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Abstract.  This paper describes a model approach for the 
simulation of a discharge electrode (DE) needle to charge 
particles using positive ions in an electrostatic precipitator. 
This includes the simulation of the electrostatic field, the 
space charge field of the ions and the flow field at the DE 
needle. The interactions of the fields, e.g. the reaction of the 
space charge on the electrostatic field or the electric wind are 
also considered in the model. To simplify and accelerate the 
simulation, a radial symmetry around the DE needle is partly 
assumed. The results of the simulation are validated by com-
paring the experimentally determined current-voltage charac-
teristic with the simulated one, which show a satisfying cor-
relation. Therefore, this model can be used as a basis for fu-
ture particle flight simulation and further investigations. 

Introduction 
In residential applications, two-stage electrostatic precip-
itators (ESPs) are mainly used to separate harmful parti-
cles from the air. Particles entering the filter are first 
charged in the ioniser by an ion field based on a corona 
discharge and then separated in a subsequent filter stage 
by an electrostatic field (Coulomb’s law) on the elec-
trodes of the collector. 

Although this filtering process is very efficient, it has 
the major disadvantage that it generates ozone during op-
eration [1] [2]. Ozone can be harmful to human health 
when inhaled, therefore the WHO (Air Quality Guide-
lines Global Update 2005) sets a limit value of 50 ppb 
(parts per billion) for an average exposure of eight hours. 

A very effective method to minimize the ozone con-
centration is to reduce the corona plasma region at the 
discharge electrode (DE) within the ioniser [3] [4], where 
the ozone production process takes place. Consequently, 
the development of DEs is geared towards ever smaller 
dimensions [5]. The shape and arrangement of these DEs 
can be very different for each application, which makes 
a generally valid analytical mathematical description dif-
ficult and therefore requires numerical modelling.  

Experimental studies on particle separation and ozone 

generation have shown good results with particle charg-
ing by a DE needle [6]. Therefore, the modelling of this 
approach is described in the following.  

1 Experimental setup 
The experimental setup used in this study consists of a 
stainless-steel DE needle with a radius of curvature of 
55 µm at the tip and a round grid arranged at a distance 
of 50 mm as a ground electrode with a diameter of 
85 mm, as shown in Fig. (1). The DE needle is centered 
by a holder on the rotation axis and protrudes 4 mm from 
it. 

Furthermore, the DE needle is raised to a positive 
voltage potential by a high-voltage source of the com-
pany FUG (HCP35-20000) and the grid is connected to 
an electrical grounding. By using this configuration, it is 
possible to set and measure voltages as well as currents. 
Thus, the voltage-current characteric of the DE needle 
can be analysed. 

Figure 1: Test setup with the stainless-steel discharge elec-
trode needle in the middle. 

2 Model 

2.1 Model approach 

In order to implement the simulation of a DE needle, not 
only the electrostatic field, but also the flow and space 
charge field must be modelled. 
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Furthermore, the interactions of the different fields 
are considered in the model. For example, the reaction of 
the space charge density to the electrostatic field as well 
as the electric wind as an impact of the electrohydrody-
namic (EHD) effect are taken into consideration. Fig. (2) 
gives an overview of the model approach. 

Figure 2: Overview of the simulated fields and their interac-
tions. 

To simplify the simulation, the geometry of the DE nee-
dle is modelled as a simple composition of a truncated 
cone with an outer diameter of 0.6 mm and a length of 
4 mm and a semi-sphere with a diameter of 55 µm as nee-
dle tip, see Fig. (3).  

The holder of the DE needle is also simplified as a 
cylinder with a diameter of 11.4 mm and a length of 
10 mm, as is the measuring chamber with a diameter of 
85 mm and a length of 64 mm. The geometry of the grid 
at the exit of the measuring chamber is neglected. 

Figure 3: Simplified geometric model of the experiment. 

In addition, a radial symmetry around the DE needle is 
assumed for the simulation of the space charge field and 
the flow field respectively, as shown in Fig. (4). 

The micromechanisms of the corona plasma region 
are not simulated but the resulting convection current of 

the space charges are. As a further simplification of the 
procedure, the corona plasma region is placed on the DE 
needle tip surface. A positive corona and thus a positive 
convection current (positive ions) are assumed. 

Figure 4: Geometry and meshing of the cutting plane with 
the boundary numbers. 

2.2 Electrostatic field 

The electrostatic field can be described mathematically 
using the following equation of Poisson [7]: 

ΔV = −
ρs

ε0ε𝑟

 (1) 

where V is the voltage potential (𝑉), ρs the space charge
density (𝐴 𝑠 𝑚−3), ε0 the permittivity of the vacuum

(8.85 ∙  10−12𝐴 𝑠 𝑉−1𝑚−1) and ε𝑟 the relative permit-
tivity (approx. 1 for air).   

Due to the very fine DE electrode tip, which is 
strongly curved in contrast to the grid ground electrode, 
a very inhomogeneous electrostatic field is created. In or-
der to cope with this and take all effects into account, it 
is simulated in three dimensions. For the simulation it-
self, as well as the meshing, the Partial Differential Equa-
tion Toolbox (PDE-Tool) in MATLAB® is used. The to-
tal amount of tetrahedral cells used in the simulation 
mesh is 48811. 

The tool's integrated solver calculates the solution us-
ing an FEM algorithm, assuming the following boundary 
conditions, where the locations can be obtained from Fig. 
(4). 

Boundary  Description Value 

B5, B6  Potential at DE needle  𝑉𝑆𝐸= 𝑉0 + 𝛥𝑉 

B3  Potential at grid  𝑉𝑔𝑟𝑖𝑑= 0 (ground) 

Table 1: Boundary conditions of the electrostatic field. 

The voltage potential at the DE needle V𝑆𝐸 is composed

84



of the breakdown voltage V0 which corresponds to the
initial voltage of the corona discharge, and a correction 
value ΔV which is described in detail in Chpt. (2.5). 

2.3 Space charge field 

The simulation of the space charge field is based on the 
formula of White [8], which describes the current density 
𝑱 (𝐴 𝑚−2) considering the convection and diffusion
charge transport components. 

∇ ∙ 𝑱 = 0 (2) 

𝑱 = (𝑏𝑖𝑬 + 𝑼)𝜌𝑠 − 𝐷𝑖∇𝜌𝑠 (3) 

The convection part of Eq. (3) shows the coupling to the 
electrostatic field 𝑬 (𝑉 𝑚−1) and to the velocity field 𝑼
(𝑚 𝑠−1). The quantities 𝜌𝑠 and 𝑏𝑖 represent the space
charge density (𝐴 𝑠 𝑚−3) and the ion mobility
(𝑚 𝑉−1𝑠−1) respectively. The latter is assumed as a con-

stant with the value 𝑏𝑖 = 1.85 ∙  10−4 𝑚 𝑉−1𝑠−1 [9].
The diffusion part of Eq. (3) consists of the local gra-

dient of the space charge ∇𝜌𝑠 (𝐴 𝑠 𝑚−4), and the ionic
diffusion coefficient 𝐷𝑖  (𝑚

2 𝑠−1), which can be estimated
using the following formula [10]: 

𝐷𝑖 = (𝑏𝑖𝑘𝑇)/𝑒 (4) 

where 𝑘 is the Boltzmann’s constant 

(1.38 ∙  10−23 𝐽 𝐾−1), 𝑒 the elementary charge

(1.6 ∙  10−19 𝐴𝑠) and 𝑇 the temperature (𝐾).
Since the geometry can be assumed to be approxi-

mately rotationally symmetrical, the simulation area for 
modelling the space charge density can be reduced to a 
two-dimensional cutting plane, see Fig. (3) and (4). As 
with the electrostatic field, the automatic mesher of the 
PDE-Tool is used for the grid generation of the two-di-
mensional solution area. The two-dimensional grid used 
has 4512 triangular cells.   

The solution of Eq. (2) which describes the space 
charge transport is achieved by using the Finite Volume 
Method (FVM) in MATLAB®. In order to accomplish 
that, the solution area (Ω) is divided into many subareas 
(Ω𝑖) (finite volumes) and the current density at the inter-
faces is balanced:  

∫ 𝛻 ∙ ((𝑏𝑖𝑬 + 𝑼)𝜌
𝑠
− 𝐷𝑖𝛻𝜌

𝑠
) 𝑑𝛺𝑖

𝛺𝑖

= 0 (5) 

Due to the Gaussian integral theorem and the assumption 
that the values on the cell-face are uniform over the entire 
face, Eq. (5) can be brought into a discrete form [11]: 

∑ [[(𝑏𝑖𝑬 + 𝑼) ∙ 𝒏]𝑓𝜌𝑠𝑓
− (𝐷𝑖

𝜕𝜌
𝑠

𝜕𝑛
)

𝑓

] 𝐴𝑓

𝑓

= 0 (6) 

where the index 𝑓 represents the face, 𝒏 the normal vec-
tor and 𝐴𝑓 the area of the face.

The convection term of Eq. (6) is calculated accord-
ing to Long [12] using the second order Upwind Differ-
ence Method (2nd UDM). In this method, a Taylor series 
approach is used to project the respective space charge 
density onto the center of the intersection face (𝐹), see 
also Fig. (5).  

∑[(𝑏𝑖𝑬 + 𝑼) ∙ 𝒏]𝑓 𝜌
𝑠𝐹,𝑓

 𝐴𝑓

𝑓

(7) 

The projected space charge density 𝜌𝑠𝐹,𝑓 can be calcu-

lated using the 2nd UDM with the following case distinc-
tion: 

𝝆𝒔𝑭,𝒇

= {
𝜌𝑠𝐶

+ ∇𝜌𝑠𝐶
∙ 𝒅𝐶𝐹 𝑖𝑓 ((𝑏𝑖𝑬 + 𝑼) ∙ 𝒏)

𝐹,𝑓
> 0

𝜌𝑠𝑁
+ ∇𝜌𝑠𝑁

∙ 𝒅𝑁𝐹  𝑖𝑓 ((𝑏𝑖𝑬 + 𝑼) ∙ 𝒏)
𝐹,𝑓

< 0
}

(8) 

where ∇𝜌𝑠𝐶
 is the local gradient of space charge densities

of the cell and ∇𝜌𝑠𝑁
 is the one of the neighbouring cell.

In this equation, the vectors 𝒅𝐶𝐹 and 𝒅𝑁𝐹 represent the

distance vectors between the centers of the particular cell 
(𝐶 and 𝑁) and the center point of the intersection face 
(𝐹).  

The diffusion term in Eq. (6) is implicitly calculated 
in this study using the space charge field.  

∑−(𝐷𝑖

𝜕𝜌
𝑠

𝜕𝑛
)

𝑓

𝐴𝑓

𝑓

(9) 

Following the approach of Long [12], the gradient of 
space charge density in the diffusion term is determined 
by projected substitute points for the space charge density 
of the cell 𝜌𝑠𝐶′ and the neighboring cell 𝜌𝑠𝑁′ as well as 
the projected substitute point on the intersection face 
𝜌𝑠𝐹′. These three substitute points are determined by the 
following equations: 

𝜌𝑠𝐶′ = 𝜌𝑠𝐶 + ∇𝜌𝑠𝐶 ∙ 𝒅𝐶𝐶′ (10) 

𝜌𝑠𝑁′ = 𝜌𝑠𝑁 + ∇𝜌𝑠𝑁 ∙ 𝒅𝑁𝑁′ (11) 

and 

𝜌𝑠𝐹𝐶 = 𝜌𝑠𝐶 + ∇𝜌𝑠𝐶 ∙ 𝒅𝐶𝐹 (12) 

𝜌𝑠𝐹𝑁 = 𝜌𝑠𝑁 + ∇𝜌𝑠𝑁 ∙ 𝒅𝑁𝐹 (13) 
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𝜌𝑠𝐹 =
𝜌𝑠𝐹𝐶 + 𝜌𝑠𝐹𝑁

2
 (14) 

where ∇𝜌𝑠 is the local gradient of the respective cell and 
𝒅 is the respective difference vector between the corre-
sponding points in the indices. 𝜌𝑠𝐹𝐶  and 𝜌𝑠𝐹𝑁  represent
space charge density values projected from the centers of 
the cell (C) and the neighbouring cell (N) to the center 
point of the intersection face (F). 

Figure 5: Demonstration of the gradient calculation between 
adjacent mesh cells. 

Based on these three substitute points of the space charge 
density (Eq. (12) to Eq. (14)), the mean slope can be de-
termined by linear interpolation. The mean slope then 
corresponds to the gradient at the intersection face of 
both cells. 

The convection and diffusion term of space charge 
transport shown in Eq. (7) and Eq. (9) can then be ex-
pressed in a simple form: 

∑𝑎𝑐𝑜𝑛𝑣𝑓
 𝜌

𝑠,𝑓

𝑓

= ∑(𝑏𝑐𝑜𝑛𝑣𝑓
− 𝑏𝑑𝑖𝑓𝑓𝑓

) 

𝑓

(15) 

where 

𝑎𝑐𝑜𝑛𝑣𝑓
= [(𝑏𝑖𝑬 + 𝑼) ∙ 𝒏]𝑓𝐴𝑓 (16) 

𝑏𝑐𝑜𝑛𝑣𝑓
= −𝑎𝑐𝑜𝑛𝑣𝑓

(∇𝜌𝑠𝑖
∙ 𝒅𝑖𝑗)

𝑓
(17) 

𝑏𝑑𝑖𝑓𝑓𝑓
= −(𝐷𝑖

𝜕𝜌𝑠

𝜕𝑛
)
𝑓
𝐴𝑓 (18) 

The quantities ∇𝜌𝑠𝑖
 and 𝒅𝑖𝑗 refer to the case distinction of

the 2nd UDM in Eq. (8). 
If Eq. (15) is applied to all cells in the solution area it 

yields a linear system of equations in the form: 

𝑨 ∙ 𝝆𝒔 = 𝑩 (19) 

which is then solved using the method of least squares 
(lqslin function) in MATLAB®.  

The boundary conditions used for the simulation of 
the space charge field are given below. 

Boundary  Description Value 

B6  Current density 
input  𝑱 ∙ 𝒏 =  

𝐼0

𝐴𝑜𝑢𝑡

B1, B3  Current density 
output 

𝑱 ∙ 𝒏 = [(𝑏𝑖𝑬 + 𝑼) ∙ 𝒏 ]𝜌𝑠

B2, B4, B5  Wall  𝑱 ∙  𝒏 = 0 

Table 2: Boundary conditions of the space charge field. 

The current value 𝐼0 in the boundary condition of the in-
put current density represents an input parameter of the 
model and must be distributed over the entire outlet sur-
face 𝐴𝑜𝑢𝑡 of the DE needle tip.

For the boundary condition of the output current den-
sity, only the convection component is taken into ac-
count, due to the assumption that the change of space 
charge density near the surface of the output is ne-
glectable. 

2.4 Flow field 

The flow field in an electrostatic precipitator which can 
be modelled according to [13 - 15] by the time-averaged 
Navier-Stokes equation for incompressible fluids with 
the standard 𝑘-𝜖 turbulence model [16]: 

∇ ∙ 𝑼 = 0 (20) 

𝜌𝐹(𝑼 ∙ ∇)𝑼 − (𝜇 + 𝜇𝑇)∆𝑼 = −∇p + 𝜌𝐹𝐠 + 𝑭𝑬𝑯𝑫 (21) 

where 𝜌𝐹 is the fluid densitiy (𝑘𝑔 𝑚−3), 𝜇 the laminar
viscosity (𝑘𝑔 𝑚−1 𝑠−1), 𝜇𝑇 the turbulent viscosity of the
κ-ϵ turbulence model (𝑘𝑔 𝑚−1 𝑠−1), p the fluid pressure
(𝑃𝑎) and 𝐠 the body accelerations acting on the contin-
uum (𝑚 𝑠−2). 𝑭𝑬𝑯𝑫 represents the electrical body force
term of the EHD-effect (𝑁 𝑚−3), which appears in form
of electric wind in the flow field and is determined as fol-
lows: 

𝑭𝑬𝑯𝑫 =  𝑬 𝜌𝑠 (22) 

The flow field is simulated with the flow simulation soft-
ware OpenFOAM® based on the Finite Volume Method. 
A program interface between MATLAB® and Open-
FOAM® was developed to exchange input and output 
parameters in form of geometry and mesh data, boundary 
and start conditions, material and substance values as 
well as field data.  

Geometry and mesh data are created in MATLAB® 
by the PDE Tool's automatic mesher and the finished 
mesh is transferred to the OpenFOAM® software. As a 
simplification, a two-dimensional geometry with a radial 
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symmetry is assumed, see Fig. (4). The number of trian-
gular cells of the mesh is also 4512. 

For the implementation of the EHD effect the simple-
Foam solver was modified. Flow simulations of station-
ary and incompressible Newtonian and turbulent fluids 
can be performed with the simpleFoam solver (Open-
FOAM® User Guide), in which the standard k-ϵ model 
was used as turbulence model. The modified solver con-
siders the influence of the electric wind as a body source 
term in the Navier-Stokes equation based on the current 
fields of 𝑬 and 𝜌𝑠, also see Eq. (21) and Eq. (22). As
𝑭𝑬𝑯𝑫 is a spatial volume force in the flow field, it must
be projected onto a two-dimensional geometry.  

The resulting simulated flow field is then returned to 
the other MATLAB® models via the programmed inter-
face. 

The following boundary conditions are used for the 
flow and pressure field of the model: 

Boundary  Description Value 

B1  inlet flow  𝑼 = 𝑼𝑖𝑛  

∇𝑝 = 0 

B3  outlet flow  ∇𝑼 = 0 

𝑝 = 𝑝0 

B2, B4, B5  Wall  𝑼 = 0 (no slip) 

∇𝑝 = 0 

Table 3: Boundary conditions of the flow and pressure field. 

In Tab. (3), 𝑈𝑖𝑛 corresponds to the inlet flow (𝑚 𝑠−1) and
𝑝0 to the ambient pressure (𝑃𝑎).

2.5 Calculation sequence 

The calculation sequence shown in Fig. (6) starts with an 
input current 𝐼0 and an input start voltage 𝑉0 of the DE
needle. This input voltage can be determined experimen-
tally or estimated by using empirical formulas (e.g. ac-
cording to Peek [8]). Next, the three model fields are cal-
culated until convergence is achieved. After conver-
gence, a correction value ΔV is determined for the voltage 
potential of the DE needle via the resulting electrostatic 
field. Afterwards, the potential 𝑉0 is adjusted accordingly
with 𝑉0= 𝑉0 + Δ𝑉 and the calculation of the fields is
started again.  

The calculation sequence ends as soon as the correc-
tion value ΔV runs towards zero and no voltage potential 
change can be observed anymore. 

Figure 6: Schematic representation of the calculation se-
quence. 

3 Model validation 
The model is validated by comparing the experimentally 
determined and simulated voltage-current characteristics 
of the DE needle, which are shown in Fig. (7). 

Figure 7: Voltage-current characteristics of the DE needle. 

The breakdown voltage of the DE needle was approxi-
mately 𝑉0 = 8 𝑘𝑉 in the experiment. This value was used
as the starting value for the simulation according to the 
calculation sequence. As can be seen in Fig. (7), the curve 
progression of the simulation largely complies well with 
the experimentally determined curve progression, 
whereby the simulation slightly exceeds the voltage po-
tential below 4 µA and slightly falls below it above 4 µA. 

These deviations can probably be explained by inac-
curacies in geometric modelling (e.g. the shape of the DE 
needle) and by the model simplifications of rotational 
symmetry that were applied. 

4 Conclusion and outlook 
Due to the various simplifications in geometry and sym-
metry assumptions, an efficient DE needle model could 
be developed, which provides fast and sufficiently good 
results with regard to validation. 

Based on this, the particle flight can then be modelled 
using the Discrete Element Method (DEM) to analyse the 
particle separation behaviour by the DE needle in the 
electrostatic precipitator. 

If the accuracy of the model is to be improved, a 
three-dimensional model approach to the space charge 
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density as well as the flow field should be used. It would 
also be advisable to use a more precise geometric model. 
However, these improvements would be accompanied by 
an increased computing time.  

Based on the model presented, the modelling of ozone 
production at the DE needle would also be an interesting 
topic for future studies. 
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