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Abstract. This paper deals with the extension of a
Python-based infrastructure for studying the character-
istics and behavior of families of systems. The infras-
tructure allows automatic execution of simulation exper-
iments with varying system structures as well as with
varying parameter sets in different simulators. Special
focus is put on the support of different simulation en-
vironments by creating models implementing the Func-
tional Mockup Interface (FMI). Possible system structures
and parameterizations are defined using a System En-
tity Structure (SES). The SES as a high level approach for
variability modeling, particularly in simulation engineer-
ing, describes a set of system configurations, i.e. differ-
ent system structures and parameter settings of system
components. In combination with aModel Base (MB), ex-
ecutablemodels can be generated froman SES. Based on
the extended SES/MB approach, tool-supported variabil-
ity modeling and automatic model generation and exe-
cution in different simulation environments using FMI is
described. This is done by means of an engineering ap-
plication.

Introduction

This paper is based on [1] and [2]. It focuses on the
more general approach using the tools for variability
modeling introduced there by integrating with the Func-
tional Mock-up Interface (FMI) instead of just offering
simulator specific solutions.

The high variant diversity with components of dif-
ferent application fields in today’s technical systems
leads to the need for variability modeling and integra-
tion of varying simulation platforms. One application
area for variability modeling is e.g. the generation of
software for electronic control units, which is often gen-
erated by underlying models. Those models are usu-

ally of similar type, but still differ in structure and pa-
rameterization. To handle modeling and simulation of
these so called families of systems, several approaches
for variabilty modeling exist. Most approaches make
use of 150% models, which means that all possible be-
havior is put into just one large and complex model and
functionality is then adjusted by switching off unneeded
model parts. In contrast to 150% modeling, in this pa-
per we describe a method to define, generate and sim-
ulate well-tailored and therefore lean models by mak-
ing use of the System Entity Structure / Model Base
(SES/MB) approach. The SES/MB approach [3] origi-
nates in the systems theory community and has under-
gone many extensions over the years [4, 5]. It allows
platform-independent variability modeling with subse-
quent platform-dependent model generation of specific
variants. The structures of systems are coded in an SES,
while the dynamic models are organized in an MB. The
SES links to these dynamic models.

For this approach, a proposal for using one MB in
several simulators is detailed. This is achieved by cre-
ating an MB of models which implement the FMI. The
general tool independent standard for model exchange
and co-simulation FMI [6, 7] enables the exchange of
models between different simulators. This makes it pos-
sible to combine models from different domains and ex-
ecute them in several simulation environments.

After the extended SES/MB approach is briefly in-
troduced, the paper presents some software tools imple-
menting the theory. An engineering application exam-
ple is then discussed in detail to clarify the process of
model definition and model generation using FMI.

1 SES/MB Theory and
Implementation

This section briefly discusses the general SES/MB the-
ory and the derived extended SES/MB (eSES/MB) in-
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frastructure. Subsequently, an implementation of the
infrastructure is presented.

1.1 SES/MB Basics and the eSES/MB
Infrastructure

An SES is represented by a tree structure comprising
entity nodes, descriptive nodes and attributes. A num-
ber of different system structures can be coded in one
SES tree. In the context of modeling and simulation
entity nodes are linked to basic models organized in
an MB. Attributes of an entity node correspond to the
parameters of the associated basic model. Descriptive
nodes describe the relations among at least two entities
and are divided into aspect, multi-aspect and special-
ization nodes.

In order to derive a specific system configuration
all variation points are resolved by evaluating the rules
at the descriptive nodes of the SES. This procedure is
called pruning.

The resulting Pruned Entity Structure (PES) repre-
sents exactly one system configuration. In conjunction
with an MB, a fully configured and executable model
can be generated from the PES.

The basic SES/MB framework introduced in [3] was
extended by new modeling features, methods and com-
ponents [4, 5], such as an Experiment Control (EC) and
an Execution Unit (EU) as shown in Figure 1. In this
eSES/MB infrastructure, the EC uses an interface to the
SES and its methods to derive goal-driven system con-
figurations and to generate models, which are executed
by the EU. The results returned by the EU are collected
and analyzed by the EC. Thus, the derivation and gener-
ation of subsequent system configurations can be con-
trolled reactively based on experiments already carried
out.

A set of variables with global scope establish the in-
terface to the SES. They are called SES variables (SES-
var). Semantic conditions can be used to specify permit-
ted value ranges and dependencies between SESvars.
SES functions (SESfcn) are introduced for the speci-
fication of procedural knowledge. Complex variabil-
ity can often be described more easily with SESfcns.
Typical examples include the definition of varying cou-
pling relations or the definition of variable parameter
configurations in attributes. For automatic pruning, se-
lection rules at descriptive nodes need to be defined,
such as aspectrules for aspect and multi-aspect siblings
or specrules at specialization nodes. A special manda-
tory attribute of multi-aspects is the attribute number of
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Figure 1: The eSES/MB infrastructure.

replications (numRep). The numRep attribute specifies
the number of entities to create at a multi-aspect node
during pruning. The mb-attribute of leaf entity nodes
connects the entity node to a basic model in the MB.
Attribute values and selection rules can be specified us-
ing SESvars or SESfcns.

1.2 Software Tools

The eSES/MB framework as presented in the lower left
part of Figure 1 was implemented in a prototype soft-
ware tool in MATLAB [8]. The focus of this tool is the
modeling and generation of MATLAB/Simulink mod-
els. In contrast to the MATLAB prototype, the objective
of the software used in this paper is to support the gen-
eration and execution of models for different simulation
environments. The infrastructure in Figure 1 is imple-
mented as a Python framework as presented in Figure 2.
The tools are called SESToPy, SESMoPy, and SESEuPy
[9].

SESToPy (System Entity Structure Tools Python)
implements a graphical editor and all SES related meth-
ods. In the editor an SES tree can be specified interac-
tively in a file browser view and attributes and rules can
be defined for every node. In addition to the pruning
method already mentioned, SESToPy supports some
more methods such as merging different SES and flat-
tening for removing the hierarchy information. Apply-
ing the flattening method, a Flattened Pruned Entity
Structure (FPES) is derived.

For generating executable models, SESMoPy
(System Entity Structure Model builder Python) was
developed. SESMoPy is a model builder, which im-
plements the build method in two different ways and
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Figure 2: Python-based eSES/MB infrastructure for multiple EUs.

supports several simulation environments. For both ap-
proaches, all corresponding basic models must be or-
ganized in MBs, as shown in Figure 2. The first ap-
proach, called native model generation, is the genera-
tion of executables for a specific EU using a simulator
specific MB. The second approach, this paper focuses
at, is the model generation based on FMI. A Functional
Mock-up Unit (FMU) is a model that implements an
FMI [10]. In an FMU models are described by differ-
ential, algebraic, and discrete equations with time, state,
and step events. In the scope of SESMoPy FMI for
Model Exchange is used, which enables the simulation
environment to generate C code of the FMU. FMI for
Co-simulation is not discussed in this paper. The gen-
eralized interface FMI is supported by a number of es-
tablished simulators [11], such as Simulink, OpenMod-
elica or Dymola discussed for the use with SESMoPy.
Using the FMI-based approach, an MB with basic mod-

els from the simulator OpenModelica and/or an MB
with FMUs are defined. SESMoPy creates an Open-
Modelica model and configures it according to the in-
formation passed in the FPES. Thus FMUs in an MB
need to be imported into OpenModelica. The config-
ured OpenModelica model is exported as FMU. De-
pending on the target simulator a specific Simulation
Model Executable (SME) or Simulation Model Repre-
sentation (SMR) is created. Finally SESMoPy returns
a link to a directory, where the SME or SMR is placed
together with a configuration file with information on
the SME or SMR.
Information about the way the model is created can be
provided in the EC calling SESMoPy or at the SES level
according to the SES enhancements in [4].

The Python software tool SESEuPy (System Entity
Structure Execution unit Python) acts as a general EU.
It implements a kind of wrapper for the integration of
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different simulation environments into the framework.
SESEuPy takes the link to the directory with the SME
or SMR and reads the configuration file. If the model is
given as SMR, an SME needs to be built. The SME then
can be simulated in the target simulator and simulation
results are returned.

In the next section, the components and function-
ality of the Python framework are explained using the
example of an engineering application.

2 Engineering Application
A feedback control system can be modeled using trans-
fer functions describing the behavior of the components
in frequency domain. Controlled variables in a feed-
back control system are usually influenced by distur-
bances. A common approach for minimizing the in-
fluence of predictable disturbances is adding a feedfor-
ward control. The system can be mapped to a signal-
flow oriented model. In the following paragraphs it is
described how the eSES/MB infrastructure can be used
to design and test such a system using the introduced
tools and FMI-based model generation in combination
with the simulation programs Matlab/Simulink, Open-
Modelica, and Dymola.

2.1 Problem Description

A process unit with a PT1 behavior shall be controlled
using a PID controller. A disturbance with a PT1 be-
havior affects the output of the process unit. Different
configurations of the PID controller shall be tested. If a
defined regulatory goal is met, the current configuration
of the PID controller is taken. Otherwise the structure
is varied by adding a feedforward control to the system
and different configurations of the PID controller are
analyzed again. Figure 3 depicts a schematic represen-
tation of the application.
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disturbance
GSz(s)   PT1
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GSt(s)
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- + +

+
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Figure 3: Structure of the feedback control system with

optional feedforward control.

The system’s behavior follows the PT1 transfer

function in Equation 1 and the step-shaped disturbance
affects the output of the process unit with a PT1 behav-
ior according to Equation 2. The optional feedforward
control is realized by subtracting the disturbing signal
calculated by Equation 3 from the manipulated variable.
The control goals are a settling time of less than 15 sec-
onds and a maximum overshoot of less than 5% after a
disturbance.

The system has two structure variants, either with-
out or with the feedforward control part, and a range
of different configurations for the PID controller can be
applied for each structure variant. In the next section,
the two structure variants and their possible configura-
tions are specified as an SES.

GSu(s) =
1

20 · s+1
(1)

GSz(s) =
1

10 · s+1
(2)

GSt(s) =
GSz(s)
GSu(s)

=
20 · s+1
10 · s+1

(3)

2.2 Variant Modeling with SESToPy

The specification of the SES describing the feedback
control system is done with the tool SESToPy. The tree
and all attributes are defined via a graphical user inter-
face. During modeling the SES with SESToPy, checks
on the SES and plausibility tests are executed indicating
model errors. The SES is saved as a JSON structure.

Figure 4 depicts the SES and its representation in
SESToPy. The SES uses some extensions introduced
in [5]. In addition to the different system configura-
tions, essential parts for the configuration of simulation
experiments are defined.

The root node exp of the SES and its subsequent as-
pect node expDEC describe a set of simulation based
parameter studies for different system structures. The
subtree of the entity node simModel-ctrlSys specifies
the two system structures, i.e. a variant with and a vari-
ant without feedforward controller. The other two entity
nodes specify experiment related information: The en-
tity node simMethod specifies a target simulation envi-
ronment for performing simulation runs using the SES-
var mysim. The SESvar myinterface specifies whether
to use the native or the FMI model generation. Other
simulation execution parameters, such as the simulation
period, are not specified and are set by the EC later. The
entity node expMethod specifies the permitted value
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Figure 4: Left: SES specifying the feedback control system study; Right: Part of the SES representation in SESToPy.

ranges of two parameters for the PID controller. Be-
sides the different system structures, they are the sub-
ject under study. The aspect simModel-ctrlSysDEC de-
scribes that each system variant consists of the follow-
ing entities: feedbackSys, sourceSys, ctrlPIDSys, pro-
cUnitSys, sourceDist, tfDist and addDist. They are
mandatory system elements. The optional feedforward
control is specified by the subtree of entity feedforward-
Ctrl. The coupling relations of both structure variants
are defined in the attribute cplg1 of aspect simModel-
ctrlSysDEC.

According to [12], optional parts in an SES are ex-
pressed by a specialization node where one of its chil-
dren is a NONE element. A NONE element means
that the entity is not included at all. The selection at a
specialization is defined by an attribute called specrule.
The specrule of the specialization feedforwardCtrlSpec
defines that either the entity fc or NONE is selected dur-
ing pruning. The result of evaluating the specrule at
node feedforwardCtrlSPEC depends on the value of the
SESvar feedforward. The SESvar codes the two possi-
ble structure variants as values 1 or 0. Therefore, the
semantic condition f eed f orward ∈ [0,1] applies to the
SESvar. The entity fc and its subsequent aspect fcDEC
specifies the feedforward control structure as a compo-
sition of the two entities tfFeedforward and addFeed-

forward.
Aspects and multi-aspects can define coupling rela-

tions as attribute. Couplings specify a composition of
entities, which can be linked to basic models. Coupling
attributes are abbreviated with cplg in Figure 4. Due to
the varying system structures specified in the SES, the
couplings in attribute cplg1 of aspect node simModel-
ctrlSysDEC are defined using an SESfcn. The coupling
definitions in cplg2 at node fcDEC are invariable and
can therefore be defined without using an SESfcn.

According to Section 1, each leaf node defines an
mb-attribute referring to a basic model in the MB. The
basic model can be an OpenModelica component or an
FMU. The other attributes of the leaf nodes define prop-
erties to configure the linked basic models. The values
for k and Ti specified at node ctrlPIDSys are only de-
fault values, which will be overwritten because they are
parameters under study.

2.3 Creating an MB

OpenModelica is an open source simulation platform
and defines a set of basic models. It is widely used in
different fields of engineering. In this case study Open-
Modelica basic models as well as FMU basic models
are used. The FMUs define the FMI and can thus be
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exported from any simulation environment.
For the OpenModelica MB a package is created that
contains basic models. This package is stored as the file
MB.mo and is referred to as local OpenModelica library
in this paper. Furthermore the FMUs with the fileend-
ing *.fmu are stored in a folder on the local filesystem,
which is referred to as local FMU library in this paper.

The local OpenModelica library is filled with the
following basic models whose names correspond to the
names in the mb-attributes of the leaf nodes in the SES:

• Constant as the setpoint for the controlled variable

• Feedback for closing the feedback control loop

• TransferFunction for representing the process, the
disturbance’s behavior, and the feedforward

• Add for adding signals

In the local FMU library FMUs are placed like listed.
The names correspond to the names in the mb-attributes
of the leaf nodes in the SES.

• Step.fmu for stimulating the disturbance

• PID.fmu is the controller of the feedback control
system

Each basic model can be configured according to the
attributes of the leaf node which they are linked to in
the SES. The local OpenModelica library as well as the
local FMU library act as MB for the basic models.

2.4 Experiment Execution

For executing simulation based experiments the exper-
iment process and its goals need to be defined in a
Python script. This script implements the EC according
to Figure 2. The Python framework provides some EC
related template scripts. The goals of the experiment
were discussed in Section 2.1. The experiment should
start with the study of different PID controller configu-
rations using the control system structure without feed-
forward controller. The simulation is executed with the
simulators OpenModelica, Dymola, and Simulink. In
case that the objectives are not achieved by just varying
the parameters k and Ti of the PID controller, the study
shall be carried out with the additional feedforward con-
trol structure and the simulation programs OpenModel-
ica, Dymola, and Simulink. A snippet of the EC script
with essential steps of the experiment process is given
next.

...

SESfile = ...

if conditions_for_experiment:

#prune, flatten, build, and execute

SESvar = [mysim = <simulator>,

myinterface = "FMI",

feedforward = 0]

PESfile = SESToPy("prune",SESvar,

SESfile)

FPESfile = SESToPy("flatten",PESfile)

smHandle = SESMoPy("build",FPESfile)

sim_param = [solver=<solver>, ...]

results = SESEuPy("simulate",smHandle)

...

elif conditions_for_experiment:

#prune, flatten, build, and execute

SESvar = [mysim = <simulator>,

myinterface = "FMI",

feedforward = 1]

PESfile = ...

...

...

The EC starts the experiment by setting the SESvars
mysim, myinter f ace, and f eed f orward. A target sim-
ulator is set for mysim. Next, the EC calls SESToPy’s
API method for pruning with the current SESvar values
and a reference to the file defining the SES as JSON
structure. The pruning process results in a PES coded
as JSON structure. Afterwards, the EC calls SESToPy’s
API method for flattening the PES. The created FPES
is similar to the FPES shown in Figure 5, which rep-
resents the more complex FPES for the later SESvar
assignment f eed f orward = 1. A reference to the file
containing the FPES as a JSON structure is returned to
the EC. The EC then calls SESMoPy’s API method for
the build method and passes the FPES file handle. SES-
MoPy determines the target simulator from the attribute
at the node simMethod and the value ranges of the PID
controller parameters under study from the attribute at
node expMethod in the FPES.

Based on the information in the FPES and the ba-
sic models from the MB, SESMoPy creates an Open-
Modelica model for each configuration of the simula-
tion model of the control system. FMU basic models
need to be imported into OpenModelica. The config-
ured OpenModelica model is exported as FMU, which
is called model FMU in this context. This model FMU
is simulator independent, since it implements the FMI.
It represents an SM. Thus only one MB needs to be de-
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Figure 5: Left: FPES to study the feedback control system structure with feedforward; Right: FPES representation in SESToPy.

fined for use with multiple target simulators.
Depending on the target simulator different steps are

necessary as discussed before. (i) A Simulation Model
Executable (SME) for the target simulators OpenMod-
elica and Dymola or (ii) a Simulation Model Represen-
tation (SMR) for the target simulator Simulink is cre-
ated.
(i) The SME is built by importing the model FMU into
the target simulator. Using the interface of the FMU
simulator specific code is generated of the model. For
execution a file with simulator specific instructions on
the execution is generated. Furthermore a configuration
file with information about the SME and its target sim-
ulator is created.
(ii) The SMR is a file with simulator specific instruc-
tions for the import of the FMU in the target simulator.
The file is not executed yet. Furthermore a configura-
tion file with information about the SMR and its target
simulator is created.

SMs of one structure variant have different config-
urations of the PID controller. A handle to the direc-
tory with all SMs is returned by SESMoPy to the EC,
referred to as smHandle. The EC extends the configura-
tion file with simulation data, such as the solver to use
or simulation start and stop time. The EC calls the tool
SESEuPy and passes the smHandle as the link to the
SMs and the configuration file. In collaboration with
the target simulation environment, SESEuPy controls
the execution of an SM. An SME can be executed di-
rectly, whereas during execution of an SMR an SME is
built. Figure 6 shows the structure of a fully configured
OpenModelica model, but with feedforward controller,
i.e. for the SESvar assignment f eed f orward = 1. Fi-
nally, SESEuPy returns the simulation results to the EC.

In case the results meet the experimental goals, the

overall results are calculated and returned by the EC.
In case the goals are not reached, the second system
structure with the additional feedforward controller by
the SESvar assignment f eed f orward = 1 is set and a
new model configuration and generation is started.

If the experimental goals have been achieved, the
overall results of the experiment are the necessary con-
trol structure and the appropriate PID controller param-
eter settings. Otherwise the failure to achieve the objec-
tives may also be established.

In addition simulation with another simulator can
be tested. In the SESvar mysim another simulator is
set and the model generation and simulation process is
started over with the structure variant without feedfor-
ward controller. In this way, model by model validation
is achieved using different simulators.

3 Conclusion

In this paper the extension for working with FMI of
some Python-based software tools for variant modeling
are presented. The entire process of variability model-
ing beginning with the system specification with an SES
up to automatic variant derivation, model building, and
execution is described. The proposed eSES/MB infras-
tructure makes it possible to model and simulate engi-
neering problems using different target simulation envi-
ronments.
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Figure 6: OpenModelica SM of the feedback control system with feedforward control.
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