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Abstract 
Every third death in developed countries is caused by cardiac diseases, which are the 

number one cause of death. Duration and dynamic changes of certain intervals of the 
ECG are well established indicators in the diagnosis of cardiac diseases. Furthermore, 
several agencies require the assessment of the effect of newly developed drugs on the QT 
interval. 

Automated measurement and annotation of the ECG shows numerous advantages over 
manual methods, therefore the long term aim is to develop an all-in-one device for data 
acquisition and ECG analysis. The development process is conducted in different stages, 
whereas the first step and short term aim described in this paper consists of creating 
algorithms in MATLAB® and validating them against ECG signals manually annotated 
by medical experts. This early stage is followed by porting all algorithms to the aimed 
platform and finally by hardware-in-the-loop simulations coupling the measurement 
hardware with the MATLAB® model. 

The presented algorithm detects R peaks based on the signals amplitude and first 
derivative as well as RR intervals. False positive detections due to artifacts are prevented 
by analyzing the signal’s local statistic characteristics. These intermediate results are 
automatically classified to distinguish normal heartbeats from potential premature 
ventricular contractions. QRS complexes, P and T waves are detected by their first 
derivative for each class of heartbeats and are separately refined for each detected 
heartbeat. 

The algorithm has been verified against four PhysioNet databases and achieved a 
sensitivity of 98.5% and a positive predictive value of 98.3%, respectively.  

These results are promising, but further work is still required to implement the 
algorithm on an embedded system to build an easy to use all-in-one device. 

 

1 Introduction 
Every third death in the United States and actually nearly every second one in Europe 

is caused by cardiovascular diseases [1, 2]. Their main forms are coronary heart diseases, 
causing nearly half of all deaths caused by cardiovascular diseases. Coronary heart 
diseases are the most and second most common cause of death in Europe and the United 
States, respectively [1, 2]. 



 
Figure 1: Schematic representation of a normal heartbeat and its features seen on ECG 

(modified from [3]). 
 

Electrocardiography (ECG) is a widespread, non-invasive and painless technique to 
measure physiologic activity and pathologic changes of the myocardium. As shown in 
Figure 1, the tracing of one heartbeat consists of a P wave (atrial depolarization), a QRS 
complex (ventricular depolarization) and a T wave (ventricular repolarization). Several 
well-defined segments and intervals between these features are well established indicators 
in the diagnosis of cardiac diseases, most notably the PR interval (from the onset of the P 
wave to the onset of the QRS complex) and the QT interval (from the onset of the QRS 
complex to the offset of the T wave). In addition, some non-antiarrhythmic drugs may 
have the undesired property of prolonging the QT interval, therefore several agencies and 
national regulators require the assessment of this effect in newly developed drugs [4]. 
Automated methods for measurement and annotation of the ECG offer several advantages 
over manuals ones, such as immunity to observer related errors and operator fatigue, 
higher accuracy in repeated measurements and faster or more extensive testing at lower 
cost. 

In the last decades, a lot of ECG analysis methods have been presented. Especially the 
rapid development of powerful computing hardware led to a widespread application of 
software ECG annotation algorithms in the last 30 years. Despite the usage of many 
different approaches such as signal derivatives [5], digital filters, wavelets [6] and neural 
networks, most methods focus only on the detection of the QRS complex [7]. Other 
software algorithms extend existing QRS detectors with the evaluation of QT intervals [8, 
9] or P waves [6], but these methods are only suitable for offline ECG analysis. This 
paper presents an algorithm combining some of these methods and adopting them for 
online (real time) measurements. 

 

2 Development Process 
To facilitate the use of full automatic ECG annotation, the aim is to develop an all-in-

one-device for ECG acquisition and analysis. As Figure 2 shows, the process of 
development is conducted in several stages, starting with offline prototyping and 
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verification using MATLAB®, followed by porting the algorithm to an embedded system 
and finally performing hardware-in-the-loop simulations to validate the functionality. 

 

 
Figure 2: Overview of the development process 

 
MATLAB ®, a numerical computing software developed by MathWorks™, allows 

easy matrix and vector manipulations and can interface with other programming 
languages including C. These properties make MATLAB® the ideal choice for rapid 
development of signal processing algorithms intended to be used on digital signal 
processors. Besides, based on its scripting features, it allows the automation of the 
verification process. The developed algorithm has been verified against ECG signals 
manually annotated by medical experts from different PhysioNet databases [10, 11]. 

After its successful validation, the algorithm is ported to an embedded system 
containing a digital signal processor. Embedded MATLAB®, a subset of the MATLAB® 
language, supports efficient code generation for deployment for embedded systems and 
therefore is the optimal choice for this task. 

Finally the embedded system is validated using a hardware-in-the-loop simulation. In 
this step, the final system is ready to use, but instead of measuring ECGs in real subjects, 
they will be simulated using a signal generator controlled by MATLAB®. A hardware-in-
the-loop simulation allows the reproduction of previously annotated signals and hence an 
efficient verification of the results as well as a validation of the final device. 

 

3 Measurement Algorithm 
R peaks are the most prominent feature in ECG tracings. Thus they can be used as 

reference point for further features and are a good choice to start detection with. The 
measurement algorithm continuously tries to detect them based on the signal amplitude 
and its first derivative [5]. Local statistics of the signal are evaluated to distinguish 
correctly detected R peaks from artifacts caused by movements of the subject. Once an R 
peak is found a classification is applied in real time to separate normal QRS complexes 
from potential premature ventricular contractions. Creating templates by averaging the 
signals reduces noise and allows a more accurate detection of all further features. 
Subsequently, QRS on- and offset are detected based on the signal’s local amplitude. T 
and P waves as well as their on- and offsets are derived based on their first derivatives 
[9]. QRS on- and offset as well as all parts of T and P waves are primarily detected in the 
template of their respective class. The actual signal is only used for local refinement. 
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To detect R peaks, a feature signal is continuously calculated as follows: 
• Calculate the first discrete derivative Dt of the signal St 
 �� = �� − ����. (1) 

 
• Evaluate the amplitudes SAt of St and DAt of Dt within a moving window 

(w = 60 ms) 
 ��� = max��(���)…��−min��(���)…�� (2) 
 ��� = max��(���)…��−min��(���)…��. (3) 

 
• Combine SAt and DAt 
 �� = ���

�
⋅ ���. (4) 

 
• Calculate feature signal FSt within a moving window (w = 100 ms) 
 ��� = max��(���)…��. (5) 

 
• Use the mean value of the last 2 seconds of FSt as threshold Tht (w = 2 s) 

 Th� =
�

�
∑ FS�
�
�	��� . (6) 

 
Figure 3 shows three different ECG signals (containing noise and small artifacts; high 

T wave; sudden subject motion) with their corresponding feature signals. The feature 
signal is robust regarding noise, small artifacts and prominent T waves, but does respond 
to sudden motion of the subject. 

Whenever the feature signal exceeds the threshold, the following statistic criterions 
have to be fulfilled. Otherwise the detected part of the signal is interpreted as an artifact: 

• Standard deviation σ within the last 400 ms 
 ��� > 	� + 6 ⋅ σ
. (7) 

 
• Kurtosis β2 within the last 2.5 seconds 
 
� > 4. (8) 

 

  
Figure 3: Differently shaped ECG signals with their corresponding response of the 

feature signal FSt (equation 5) and its threshold Tht (equation 6) 
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Within each region containing an R peak, differences between local minima and 
maxima are calculated. The maximum with the highest difference to its surrounding 
minima is chosen as the exact position of the R peak. If more than two R peaks have 
already been detected, a template is built by averaging them. The correlation between the 
newly detected R peak and the template is computed as similarity measure and has to 
exceed a predefined threshold. Otherwise the R peak is discarded. 

To avoid not detecting potentially missed or wrongly discarded R peaks, the intervals 
between two consecutive R peaks (RR interval) are calculated. If one RR interval exceeds 
1.8 times the previous ones, the section between those R peaks is searched again with 
lower thresholds. 

 
Classification of the R peaks is performed in real time. The ECG signal at each R peak 

± 0.5 seconds is compared to a predefined number of classes using correlation and is 
assigned to its most similar class. If classes among each other correlate better than with 
the current R peak, these classes are merged and a new class is created from the current 
signal. This approach results in dynamically evolving classes, continuously enhancing 
with the duration of the measurement. 

To reduce noise, templates are created by averaging each class and are used for the 
detection of all subsequent features (QRS on- and offset, P and T wave as well as their 
on- and offsets). Only a local refinement is performed using the original signal. 

 
To detect the onset of the QRS complex, an interval of 150 ms straight before the R 

peak of the template is analyzed as follows: 
• Calculate the amplitudes TAt and DAt of the template Tt and its first discrete 

derivate within a moving window (w = 30 ms) 
 	�� = max�	(���)…��−min�	(���)…�� (9) 

 ��� = max�	′(���)…��−min�	′(���)…��. (10) 
 

• Calculate a threshold TT and TD for the amplitudes TAt and DAt 
 TT = c� ⋅ �max�	���−min�	����+min�	��� (11) 
 TD = c� ⋅ �max�����−min������+min����� (12) 
 with c1 and c2 being predefined constants. 

 
• The point closest to the R peak, where TAt is below TT or DAt is below TD is 

marked as reference for the QRS onset. 
 

• The exact QRS onset is found within a 40 ms region prior to the reference point at 
the closest extremum to the R peak in the original signal. If no extremum is 
present, the point with the lowest slope is considered to be the QRS onset. 

 
The computation of the QRS offset is very similar to the onset, with two exceptions: 
• In order to annotate prolonged QRS complexes correctly, the analyzed interval is 

chosen larger. 
 

• In equation (9) and (10), window w is 60 ms. 



 
The peak of the T wave is detected by a special ‘wings’ function W as described by 

Christov and Simova [9] as follows: 
 W� = T����� − T� (13) 
 W� = T� − T����� (14) 
 W = W� ∙ W� (15) 
 
The ‘wings’ function is applied to the template Tt between the previously detected 

QRS offset and the end of the template (0.5 seconds after the R peak). As shown in 
Figure 4, the position of the minimum of the ‘wings’ function represents the peak of the T 
wave, regardless of the polarization of the T wave. Subsequently, the position of the peak 
of the T wave is refined using the original signal by finding a local minimum or 
maximum, depending on the wave’s polarization. 
 

 
Figure 4: Top: Different T waves (left: positive T wave, right: negative T wave). Bottom: 

corresponding 'wings' function. 
 
The part of the template between QRS offset and T peak is searched for the closest 

extremum to the T peak, which is used as reference point for T onset. If no extremum is 
present, the point with the flattest slope is used instead. Like the T peak, the T onset is 
refined by finding a local extremum in the original signal. In some cases, especially in 
ECG traces showing prolonged duration of the QRS complex, T wave and QRS complex 
overlap. In this case, no reasonable T onset point can be found, even not by medical 
experts. This condition leads to detection of the T onset straight before the T peak, 
allowing easy recognition. In this case, no T onset will be annotated at all. 

The detection of the T offset is performed in a similar manner between the T peak and 
the end of the template (0.5 seconds after the R peak). 

 
To detect the peak of the P wave, the interval between the preceding T offset and the 

current QRS onset is evaluated in the template by a slightly altered ‘wings’ function 
(equation 13, 14, 15) which responds just to positive peaks. Again, the peak is located at 
the minimum of the ‘wings’ function. P onset and P offset are found in the same way as T 
onset and T offset. 
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Due to very small amplitude or high noise level, the P wave in some ECG recordings 
is indiscernible. To prevent the algorithm from false detections, the amplitude of the P 
wave (derived as difference in voltage between the P peak and the mean of P onset and P 
offset) has to exceed a certain fraction of the amplitude of the QRS complex, otherwise 
no P wave (peak, onset and offset) is detected at all. 
 

4 Results 
PhysioNet databases are a collection of recordings of different physiological 

modalities such as electroencephalogram, electrocardiogram, blood pressure, respiration 
and others. Depending on their objective, several databases contain different kinds of 
annotations [10, 11]. Hence, annotations done by medical experts can be used to verify 
automated algorithms. The following databases have been chosen for the verification of 
the algorithm presented in this paper due to a wide range of different ECG signals as well 
as a reasonable amount of expert annotations: 

• QT Database, created to evaluate algorithms detecting the QT interval [12]. 
• AF Termination Challenge Database, designed to be used in the “Computers in 

Cardiology Challenge 2004”. 
• MIT-BIH Arrhythmia Database, test material for evaluation of arrhythmia 

detectors. 
• Fantasia Database, originally used for testing automated arrhythmia detection [13]. 
 
The presented algorithm was tested against all four databases with respect to the 

detection rate of QRS complexes. The American National Standards Institute (ANSI) 
essentially recommends two parameters for the evaluation of the detection rate [14]: The 
sensitivity Se 

 � =
��

�����
 (16) 

and the positive predictive value PPV 

 ��� =
��

�����
, (17) 

where TP is the number of true positive, FN the number of false negative and FP the 
number of false positive detections. 

A sensitivity of 98.5% and a positive predictive value of 98.3% were achieved in the 
verification of the detection rate. Time differences between detected and corresponding 
annotated points of the QT database are shown in Table 1. Durations of the PR interval, 
the QRS complex and the QT interval were calculated from the results of the algorithm 
and the expert annotations, respectively. The differences between the results of the 
algorithm and the annotations are shown in Figure 5 as Bland-Altman diagrams [15]. 
Mean and standard deviation of these differences are -1.1 ± 19.9 ms for the PR interval, 
3.6 ± 16.5 ms for the QRS complex and -4.8 ± 35.3 ms for the QT interval. These results 
are satisfying and match existing offline algorithms [7, 8, 16]. 

 
 
 
 
 



Table 1: Means and standard deviations of differences in time between annotated and 
detected points as well as between different expert annotations. 

 Algorithm-expert deviation Inter-expert deviation 
Feature Mean Std Mean Std 
P onset 2.3 ms 23.8 ms * * 
P peak 0.5 ms 22.2 ms * * 
P offset - 0.3 ms 27.2 ms * * 
QRS onset 0.5 ms 10.2 ms 3.8 ms 14.2 ms 
R peak - 9.1 ms 14.4 ms 0.1 ms 2.4 ms 
QRS offset 4.3 ms 12.5 ms 2.7 ms 17.0 ms 
T onset 10.8 ms 63.0 ms 9.5 ms 44.9 ms 
T peak - 3.3 ms 33.1 ms 3.5 ms 30.0 ms 
T offset - 4.2 ms 38.8 ms 5.8 ms 39.9 ms 

* Annotated by one expert only 
 
 
 

 

 
Figure 5: Bland-Altman diagrams comparing the duration of certain intervals derived 

from expert annotations with the results of the algorithm. Top left: PR interval. Top right: 
QRS complex. Bottom: QT interval 
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5 Discussion and conclusion 
In most cases, the average deviations shown in Table 1 are in the range of the 

sampling interval of 4 ms, suggesting an insignificant error. The standard deviations of 
the differences between algorithm results and expert annotations also match with those of 
inter-expert annotations. Reflecting the uncertainty regarding the exact position of these 
features among experts, these results suggest that the presented algorithm performs 
approximately as well as humans. 

The two outliers in Table 1, R peak and T onset, are partially arising from bad or 
unusual annotations in the QT Database. R peaks are sometimes annotated at negative 
peaks within the QRS complex, whereas they ought to be positive by definition. The 
position of the T onset point is often ambiguous due to overlapping of the T wave with 
the QRS complex. This fact is also reflected by the high standard deviation of the inter-
expert deviations. Nevertheless, even unambiguous T onset points often have not been 
annotated in the QT database, making reasonable comparison with the algorithm difficult. 

Bland-Altman diagrams comparing the annotated and calculated durations of the PR 
interval, the QRS complex and the QT interval in Figure 5 do not show any trends and 
thus do not suggest any methodical error. Their means and standard deviations are in the 
same range as those in Table 1 and therefore do not show any abnormalities. 

The results of the offline verification process are promising. Further work is required 
to implement the algorithm on an embedded system and run hardware-in-the-loop 
simulations for validation in order to build an all-in-one device for ECG measurement 
with real time annotation. 
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