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Abstract

Every third death in developed countries is causedardiac diseases, which are the
number one cause of death. Duration and dynamioggsof certain intervals of the
ECG are well established indicators in the diaghadicardiac diseases. Furthermore,
several agencies require the assessment of thet effeewly developed drugs on the QT
interval.

Automated measurement and annotation of the EC@sshamerous advantages over
manual methods, therefore the long term aim isetelbp an all-in-one device for data
acquisition and ECG analysis. The development e conducted in different stages,
whereas the first step and short term aim describetthis paper consists of creating
algorithms in MATLAB® and validating them against ECG signals manuailyotated
by medical experts. This early stage is followedpoyting all algorithms to the aimed
platform and finally by hardware-in-the-loop simigas coupling the measurement
hardware with the MATLAB model.

The presented algorithm detects R peaks based eosigimals amplitude and first
derivative as well as RR intervals. False positlegections due to artifacts are prevented
by analyzing the signal's local statistic charastars. These intermediate results are
automatically classified to distinguish normal libaats from potential premature
ventricular contractions. QRS complexes, P and Vewaare detected by their first
derivative for each class of heartbeats and araratgly refined for each detected
heartbeat.

The algorithm has been verified against four Phystodatabases and achieved a
sensitivity of 98.5% and a positive predictive \ebf 98.3%, respectively.

These results are promising, but further work i stquired to implement the
algorithm on an embedded system to build an eaggdall-in-one device.

1 Introduction

Every third death in the United States and actuadigrly every second one in Europe
is caused by cardiovascular diseases [1, 2]. Thain forms are coronary heart diseases,
causing nearly half of all deaths caused by cassioular diseases. Coronary heart
diseases are the most and second most common afadeath in Europe and the United
States, respectively [1, 2].
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Figure1: Schematic representation of a normal heartbeaitsufebtures seen on ECG

(modified from [3]).

Electrocardiography (ECG) is a widespread, nonsdiweand painless technique to
measure physiologic activity and pathologic changiethe myocardium. As shown in
Figure 1, the tracing of one heartbeat consists Bfwave (atrial depolarization), a QRS
complex (ventricular depolarization) and a T waven(ricular repolarization). Several
well-defined segments and intervals between thesteifes are well established indicators
in the diagnosis of cardiac diseases, most nothely’R interval (from the onset of the P
wave to the onset of the QRS complex) and the @nial (from the onset of the QRS
complex to the offset of the T wave). In additi@ome non-antiarrhythmic drugs may
have the undesired property of prolonging the Qeriral, therefore several agencies and
national regulators require the assessment ofdifiéxt in newly developed drugs [4].
Automated methods for measurement and annotatitredECG offer several advantages
over manuals ones, such as immunity to observeteclerrors and operator fatigue,
higher accuracy in repeated measurements and fasteore extensive testing at lower
cost.

In the last decades, a lot of ECG analysis methagie been presented. Especially the
rapid development of powerful computing hardwar e a widespread application of
software ECG annotation algorithms in the last 8arg. Despite the usage of many
different approaches such as signal derivativesdigjtal filters, wavelets [6] and neural
networks, most methods focus only on the detectibthe QRS complex [7]. Other
software algorithms extend existing QRS detectatis the evaluation of QT intervals [8,
9] or P waves [6], but these methods are only Bigtéor offine ECG analysis. This
paper presents an algorithm combining some of thesthods and adopting them for
online (real time) measurements.

2 Development Process

To facilitate the use of full automatic ECG anniotaf the aim is to develop an all-in-
one-device for ECG acquisition and analysis. Asufég2 shows, the process of
development is conducted in several stages, gjamiith offline prototyping and



verification using MATLAB®, followed by porting thalgorithm to an embedded system
and finally performing hardware-in-the-loop simidat to validate the functionality.
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Figure 2: Overview of the development process

MATLAB ®, a numerical computing software developed by Maitk&™ allows
easy matrix and vector manipulations and can iaterfwith other programming
languages including C. These properties make MATEABe ideal choice for rapid
development of signal processing algorithms intdntle be used on digital signal
processors. Besides, based on its scripting fegtureallows the automation of the
verification process. The developed algorithm hasnbverified against ECG signals
manually annotated by medical experts from differimysioNet databases [10, 11].

After its successful validation, the algorithm isrfed to an embedded system
containing a digital signal processor. Embedded MAB®, a subset of the MATLAB
language, supports efficient code generation fgdayenent for embedded systems and
therefore is the optimal choice for this task.

Finally the embedded system is validated usingredvre-in-the-loop simulation. In
this step, the final system is ready to use, bstesd of measuring ECGs in real subjects,
they will be simulated using a signal generatortimied by MATLAB®. A hardware-in-
the-loop simulation allows the reproduction of poesly annotated signals and hence an
efficient verification of the results as well agaidation of the final device.

3 M easurement Algorithm

R peaks are the most prominent feature in ECGnigaciThus they can be used as
reference point for further features and are a gowumice to start detection with. The
measurement algorithm continuously tries to detfeetn based on the signal amplitude
and its first derivative [5]. Local statistics dfiet signal are evaluated to distinguish
correctly detected R peaks from artifacts causethbyements of the subject. Once an R
peak is found a classification is applied in redlet to separate normal QRS complexes
from potential premature ventricular contractio@seating templates by averaging the
signals reduces noise and allows a more accuraectibs of all further features.
Subsequently, QRS on- and offset are detected lmsélde signal’s local amplitude. T
and P waves as well as their on- and offsets aigedebased on their first derivatives
[9]. QRS on- and offset as well as all parts ofntl & waves are primarily detected in the
template of their respective class. The actualadignonly used for local refinement.



To detect R peaks, a feature signal is continuataliyulated as follows:
» Calculate the first discrete derivative @ the signal S

D¢ = §¢ — S¢-1. (1)
e Evaluate the amplitudes $Af S and DA of D, within a moving window
(w =60 ms)
SAt = maX(S(t_W)mt) - min(S(t_W)mt) (2)
DAt = maX(D(t_W)mt) - mln(D(t_W)t) (3)

« Combine SAand DA
C, = SA? - DA;. (4)

e Calculate feature signal F8ithin a moving window (w = 100 ms)
FSt = maX(C(t_W)t) (5)

« Use the mean value of the last 2 seconds pa&8reshold THw = 2 s)
1
The = = Xf=r-w FSk. (6)

Figure 3 shows three different ECG signals (coimgimoise and small artifacts; high
T wave; sudden subject motion) with their corresfiog feature signals. The feature
signal is robust regarding noise, small artifactd prominent T waves, but does respond
to sudden motion of the subject.

Whenever the feature signal exceeds the threstwdfollowing statistic criterions
have to be fulfilled. Otherwise the detected péthe signal is interpreted as an artifact:

« Standard deviatioa within the last 400 ms

FS;>T +6-c°. (7)

» Kurtosisg, within the last 2.5 seconds
B, > 4. (8)
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Figure 3: Differently shaped ECG signals with their corrasgiaog response of the
feature signal Requation 5) and its threshold{bquation 6)
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Within each region containing an R peak, differeantetween local minima and
maxima are calculated. The maximum with the higtderence to its surrounding
minima is chosen as the exact position of the Rcpamore than two R peaks have
already been detected, a template is built by gitgahem. The correlation between the
newly detected R peak and the template is compasesimilarity measure and has to
exceed a predefined threshold. Otherwise the R isedikcarded.

To avoid not detecting potentially missed or wrgngjiscarded R peaks, the intervals
between two consecutive R peaks (RR interval) aleutated. If one RR interval exceeds
1.8 times the previous ones, the section betweesetiR peaks is searched again with
lower thresholds.

Classification of the R peaks is performed in teae. The ECG signal at each R peak
+ 0.5 seconds is compared to a predefined numbetagbes using correlation and is
assigned to its most similar class. If classes anaach other correlate better than with
the current R peak, these classes are merged aedw alass is created from the current
signal. This approach results in dynamically evadviclasses, continuously enhancing
with the duration of the measurement.

To reduce noise, templates are created by averagioly class and are used for the
detection of all subsequent features (QRS on- dfseétpP and T wave as well as their
on- and offsets). Only a local refinement is pearfed using the original signal.

To detect the onset of the QRS complex, an intest’dl50 ms straight before the R
peak of the template is analyzed as follows:
e Calculate the amplitudes TAand DA of the template Tand its first discrete
derivate within a moving window (w = 30 ms)

TAt = maX(T(t_W)mt) - min(T(t_W)mt) (9)
DAt - maX(T’(t_W)"_t) - mln(T,(t_W)t) (10)
e Calculate a threshold Tand TD for the amplitudes TAnd DA
TT = ¢; - (max(TA.) — min(TA;)) + min(TA,) (12)
TD = ¢, - (max(DA;) — min(DA;)) + min(DA;) (12)

with ¢; and ¢ being predefined constants.

e The point closest to the R peak, where; TAbelow TT or DA s below TD is
marked as reference for the QRS onset.

* The exact QRS onset is found within a 40 ms regior to the reference point at
the closest extremum to the R peak in the origsighal. If no extremum is
present, the point with the lowest slope is considéo be the QRS onset.

The computation of the QRS offset is very simitathie onset, with two exceptions:
* In order to annotate prolonged QRS complexes cdiyrdbe analyzed interval is
chosen larger.

« In equation (9) and (10), window w is 60 ms.



The peak of the T wave is detected by a specialgwli function W as described by
Christov and Simova [9] as follows:

Wi = Ti—goms — Tt (13)
W, = Ti — Teraoms (14)
W = W1 " Wz (15)

The ‘wings’ function is applied to the template between the previously detected
QRS offset and the end of the template (0.5 secaftds the R peak). As shown in
Figure 4, the position of the minimum of the ‘wihfsction represents the peak of the T
wave, regardless of the polarization of the T w&ghsequently, the position of the peak
of the T wave is refined using the original sigmsl finding a local minimum or
maximum, depending on the wave’s polarization.
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Figure 4: Top: Different T waves (left: positive T wave, ignegative T wave). Bottom:
corresponding ‘wings' function.

The part of the template between QRS offset an@&8kps searched for the closest
extremum to the T peak, which is used as referpoao# for T onset. If no extremum is
present, the point with the flattest slope is usestiead. Like the T peak, the T onset is
refined by finding a local extremum in the origiredginal. In some cases, especially in
ECG traces showing prolonged duration of the QR8ptex, T wave and QRS complex
overlap. In this case, no reasonable T onset maintbe found, even not by medical
experts. This condition leads to detection of thenket straight before the T peak,
allowing easy recognition. In this case, no T ongétbe annotated at all.

The detection of the T offset is performed in aikinmanner between the T peak and
the end of the template (0.5 seconds after theaR)pe

To detect the peak of the P wave, the interval betwthe preceding T offset and the
current QRS onset is evaluated in the template Isjightly altered ‘wings’ function
(equation 13, 14, 15) which responds just to pasitieaks. Again, the peak is located at
the minimum of the ‘wings’ function. P onset andfset are found in the same way as T
onset and T offset.



Due to very small amplitude or high noise leveg hwave in some ECG recordings
is indiscernible. To prevent the algorithm fromsfaldetections, the amplitude of the P
wave (derived as difference in voltage betweerRipeak and the mean of P onset and P
offset) has to exceed a certain fraction of thelauge of the QRS complex, otherwise
no P wave (peak, onset and offset) is detectelll at a

4 Results
PhysioNet databases are a collection of recordiafysdifferent physiological
modalities such as electroencephalogram, electtmzaam, blood pressure, respiration
and others. Depending on their objective, seveashlthses contain different kinds of
annotations [10, 11]. Hence, annotations done bglicakexperts can be used to verify
automated algorithms. The following databases lmen chosen for the verification of
the algorithm presented in this paper due to a wadge of different ECG signals as well
as a reasonable amount of expert annotations:
« QT Database, created to evaluate algorithms detgttte QT interval [12].
e AF Termination Challenge Database, designed todasl un the “Computers in
Cardiology Challenge 2004".
« MIT-BIH Arrhythmia Database, test material for evation of arrhythmia
detectors.
» Fantasia Database, originally used for testingraated arrhythmia detection [13].

The presented algorithm was tested against all @@miabases with respect to the
detection rate of QRS complexes. The American Matictandards Institute (ANSI)
essentially recommends two parameters for the atialuof the detection rate [14]: The

sensitivitySe
TP

Se =
TP+FN

and the positive predictive vallrRPV

PPV = (17)
TP+FP

where TP is the number of true positivéN the number of false negative aR& the
number of false positive detections.

A sensitivity of 98.5% and a positive predictivdusof 98.3% were achieved in the
verification of the detection rate. Time differeadeetween detected and corresponding
annotated points of the QT database are shownbfeTa Durations of the PR interval,
the QRS complex and the QT interval were calculétech the results of the algorithm
and the expert annotations, respectively. The rdiffees between the results of the
algorithm and the annotations are shown in Figut@s Bland-Altman diagrams [15].
Mean and standard deviation of these differenceslafl + 19.9 ms for the PR interval,
3.6 + 16.5 ms for the QRS complex and -4.8 + 35s3fan the QT interval. These results
are satisfying and match existing offline algorighfv, 8, 16].

(16)



Table 1; Means and standard deviations of differencesne thetween annotated and
detected points as well as between different exgperotations.

Algorithm-expert deviation Inter-expert deviation
Feature Mean Std Mean Std
P onset 2.3 ms 23.8 ms * *
P peak 0.5ms 22.2 ms * *
P offset -0.3ms 27.2 ms * *
QRS onset 0.5ms 10.2 ms 3.8 ms 14.2 ms
R peak -9.1ms 14.4 ms 0.1 ms 2.4 ms
QRS offset 4.3 ms 12.5 ms 2.7 ms 17.0 ms
T onset 10.8 ms 63.0 ms 9.5 ms 44.9 ms
T peak -3.3ms 33.1 ms 3.5ms 30.0 ms
T offset -4.2 ms 38.8 ms 5.8 ms 39.9 ms

* Annotated by one expert only

0.2 T T T T T T 0.15

o
-
L

o
o
a

=)

annotations ™ Raigorithm 5]

QRS notations @RS aigorithm 151

PR

o
o
a
L

L L L L L 0.1 L L . L
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.05 0.1 0.15 0.2 0.25

PRannotasons* PRaigoritnm/2 5] (@RS QRS i 2 [8]

‘annotations

Bland-Altman Plot
0.25 T T T

QTannotatios™Q Taigoritm 151

. L

. . . .
0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
QT notatios " Laigorithm?’2 151

Figure5: Bland-Altman diagrams comparing the duration ofaia intervals derived
from expert annotations with the results of theetgm. Top left: PR interval. Top right:
QRS complex. Bottom: QT interval




5 Discussion and conclusion

In most cases, the average deviations shown ineTabhre in the range of the
sampling interval of 4 ms, suggesting an insigatificerror. The standard deviations of
the differences between algorithm results and éxperotations also match with those of
inter-expert annotations. Reflecting the uncenjanegarding the exact position of these
features among experts, these results suggestthtbapresented algorithm performs
approximately as well as humans.

The two outliers in Table 1, R peak and T onsed, @artially arising from bad or
unusual annotations in the QT Database. R peaksanetimes annotated at negative
peaks within the QRS complex, whereas they oughtetgositive by definition. The
position of the T onset point is often ambiguous tlu overlapping of the T wave with
the QRS complex. This fact is also reflected bylilg standard deviation of the inter-
expert deviations. Nevertheless, even unambiguoosskt points often have not been
annotated in the QT database, making reasonablpastsan with the algorithm difficult.

Bland-Altman diagrams comparing the annotated acutated durations of the PR
interval, the QRS complex and the QT interval igufe 5 do not show any trends and
thus do not suggest any methodical error. Theim®i@amd standard deviations are in the
same range as those in Table 1 and therefore dehoat any abnormalities.

The results of the offline verification process premising. Further work is required
to implement the algorithm on an embedded systeoh ram hardware-in-the-loop
simulations for validation in order to build an-adtone device for ECG measurement
with real time annotation.
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