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Abstract. The term co-simulation denotes the coupling of
some simulation tools for dynamical systems into one big sys-
tem by having them exchange data at points of a fixed time
grid and extrapolating the received data into the interval,
while none of the steps is repeated for iteration. From the
global perspective, the simulation thus has a strong explicit
component. Frequently, among the data passed across sub-
system boundaries there are flows of conserved quantities, and
as there is no iteration of steps, system-wide balances may not
be fulfilled: the system is not solved as one monolithic equa-
tion system. If these balance errors accumulate, simulation
results become inaccurate. Balance correction methods which
compensate these errors by adding corrections for the balances
to the signal in the next coupling time step have been con-
sidered in past research. But establishing the balance of one
quantity a posteriori due to the time delay in general cannot
establish the balances of quantities that depend on the ex-
changed quantities, usually energy. In most applications from
physics, the balance of energy is equivalent to stability. In this
paper, a method is presented which allows users to choose the
quantity that should be balanced to be that energy, and to
accurately balance it. This establishes also numerical stability
for many classes of stable problems.

Co-simulation, coupled problems, simulator cou-
pling, explicit coupling, stability, convergence, balance
correction

1 Introduction
With the rise of simulation software for technical systems
emerged the desire to couple those simulations in order to
take into account the influence the systems exercise onto
each other. In other words, these systems are now viewed
as subsystems which form one big system.
One now wants to simulate this large system, using the
subsystems’ simulator software and coupling it by shar-
ing data. What used to be a parameter when the systems
were calculated separately is given now by a state vari-
able of the other subsystem, reading:

S1 : ẋ1 = f 1(x1,x2,z1,z2) (1)
0 = g1(x1,x2,z1,z2) (2)

S2 : ẋ2 = f 2(x1,x2,z1,z2) (3)
0 = g2(x1,x2,z1,z2). (4)

Here, the (x1,x2) are the differential, the (z1,z2) are the
algebraic states. The setting generalizes to n subsystems
in a straightforward way, and it includes parabolic par-

tial differential equations. We require that the derivatives
dzigi have full rank. Such each of the Si is an index-1
differential-algebraic system if the (xk �=i,zk �=i) are seen as
parameters of it. The influence of x2,z2 in a split setting
is therefore modeled by parameters u12 in S1 and x1,z1 as
parameters u21:

S1 : ẋ1 = f 1(x1,z1,u12) (5)
0 = g1(x1,z1,u12) (6)

S2 : ẋ2 = f 2(x2,z2,u21) (7)
0 = g2(x2,z2,u21). (8)

When coupled, the ui j are determined by the coupling
conditions

0 = h21(x1,z1,u21) (9)
0 = h12(x2,z2,u12) (10)

that have to be fulfilled, and exchanged at fixed time
nodes Tk. Between them, the ui j are extrapolated. To
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Figure 1: Explicit co-simulation scheme.

establish coupling, the hik must be solvable with respect
to the uik. The dzigi have full row rank, too. Such,
the differential-algebraic system given by Equations (5)
- (10) is again of index 1.

This description of the setting is widespread [2].
It is commonly said that the coupling is done by a

co-simulation scheme if the ui j are calculated from Equa-
tions (9) and (10) at exchange time nodes Tk and then
passed on to S2 and S1, respectively. Of course, some
extrapolation of ui j into [Tk,Tk+1) is required. Consider-
able research has been done on coupling [6, 7, 5]. A lot
of methods repeat the timestep after the calculation with
an extrapolation that has been improved with respect to
some objective. Thus, they are implicit, see e.g. [5]. For
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a convergence proof, see [2]. The convergence of explicit
co-simulation methods for ODE and index one DAE not
surprisingly as well improves with the extrapolation order
of subsystems input [8, 2]. The situation here in simula-
tor coupling mirrors the one in ODE solvers: The explicit
solvers are quick in each step but not stable [12, 8], while
the implicit ones require iterations within each step but
usually ensure some stability. When used for stiff prob-
lems, the explicit schemes require such small stepwidths
that the implicit schemes are finally cheaper. Also, im-
plicit algorithms for coupled solvers require additional
programming and storage. Therefore, the co-simulation
scheme, where one just proceeds to the next timestep
(Figure 1), is still popular.
So far, it has been common sense that the usual stability
classifications like A - and B-Stability cannot be achieved
with explicit algorithms [14]. A solution for these stabil-
ity issues would be helpful in many applications and is
the subject of this contribution.
It is important to note that all results and figures herein
have been published before in [1]. This contribution is a
highly condensed presentation of that content for the pur-
pose of reaching the engineering community rather than
novelty.

2 The lack of stability
2.1 Stability classifications

For readability, we present the concepts of stability clas-
sifications of methods.

Definition 2.1 (Stable points of ODE) Let x∗ be an
equilibrium point of the ODE ẋ = f (x) and φ t x the so-
lution for the initial value x(t0) = x. Then x∗ is

• stable if ∀ε > 0 ∃δ > 0 : �x− x∗� < δ ⇒
�φ t x− x∗�< ε ∀t ∈ [t0,T ]

• asymptotically stable if ∃r > 0 : �x− x∗� < r ⇒
limt−→∞ φ t x = x∗.

2.1.1 Stability, consistency and convergence

In this framework, zero stability of a numerical method
means that the difference equation that one gets by ap-
plying the method to ẋ = 0 is stable. It is well-known
that this is a necessary condition for convergence [13, 14].
But this condition is fulfilled by all one-step methods1 as
xn+1 = xn+0 is a stable equation. So unlike for multistep
methods, there is no need here to examine zero-stability
when one examines convergence of one-step methods. It
frequently causes confusion that zero stability in the orig-
inal paper [13] was labeled stability only, and with this
nomenclature Lax’s and Richtmyers’ theorem is given in
an equation-like form stability + consistency = conver-
gence.

2.2 Stability

These results were confirmed numerically in [8, Sec.3.2]
using the two-dimensional linear problem

ẋ = Ax, (11)

which with

A =

�
0 1

− c
m 0

�
, x =

�
x
ẋ

�
(12)

can be interpreted as linear spring-mass oscillator with
mass m and spring constant c. This problem is the most
simple problem possible that is linear and can be splitted.
The original problem is marginally stable, so stable, as its
spectrum is purely imaginary.

Written as a co-simulation problem, Problem (11)
with (12) yields Table 1. In [8] and [12] it is shown
that co-simulation schemes are not stable for linear prob-
lems, even not for stable subsystem solvers. The stability
for linear problems replaces the notion of A-stability, as
the one-component equation used there cannot be split.
When treated with a co-simulation scheme ( output of the
spring is the force f =−cx, that of the mass is the veloc-
ity v = ẋ) the emerging (method-induced) ODE

�
ẋ1 = a1,1x1 +a1,2 Ext(x2)

ẋ2 = a2,2x2 +a2,1 Ext(x1)
. (15)

is obviously unstable [8, Section 2.5].
Its numerical solution is shown in Figure 2, – there

is no linear stability for general step sizes. This means
�x� −→ ∞ for t −→ ∞. The energy of our system is
E = 1

2 mv2+ 1
2 cs2 =

�
x, 1

2 diag(m,c)x
�
= �x,x� 1

2 diag(m,c) =

1One-step methods can be written as xn+1 = xn + hψ(xn, tn,hn), and
ψ(xn, tn,0) = f , where f is the ODE’s right hand side.

Definition 2.2 (Stable Point of Difference equation)

fer
Let x
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∗ be an
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= f (
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,x
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.
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Then
order

x∗
dif-

is n+1 n n−k 
classified a s i n D efinition (2 .1) wh ere x is  re placed by
xn and ∀t ∈ [t0,T ] by ∀n ∈ {1, ...,N} and furthermore 
t −→ ∞ by n −→ ∞.
Using these two definitions, s tability classifications like 
zero-, A- or B-stability are defined: The respective sta-
bility of a method is the inheritance of the stability of an 
equilibrium point of a certain ODE class to the equilib-
rium point of the difference equation yielding from the 
application of the numerical scheme.

50



Spring Mass
System States

x1 := s = x x2 := v = ẋ
Outputs

u21 := F =−cx u12 := v = ẋ
Inputs

u12 u21
Equations

ẋ1 = Ext(u12) = v ẋ2 =− 1
m

Ext(u21)

=−F
m

Spring Mass
System States

. . . . . .
Outputs

u21 := ( f , ḟ )

= (−cx,−cv)
(13)

u12 := (v,a)

= (ẋ, ḟ/m)
(14)

Inputs
u12 u21

Equations
...

...

Table 1: Standard Co-simulation schemes for the spring-mass
system, top constant, down linear extrapolation.
When there is no difference, dots have been used.

�x� 1
2 diag(m,c), which is an equivalent norm, so lack of sta-

bility is equivalent to energy augmentation.

Using piecewise constant extrapolation of inputs, the
force, as it is seen by the mass, is effectively shifted to
later times: a value from time Ti is used for all future
times t ∈ (Ti,Ti+1). The analogy with the reactive power
and the real power of an electrical network is apparent.
Work from oscillating systems with phase shift contains
an integral over a constant and thus grows unbounded
(Figure 2). Similar arguments hold for linear extrapo-
lation co-simulation.
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Figure 2: Simulation of the system (11)-(12) in the
co-simulation scheme with constant extrapolation,
varying the exchange step size H. Upper row, left:
H = 0.2, right: H = 0.1. Previously published in [12].

3 Enforcing balance by sharing the
view on potential flow

3.1 The proposed method

The key feature to establish energy balance is exchanging
the value of power and calculating the variable of inter-
est from that power. Consider a co-simulation problem
with subsystems S1 and S2 as given by Equations (5) -
(10) with states x1 and x2 respectively and inputs u21 and
u12. We suggest the following procedure to enforce en-
ergy balance between subsystems S1 and S2:

1. At data exchange timepoint Tn the powers Pi j as the
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flux of energy are calculated in both subsystems, us-
ing up-to-date input un

ji. In general Pi j �= Pji.
Applied to the S1 − S2 setting, P21 (the power cal-
culated in S1 for passing to S2), is calculated using
fresh u12, the input into S1. Now in the input vectors
ui j one component is replaced by Pi j and that new
vector u21,bal is exchanged between the subsystems.
Applied to S1−S2 setting, the value P21 replaces one
component (u21)m of u21, and respectively, P12 re-
places (u12)n of u12.
This means S1’s point of view about the power has
been passed on to S2 and vice versa.

2. Now both subsystems have the same information
and thus the opportunity to draw the same conclu-
sion on what energy exchange should be assumed.
We denote this assumed energy exchange as

P̂12(P21,P12) =−P̂21, (16)

a straightforward choice is P̂21 = (P12 − P21)/2 =
−P̂12, where now it is necessary to define flow di-
rections: Pi j shall be negative if it leaves S j, so it is
counted with opposite sign in Si.
Again remember that P21 is the power calculated in
S1 for passing to S2, calculated using u12, the input
into S1. The former input (u12)n(t) now is calculated
subject to

P21(x1(t),u12\n,(u12)n(t)) = Ext(P̂12). (17)

Analogously (u21)m(t) s.t. P12(x2,u21\m,(u21)m) =

Ext(P̂21) is calculated. The expression 12\ k in sub-
script is to say that the k-th component of the vec-
tor is left out. For the unique inversion of Pi j it is
required that the maps (u ji)k −→ Pi j(., .,(u ji)k) are
strictly monotone.

As Ext(P̂12) =−Ext(P̂21), now it is established that
the inputs of S1 and S2 are consistent in terms of
energy conservation for all t.

Spring Mass
Energy

W =
�

− f ds

=
�

− f vdt

W =
�

f ds

=
�

mavdt

Power

P = Ẇ

=− f v = cxv

P = Ẇ

= mav = f v

Derivative of Power

Ṗ = c(v2 + sa) Ṗ = m(a2 + vȧ)

= m(a2 + v
ḟ
m
)

The derivative of force ḟ is available as output of spring,
as it is usually needed for linearly extrapolating the input.
With this, the scheme yields Table 2.

4 Stability of power balanced
schemes

As discussed in Section 2.2 and shown in [8], stabil-
ity for linear systems of a partly explicite scheme is not
given. This section shall relate energy conservation of
our method to stability. The class of problems under con-
sideration are all stable gradient flow problems

ẋ =−M∇xP
T , (18)

which is a huge class, containing entropy driven and en-
ergy conserving problems. The mobility Matrix M deter-
mines the systems stability - it is positive definite if the
system is dissipative and skew if energy conserving. This
behavior must be inherited to the ODE that is induced
by our splitting method. We give an outline of the argu-
ments:

1. Switch to gradient flow view. In this, inserting (18)
into the time derivative of the respective potential
Ṗ(x) yields

Ṗ(x) = �∇xP(x), ẋ�=
�
∇xP(x),−M∇xP(x)T �

(19)
with the scalar product �., .�.

2. Introduce split system

3.2 Example

To apply the scheme given in Section 3.1 above to 
a spring-mass system (12), replacing the standard 
co-simulation scheme from Table 1, one first calculates 
the energies of the systems parts, powers acting on 
subsystems boundaries, and their derivatives. As Pi = Ẇi, 
Pi < 0 indicates that energy leaves Si.
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Spring Mass
System States

x1 := s = x x2 := v = ẋ

Outputs

(u21,Std)1 := f =−cx (u12,Std)1 := v = ẋ

(u21,Std)2 := ḟ =−cv (u12,Std)2 := v̇ = f/m

(intermediately exchanging ui j,Std)

(u21)1 = P(x1,u12)

= cxv = cx1(u12)1

(u12)1 = P(x2,u21)

= f v = (u21)1x2

(u21)2 = Ṗ(x1,u12)

= c(v2 + xa)

= c((u12)
2
1 + x1(u12)2)

(u12)2 = Ṗ(x2,u21)

= m(a2 + v
ḟ
m
)

= m

�
(u21)1

m

2

+ x2
(u21)2

m

�

Inputs

(u12)1 := P̂ (u21)1 :=−P̂

(u12)2 := ˆ̇P (u21)2 :=− ˆ̇P

Input variables of standard method ustd depending on Power

v =
Ext(P̂)

cs
=

Ext(u12)1

cx1
f =−Ext(P̂)

v
=

Ext(u21)1

x2

Equations

ẋ1 = v ẋ2 =
f
m

Table 2: Method form Section 3.1 applied to the spring-mass

system

• Identify coupling contributions

• Characterize potential conserva-
tion/dissipation properties (see below)

3. See method as decoupling ODE – Insert calculation

of inputs from power into original equations

4. Relate decoupled ODEs stability properties to sta-
bility of original systems

• Show that negotiated exchange conserves
Ṗ ≤ 0. It can be shown and there are straight-
forward arguments that there is no unphys-
ical power production when sharing subsys-
tems agree on the exchanged energy

• Use Lyapunov’s direct method on the decou-
pled system.

• Additionally, one can argue that maximum sta-
ble stepwidth for dissipative systems is aug-
mented (method is closer to B-stability than
extrapolation of inputs method).

5. If such stable subsystems ODEs are solved with
methods preserving that stability, overall solution
will be stable.

Items (2) and also (4) need closer consideration. The split
systems potential production Ṗ(x) according to Eq. (19)
in subsystem-wise block matrix form reads

Ṗ(x) = Pk +Pl + ... (20)

=




.
(∇xP(x))Ik

.
(∇xP(x))Il

.




· ... (21)




∗
... −(M)Ik,Ik ... −(M)Ik,Il ...

∗
... −(M)Il ,Ik ... −(M)Il ,Il ...

∗







.
(∇xP(x))Ik

.
(∇xP(x))Il

.




(22)

=
�

∇xIk
P(x),−MIk,Ik ∇xIk

P(x)T
�

� �� �
Pkk

(23)

+
�

∇xIk
P(x),−MIk,Il ∇xIl

P(x)T
�

� �� �
Pkl

+
�

∇xIl
P(x),−MIl ,Il ∇xIl

P(x)T
�

� �� �
Pll

(24)

+
�

∇xIl
P(x),−MIl ,Ik ∇xIk

P(x)T
�

� �� �
Plk

+...,

we identify

Pkl :=
�
(∇xP(x))Ik ,−(M)Ik,Il (∇xP(x)T )Il

�
(25)
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as the potential production in Sk by Sl’s variables, or
power acting from subsystem l onto subsystem k. Item
(4) now means that those eliminate in the suggested
scheme, as the exchanging subsystems agree on their
value. So, there is no contribution to Ṗ by the extrap-
olation during coupling.

Theorem 4.1 For a Lyapunov stable (asymptotically sta-
ble) gradient flow initial value problem (IVP), the IVP re-
sulting from the energy balancing method as described in
Section 3.1 is also stable (asymptotically stable).

5 Discussion, conclusion and
future work

The suggested method overcomes the decade-old issue
of stability in coupled simulation for a huge class of
problems.
Moreover, the method has a clear interpretation in
physics: the enforcement of the power balance in
systems interactions. It can therefore be implemented by
anyone with understanding of the systems they want to
couple, without deep knowledge of numerical analysis.
For simulations in industrial research and development,
the new method enables stable calculations with big
timesteps and few programming effort and is thus a big
step forward.
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