inside. Our approach
is based on the work of [3]. There, (4) is evaluated by
averaging for each domain. While in [3] representative
points in the middle of each slice are used, we average
over all elements within the domain.
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The BH-curves describing the magnetization be-
haviour for both axes are according to [11]. For an
anisotropic implementation in COMSOL Multiphysics,
those have to be transferred into µr(B) using

B = µ0 (H +M) = µ0µrH. (7)

Input and output curves for both axes depicted in Fig. 4.
The resulting magnetic stress according to (3) is shown
in Fig. 5. The energy difference resulting in σM rep-
resents the area between the two blue curves in Fig. 4.
Above 5 ·105 A/m, the curves are identical and therefore
a saturation is reached.
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Figure 4: HB- and µr(B)-curves for easy and hard axis used

in the simulation model.
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Figure 5:Magnetic stress curve σM(H) used for simulation.

For each slice, the inequalities (4) to identify the
phase pi for the next iterative step based on the last pi−1
are implemented in the following smoothed way

pi = s1 (pi−1 + e1 − e2) ,

e1 = s2
�
σM,x(Hx)+σxx −σtw −σyy −σM,y(Hy)

�
,

e2 = s2
�
σM,y(Hy)+σyy −σtw −σxx −σM,x(Hx)

�
,

(8)

where the inequalities are replaced by differences e1 and
e2 which are smoothed by s2. The output is limited to
[0,1] by the saturation function s1. The functions s1 and
s2 are shown in Fig. 6. As stresses are typically above
1 hPa, the phase usually switches directly between 0 and
1. A lower gradient in s2 improves the convergence but
generates more intermediate phases, not given in reality.
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Figure 6: Smoothing functions used in (8).

Currently, it is not possible to measure the material
parameters width and twinning stress for each slice in-
dividually. However, averaged measurements published
in [12] allow to estimate typical distributions. While we
keep the width constant at 0.1 mm to get a better mesh,
the twinning stresses σtw of the slices are randomly dis-
tributed around 0.4 MPa as shown in Fig. 7.
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Figure 7: Random twinning stress distribution σtw(x).

Based on a coupled magnetic and mechanical sim-
ulation, we are able to calculate the phase of each do-
main. The phase induces a strain in each slice of the
mechanical model and determines the assignment of the
corresponding magnetic permeability to the global coor-
dinates.

As discontinuous jumps lead to severe convergence
problems, we added smoothing to the load stepping by
using a low-pass filter. This can be done in a time-
dependent solver by introducing additional ODEs

−ps,i + pi −dp
∂ ps,i

∂ t
= 0, (9)
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with the index s indicating the smoothed variable and
the damping dp. The Index i cycles through all slices.
The smoothing is not only beneficial from a numerical
point of view but describes the behaviour also under real
conditions, as the domain reorientation does not occur
instantaneously in reality. It is even more efficient to
use a static parametric solver and to replace the derivate
with the difference quotient

−ps,i + pi −dp
ps,i − ps,i−1

Ii − Ii−1
= 0, (10)

where instead of the time t, the coil current I is used as
a measure for the excitation. The proposed approach to
add one variable per slice has little impact on the com-
putational cost compared to the fine mesh needed for the
magnetic simulation. An efficient way to implement the
different variables and constants given in (8) for each
slice is to use COMSOL’s Java interface to loop over
the domains.

The result of an intermediate load step can be seen
in Fig. 8. Red domains have a vertical easy axis, blue
domains indicate vertical hard axis. Thus, an exter-
nal vertical flux is diagonally orientated in the blue do-
mains and almost vertically in the red slices to mini-
mize the magnetic resistance. The crooked outline of
the MSM element is caused by the mechanical strain in
the switched red regions, as the elongation also causes
a transverse contraction. To include the geometric non-
linearity in the magnetic simulation, a moving mesh do-
main has been set up on the surrounding air as shown in
Fig. 7.

transverse contractionp = 1 p = 0

Figure 8: Distribution of the phase variable p (marked blue
and red) for an intermediate magnetic field,
magnetic flux lines in light grey.

3 Results
Simulated results in Fig. 9 show the expected hysteretic
strain-excitation behaviour for an MSMA-element un-
der axial compressive load. In accordance with (4),
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Figure 9: Simulated and measured strain of a loaded
MSM-element over the driving flux density
(averaged over the element).

the magnetic stress σM has first to overcome the com-
pressive mechanical stress σxx =−0.5 MPa induced by
the load and the twinning stress σtw until each segment
switches. Because from this point a bigger part of the
flux passes through that slice, the field in neighbouring
domains decreases and the excitation has to be even big-
ger until the next segment switches. The hysteresis is
mainly caused by the dissipative nature of σtw, which
inhibits switching in both directions.

In non-switched domains (marked in blue), the flux
is oriented diagonally almost perpendicular to the twin
boundaries to minimize the magnetic reluctance. This
local behaviour can only be replicated by modelling
those slices instead of a continuum. For the same rea-
son, our model offers better results then averaged mod-
els when simulating the inhomogeneous flux in the air
next to the MSMA which helps to understand the spread
of measurements of the magnetic flux at different posi-
tions on the MSM surface. This becomes even more
important for MSMA with a single highly mobile twin
boundary instead of the discussed multiple fine twins.
The local effects in this so-called Type II MSMA are
discussed in [13].

For comparison, the curve of a measurement pro-
vided by ETO MAGNETIC for the equal load σxx is
depicted in the same diagram. It can be seen, that the
startpoints and endpoints of the elongation with increas-
ing flux densities are quite similar. The shown mea-
sured result starts to move slower while other analysed
samples have a more linear shape. The difference is
mainly caused by the unique distribution of the twin-
ning stresses σtw inside the slices and can indeed lead
to different results. As the material parameters differ
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between probes and can change over time, the efficient
measurement of material parameters for a particular
probe remains a complex challenge.

Comparing simulation and measurement, the start-
ing point again fits quite well, but the final state is
reached earlier in case of the simulation. This might
be caused by the design of the pole shoes as shown in
Fig. 7, which is chosen to begin the switching in the
middle. In contrast, the experimental test setup has big-
ger pole shoes extending the outer sections.

4 Conclusion

Our proposed method directly uses the governing in-
equalities (4) which are comparably easy to understand.
While we showed the implementation only for MSMA,
the analogies with ferroelectric materials allow the ap-
plication for this material class as well. More in gen-
eral, our method could be applied for the implemen-
tation of new physical phenomena with switching do-
mains – maybe even other discontinuous processes –
without the need to derive a specific combined model.
Due to the highly non-linear behaviour of inequalities,
several smoothing techniques have to be applied. While
they help to achieve convergence, the simulation is still
rather inefficient, because the step size has to be lower
at (smoothed) switches with high gradients in many
variables. Hence, in many applications energy models
with averaged phase variables are superior, once they
have been developed. Other applications benefit from
the proposed model accurately describing local effects,
as averaged models cannot fully reflect inhomogeneous
fields inside and around the sample.

Further investigations with varying mesh settings,
damping and tolerances might lead to improved perfor-
mance. The presented version is used for a quasi-static
load case, transient analyses should be possible with the
static parametric implementation of the damping as the
phase is not directly dependent on the time.
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