
Modeling of Non-standard Queuing Policies -
An Invitation to ARGESIM Benchmark C22

Peter Junglas1*, Thorsten Pawletta2

1Dep. of Engineering “Dr. Jürgen Ulderup”, PHWT Vechta/Diepholz, Schlesierstr. 13a, 49356 Diepholz, Germany; 1
*peter@peter-junglas.de
2Wismar Univ. of Applied Sciences, Fac. of Engineering, Research Group CEA, PF 1210, 23952 Wismar, Germany

Abstract. The recently published ARGESIM benchmark
C22 ’Non-standard Queuing Policies’ studies three queu-
ing models, where the queues utilize more complex poli-
cies than the standards FIFO, LIFO or priority. Jockeying
queues allow entities to switch to a shorter queue, in
reneging queues entities leave a queue after a maximal
waiting time, and classing queues change the entity order
according to an entity attribute (“class”) at the call of an
external operator.
To encourage the simulation community to publish
benchmark solutions this talk will explain the tasks in
some detail and comment on the lessons learned from
a first implementation.

Introduction
The general transition of modeling from program-
ming or text-based modeling languages to graphical
component-based methods has made possible to study
highly complex models without explicit programming
knowledge on the side of the modeler. On the other
hand standard text books like [1] are still using explicit
C code for the description of their models and algo-
rithms – and for good reason! In standard modeling
cases the set of prebuilt components is often sufficient.
But for special situations it can be difficult to work
around the limitations of the given building blocks. Fur-
thermore the exact behaviour of the components is gen-
erally not defined in every detail. This can lead to all
kinds of problems, ranging from awkward workarounds
to unexpected behaviour [2].

Different approaches can be used to cope with this
problem: One can supplement the components with an
interface that allows the easy integration of callback
functions or one can provide means to integrate self-
programmed components. Both ways have been of-
fered in the redesign of MathWorks’ SimEvents library
[3]. More in the spirit of the graphical programming
paradigm, one could try to identify a set of basic com-
ponents with a precisely defined behaviour, that allow

to model non-standard situations in a clear and easily
understandable way.

The ARGESIM benchmark C22 ’Non-standard
Queuing Policies’ [4] addresses this problem for the
modeling of queuing systems. To this end it defines
three different tasks, where a standard queuing compo-
nent is not sufficient, either because some entities can
leave the queue prematurely or because their queuing
order can be changed dynamically. The prospective so-
lutions will help to clarify how one can deal with such
situations using common graphical modeling tools. A
first implementation using the text-based MatlabGPSS
language [5] gives some clues, which features could be
helpful and which are still missing (in MatlabGPSS) –
and it points out, where graphical tools still have prob-
lems, that should be adressed in future modeling envi-
ronments.

1 Basic Queuing System

G

1

2

3

4

Figure 1: Basic queueing system with four queues.

A simple queueing system consisting of four queues
and servers is used as a starting point and reference for
all benchmark models (cf. fig. 1). It consists of a gener-
ator that creates a given number of entities with fixed or
stochastic interarrival times and four FIFO queues and
corresponding servers with a capacity of one. Entities

ARGESIM Report 59 (ISBN 978-3-901608-93-3), p 9-12, DOI: 10.11128/arep.59.a59002 

9



choose the shortest line (including the server allocation)
and leave the system after being served. The simulation
stops after all entities have left.

Two different versions have to be modelled: a small
one with fixed interarrival and service times, a larger
one with stochastic values. All details, such as the total
number of entities and values or distributions of inter-
arrival and service times, are given in the benchmark
definition [4], together with the required output values
and plots.

To define the models completely, particularly the de-
terministic version, one has to specify the order of con-
current events. This is done in the following way:

1. an entity leaves a server,

2. a queued entity enters a server,

3. a new entity enters the system and chooses a queue.

It is an interesting question, how a simulation en-
vironment allows to fix the order of concurrent events.
Therefore the benchmark includes an optional variant
of the deterministic model, where this order is changed
to

1. a new entity enters the system and chooses a queue,

2. an entity leaves a server,

3. a queued entity enters a server.

Another problem especially for graphical environ-
ments is the modeling of large systems. To study
this, the benchmark includes an optional variant of the
stochastic model with 40 queues and servers.

2 Jockeying Queues
A rather common phenomenon in everyday queueing
systems is jockeying, i.e. the process that an entity
moves from the end of a queue to another shorter queue
(cf. fig. 2). This not only happens, when the “entities”
are humans (e.g. in supermarkets or on motorways),
but it can be used to achieve a better load balancing of
servers in computer networks or production lines.

The C22 benchmark asks for variants of the two ba-
sic models, where jockeying occurs, whenever a queue
(incl. server) is at least shorter by 2 than another one. It
defines the behaviour if there are more than one possi-
ble source or destination queues and fixes the order of
concurrent events. Moreover it requires additional out-
put describing the jockeying events.

1

2

3

4

25 7 5

9 6

8

24

21

23

20 15 11

16

19 18

22 17 13 12 10

14

G

Figure 2: Queueing system with jockeying.

The main problem here is of course, how to detach
the last entity of a standard FIFO queue. There are sev-
eral tricks to achieve this [2], but since they complicate
the model and increase the number of events consider-
ably, a simpler solution would be preferred – if the used
simulation environment allows for one.

3 Reneging Queues

In some applications an entity leaves a queue before it
is served, a behaviour known as reneging (cf. fig. 3).
This can be a customer, who has lost his patience, food,
whose shelf life has been reached, or a workpiece that
has to be reheated.

1

2

3

4

25 7 5

9 6

8

24

21

23

20 15 11

16

19 18

22 17 13 12 10

14

G

Figure 3: Queueing system with reneging.

The benchmark requests the implementation of
model variants where entities renege after a fixed maxi-
mal waiting time. This problem seems to be harder than
the jockeying case, because now an entity in the middle
of the queue has to be released prematurely.

4 Classing Queues

The last benchmark task is inspired by a typical situa-
tion during the boarding of a plane: An operator calls
“all passengers with seat numbers 15 – 30” to the front

1010



of the queue. It assumes that entities have an additional
attribute called class, which has a positive integer value
and is assigned at entity creation in a round-robin way
or stochastically.

The standard models are augmented with an opera-
tor that at certain times calls for a class number, where-
upon all entities with this class procede to the front of
their queues. The relative order of the entities within
this class remains intact, as does the order of the other
entities among themselves (cf. fig. 4).

class = op. call

6 137 25 4

6 35 4 1 27

Figure 4: Result of an operator call (class ∧
= color).

Further practical examples could be the routing of
network packets (“now all packets of a given video
file”) or the loading of a truck (“now all boxes of a given
size”).

As always the benchmark fixes all details such as
the exact behaviour of the operator, the assignment of
classes, the order of concurrent events and the output
data. It is important to note that there is only one global
operator that defines the current class for all queues at
once. The case of individual operators for each queue
is of practical interest as well, but has not been included
in the benchmark, since it doesn’t add substantial diffi-
culties to the implementation.

The classing queue model is probably the most chal-
lenging of the benchmark, since it requests a dynamical
reordering of the entities within the queue. On the other
hand it doesn’t require an extra queue output like the
jockeying and reneging queues, which makes it similar
to the standard priority queue, with the essential dif-
ference, that the meaning of “high priority” changes at
runtime.

5 Benchmark Implementation
using MatlabGPSS

A first implementation of the C22 benchmark has been
published [5], it is based on MatlabGPSS [6]. Its basic
findings may be helpful for further implementors of the
benchmark and will be summarised here.

GPSS [7] is one of the oldest existing modeling lan-
guages. It uses the transaction-based paradigm to model
discrete event systems, and though being somewhat out-
dated, it is still a good example of a simple language
that uses only a few basic constructions to provide very
wide modeling capabilites. The freely available imple-
mentation MatlabGPSS [8] combines GPSS statements
with general Matlab code. This makes the implemen-
tation of complex control structures and the compila-
tion of statistical and graphical results much easier than
relying on pure GPSS constructs, thereby allowing to
concentrate on the basic questions of queue design.

GPSS is text-based and contains statements for the
generation and destruction of entities, the entering and
leaving of queues, the reservation and freeing of servers
and the delaying of an entity for a given (service) time.
Each entity can store a set of parameters, auxiliary func-
tions provide the current number of entities stored in a
queue or a server.

For complex queueing strategies one can use so
called user chains, which are more flexible than stan-
dard queues. Entities join a user chain with the link
statement, entering at the front or end or according to
a parameter value. The unlink statement allows any
entity to free one or more entities from a user chain and
to route them to arbitrary places. The exact possibilities
of unlink depend on the specific GPSS implementa-
tion; in MatlabGPSS entities can only be extracted from
the front or back end of a user chain.

Using these standard GPSS methods the basic model
can be implemented easily. Finding the index of the
shortest line is done with a Matlab function. Scaling up
the model to 40 queues is then just a matter of setting
a dimension parameter. And the changing of the order
of concurrent events can be done by applying the GPSS
priority command that allows to change the priority
of an entity dynamically.

To implement the jockey queues, one has to move
entities between different places in the model. This
is done with the GPSS statement transfer and la-
belling of statements, similar to a classical go-to. In a
graphical modeling environment similar models would
use routing elements such as gates and switches. The
main problem, namely to extract an entity from the back
end of a FIFO queue, is trivial here, since the unlink
command allows to extract entities from both ends of
the queue.

But the slightly harder problem of the reneging
queues, where one has to extract an entity from the mid-

1111



dle of the queue, can not be handled so easily in Mat-
labGPSS. Therefore one has to rely to the clone queue
trick [2]: An entity that enters a queue is cloned, one
copy waits for the total reneging time, the other one
tries to get the server. A bookkeeping variable is set,
whenever one of the pair is ready, and checked before
the action of the other one. A clone that comes late, is
simply terminated.

For the implementation of the classing queues every
queue is cut into two sequential queues with a gate in
between, that is opened whenever the operator calls for
a new class (cf. fig. 5).

class = op. call

6 137 25 4

13456 27

Figure 5: Implementation of the classing queue.

The first queue (at the back end) stores all incoming
entities, while the second queue at the front receives all
entities with the current class. Since one cannot pick
only the matching entities from the first queue, one has
to release all entities and route the unwanted ones back
into the first queue. This scheme is a variant of the shuf-
fle queue from [2].

6 Conclusions
Since all benchmark tasks are rather small and don’t
need a special mathematical or modeling background,
the benchmark is suited for beginners in the field of
modeling and simulation. Nevertheless it is probably
a challenge for many of the current discrete simulation
systems.

As long as perfect solutions to the benchmark prob-
lems have not been found generally or in the simulation
environment used, second best solutions using special
tricks are very welcome. They not only show the state
of the art (and its deficiencies), but can help the practi-
tioner to implement non-standard queueing problems in
the program at hand.

References
[1] Law AM. Simulation Modeling and Analysis.

McGraw-Hill, New York, 5. ed. 2014.

[2] Austermann L, Junglas P, Schmidt J, Tiekmann C.
Conceptional problems of transaction-based modeling
and its implementation in SimEvents 4.4. Simulation
Notes Europe SNE. 2017; 27(3): 137–142. doi:
10.11128/sne.27.tn.10383

[3] Li W, Mani R, Mosterman P. Extensible discrete-event
simulation framework in SimEvents. Proc. 2016
Winter Simulation Conference; 2016 Dec; Arlington.
New Jersey: IEEE. 943-954.

[4] Junglas P, Pawletta T. Non-standard Queuing Policies:
Definition of ARGESIM Benchmark C22. Simulation
Notes Europe SNE. 2019; 29(3): 111-115. doi:
10.11128/sne.29.bn22.10481

[5] Junglas P, Pawletta T. Solving ARGESIM Benchmark
C22 ’Non-standard Queuing Policies’ with
MatlabGPSS. Simulation Notes Europe SNE. 2019;
29(4): 199-205. doi: 10.11128/sne.29.bn22.10496

[6] Pawletta T, Drewelow W, Pawletta S. Discrete Event
Simulation in Interactive Scientific and Technical
Computing Environments. In: Proc. 12th European
Simulation Multiconference on Simulation; 1998 Jun;
Manchester. 529-533. ISBN 1-56555-148-6.

[7] Schriber TJ. An introduction to simulation using
GPSS/H. New York: John Wiley & Sons, Inc.; 1991.
437 p.

[8] Pawletta T., et al. The MATLAB GPSS Toolbox.
Online:
http://www.cea-wismar.de/tbx/mgpss/
(called 2020-01-07).

1212




