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Abstract 
 
Modelling and simulation of hybrid systems is getting more and more important in 
advanced modelling theory and application. Therefore, the requirements regarding 
flexibility on modern simulators are getting higher and higher. The necessity of fast 
and stable algorithms is increasing considering more complex systems of interest. In 
the last ten years, physical modelling started to support simulation experts in building 
their complex structures. Thereby the needs for simulators are going up a second time. 
To see how modelling and simulation environments deal with state events of different 
order, three classical examples are discussed. These parts offer a spectrum of 
questions for testing basic features and they represent minimum requirements to 
hybrid simulators regarding state events.  
 
At first, the bouncing ball with some extensions is discussed. The following section 
deals with an electrical circuit - it can be used to compare the simulation results of 
different implementation techniques (e.g. physical modelling vs. classical DAE form) 
in one simulator. The third example is a definition of a pendulum on a rope with free 
flight phase, representing a simple system with changes in the state space dimension 
depending on the state variables. The main focus lies on different implementation 
techniques and the comparison of solution quality, calculation time and/or usability of 
the implementation strategy. 
 



 
1 Introduction 
 

Since 2000 the relatively old CSSL standard for simulation systems has become 
obsolete, and new standards and techniques for system simulation are arising. 
At modelling level, Physical Modelling or Component-based Modelling has 
introduced a new era for multidomain modelling and system simulation. The 
‘components’ may be part of textual or graphical libraries in various domains. With 
Modelica and with competitive VHDL-AMS, modelling languages with a certain 
standard have emerged, using component-based modelling with a-causal relations; the 
figure at right shows graphical physical modelling in mechanics and electrical 
engineering.  

 
 

 
 
 
 

Figure 1: Modelica physical modelling for Analog Electrical Domain  
and Mechanics Multibody Domain. 

 
Thereby, the components may be part of textual or graphical libraries in various 
domains. Of course it makes sense to couple this component based a-causal graphical 
modelling with the classical signal-oriented graphical modelling.  
From mathematics’ viewpoint, instead of explicit state models now implicit ‘law-
oriented’ model descriptions have become basis for subsequent simulation, resulting 
in implicit differential-algebraic systems (DAEs).  
 
The additional algebraic equations have emerged a new problem, which relates to 
simulation level. In principle, the simulator must translate the model description into a 
DAE system with proper structure of differential and algebraic equations for the 
extended state space (consisting of differential states and algebraic states), so that a 
‘modern’ DAE solver can handle the implicit state space model with sufficient 
accuracy and sufficient convergence. These conditions are given, if roughly speaking, 
dependencies of differential states and algebraic states are not too ‘weak’; 
unfortunately this is not the case in many e.g. mechatronic systems. Here either the 
simulation system is capable of automatic symbolical ‘extension‘ of the systems 
(introduction of new differential states by differentiating the system symbolically – so-
called index reduction), or the model description is split into different models, 
whereby the algebraic conditions only control switching between the models (handling 
a Structural-dynamic System). Consequently modern DAE solvers offer also features 
for state event handling: the solver checks the algebraic condition. 
 



The algebraic equations, e.g. constraints, are coming along with another new 
challenge, with structural dynamic systems, which on the other hand are also coming 
along with parallel and serial model coupling (co-simulation). Constraints are very 
often coupled with state-dependent conditions for their validity – like loss of freedom, 
etc., requiring a conditional change of the model description controlled by thresholds 
etc . – and resulting in structural-dynamic systems; consequently the problem of state 
event description and state event handling becomes much more complex than in 
classic ODE models and raises new questions for proper hybrid model description. 
Hybrid systems and structural-dynamic Systems are more or less efficiently supported 
at modelling level, but another novelty in system simulation can help: modelling with 
statecharts. 
 
At experiment level / experimental frame, new approaches have been driven by 
computer science. While object oriented programming became the quasi standard of 
software development, the object-oriented modelling paradigm, as a method for 
modelling of systems, has emerged as very useful for modelling of simulation models 
and object-oriented techniques have been introduced in simulation modelling. 
Especially statechart diagrams as part of the Unified Modelling Language (UML), a 
set of graphical modelling techniques and the de facto modelling standard in object-
oriented programming, have shown to be really useful for discrete event simulation 
modelling. 
 
Statechart diagrams were introduced by David Harel of the Weizmann Institute of 
Science in the 1980s. He extended the conventional state-transition-diagram 
formalism by the concepts of hierarchy, concurrency and communication. The basic 
principles of state-transition modelling include only a handful of concepts, basically 
drawing states a system can be in and transitions from one state to another.  
But not until the adding of the principles invented by Harel, statechart modelling 
became a powerful and at the same time easy to apply method to model arbitrary 
systems. The first version of statecharts was applicable for just discrete systems, but in 
the meantime a real time compliant version as part of the UML for real time (UML-
RT) - standard, was developed, allowing also ‘dynamic states’ governed by 
ODEs/DAEs. With hybrid statecharts – the figure at left shows an example for the 
pilot ejection model – the era of Dynamic Statechart Modelling started which allow 
for transparent modelling of structural-dynamic systems and bridging between model 
level and experiment level. 
 
The Physical Modelling approach sets new challenges for the translators of simulation 
systems, with some side effects to the environments (simulation level/runtime 
level/experiment level) of the simulation systems. The Dynamic Statechart Modelling 
approach not only sets challenges for the modelling level, but it also sets challenges 
for the experiment level and the approach constitutes a generic alliance between model 
frame and experimental frame – in contrary to Zeigler’s early postulation of 
‘separation of model frame and experimental frame’. 



The new ARGESIM Benchmark C20 – Hybrid and Structural-dynamic Systems 
intends to investigate new approaches to hybrid modelling and to handling of 
structural dynamic systems, with emphasis on physical modelling techniques and state 
event modelling and state event handling. Three case studies allow investigation of 
different modelling techniques and different implementations for hybrid systems or 
structural-dynamic systems, resp.: the Bouncing Ball, a Switching RLC Circuit, and 
the Rotating Pendulum – the initials of the case studies set up the abbreviation for this 
benchmark: the ARGESIM BCP – Benchmark. 
 

2 Case Study 1: Bouncing Ball 
 
Event Contact Phase. 
Free Falling/Flying Phase. The motion of a free falling mass in a gravitational field is 
given by the following two differential equations for position x  and velocity v : 
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with g  acceleration of gravity ( ²81,9 s
m on Earth) and β  as coefficient for the air 

resistance. β  is a cumulative constant combining the drag coefficient dC  (0.47 for a 
sphere), the density of the surrounding medium ρ , the cross section area A  and the 
mass m : 

m
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In reality the density would be a function of the height, but for small heights it can be 
assumed as a constant, thereby getting a simpler model. The state vector is 

( )Ttvtxtx )(),()( = for the falling/flying phase. 

Setting β  to zero can either represent a very small, but heavy ball, or indicate that the 
experiment is made in a vacuum, or simply neglecting the air resistance, resulting in a 
very simple linear model of linear type: 
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Event Contact Model. Bounce and contact can be implemented using different models. 
The event contact model is quite a simple approach, using Newton’s 3rd law, and a 
coefficient  to describe the loss of energy in case of bounce or impact, resp., and 
neglecting the deformation [3]. The velocity )ˆ( I

prev tv of the ball right ‘before’ the 

impact with the ground ‘jumps’ to the velocity )ˆ( I
new tv  due to ‘reflection’ and energy 

loss. 
 



Mathematical analysis. The linear model (41) allows an analytical calculation of the 
impact time instants mAt , . Assuming initial position 00 >x  and initial velocity 

00 =v , the first impact can be calculated using cbtttx g ++−= ²)( 2  the analytic 
solution : 
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Using the analytic solution, starting flight at 1,At with 
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implying the general recursion for the impact instants mAt ,  and for the time distances 

mAt ,∆  between the bounces: 
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This recursion allows calculating the time instant mAt ,  of the m -th bounce by means 

of the geometric series 
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As 1<µ , the above series converges and gives the limit for the series of bouncing 

time instants ∞t : 
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- being a finite number! These analytical considerations proof, that in finite time 
infinite many bounces take place, or that there is a final time, where the last impact 
takes place. Furthermore, numerical solutions using an event algorithm can be 
validated with the analytical results. 

 



Dynamic Contact Phase. 

In case of a significant contact phase, a more realistic model is necessary, which takes 
into account the elasticity in the contact region. The deformation can be modelled in 
first approximation by a spring-damper-element in parallel to the flying phase 

Free falling/flying phase. Ignoring for simplicity the air resistance, the equations can 
be used for position and velocity, and the deformation is a damping of first order – 
during flight not coupled with position and velocity, but active: 

w
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The linear state space is given by 
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The variable v  is still the velocity, x  is the distance from the ground to the virtual 
bottom point of the not deformed ‘ball’ (may become negative), and  represents the 
deformation, so that the actual bottom position of the deflected ‘ball’, the distance 

)(ty  from the bottom of the deflected ‘ball’ to ground is given by 

)()()( twtxty +=  
whereby the deflection/deformation is measured in positive direction.  
Contact phase. In the contact phase, the normalized contact force cf  determines the 
dynamic behaviour: 

dvkxfc −−=  

Due to the unilateral contact between the ball and the ground, the contact force cf  

cannot be negative, so that cf  is in fact given by )0,max(ˆ dvkxfc −−=  . 

In case of contact, the dynamic equation (38) for velocity  gets the contact force cf  
added as counterforce to gravity, and w , the change of deflection must equilibrate to 
velocity .The dynamic equations in the continuous contact phase are consequently: 
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The linear state space is given by 
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3 Case Study 2: Switching RLC Circuit 
 

 
 

Figure 2: RLC Circuit for Case Study 2 
 
 
Basic RLC Modelling – RLC-B model. Kirchhoff’s laws and node equation allow setup 
of state equations for the basic RLC model (RLC-B model), which are also used by 
simulation systems with physical modelling features. Manual derivation of the system 
equations circuit will usually choose a state vector )(tx   consisting of current )(ti  and 
capacitor voltage )(tuC  and result in a linear state space: 
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Automatic model generation e.g. by means of physical modelling will probably make 
a similar state space choice, but in general the principle choice is a general nonlinear 
system: 
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RLC model with switching Resistor – RLC-R. Switching in a circuit may be 
designed by a resistor, which switches from low to high resistance values, and vice 
versa, in parallel to the circuit.  

 

 



Kirchhoff’s law and node equations give a model description, extended by resolution 
of the additional parallel resistor, whereby time-dependent resistance values )(tR can 
be seen as time-dependent input: 
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The switching of values is not a real jump in the resistance values, it is imagined as 
fast transient from on level to off level, and back. Figure 3 shows the typical 
characteristic time-dependent curve for a time-dependent resistor switching, whereby 
the transient phases ffon tt ∆=∆  

soffeoffoffsoneonon tttttt ,,,, −=∆−=∆  

are usually very short. 
 

 
Figure 3: Characteristic of the time-dependent resistor 

 
For proper modelling the question arises, how accurate the time-dependent resistance 
must be traced. For accurate and comparable results it is necessary to synchronize 

eoffsoffeonson tttt ,,,, ,,, , the switching time instants of the resistor, with the time instants 

kt  of the ODE solver. Especially the transient phases must be traced sufficiently 
accurate; the stepsize of the solver must be less than the solver’s stepsize, i.e.  

offiionkk tttttt ∆<−∆<− +− 11 ,  

For this synchronisation is necessary to model state events of type SE-I - input change 
event. 
 
 
 



 
RLC model with witching Diode – RLC-D.  
Simple diode models mimicry the dynamic behaviour as an ideal switch for the 
current )(ti   depending on diode voltage Du  limited as given in Figure 3, which 
switches from low to high resistance values, and vice versa, in parallel to the circuit.  
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This mathematical formulation describes the modes of the diode: 
• Diode Backward Mode: for input voltage less forward voltage ( )0,DD uu < , the 

current through the diode is zero.  

• Diode Forward Mode: for input voltage beyond forward voltage ( )0,DD uu > , the 

diode is assumed to be an ideal conductor and feeds the current )(ti  forward, but 

limited up to a maximal current SIti ≤)( . 
Figure 4 shows summarizes the ideal switching behaviour of a diode, at left with‘very’ 
ideal forward voltage 00, =Du , at right with more realistic forward voltage 00, >Du . 

 
 

 
 
 
 
 
 

 
 

Figure 4: Characteristics of ideal diode 
 
 

 
A diode is a nonlinear element, and indeed the switching dynamics evolve nonlinear 
dynamics. One nonlinear model is known as Shockley diode model.  



The mathematical description is given by an exponential-like function for the 
switching transient behaviour: 
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with the saturation current AI S
1210−=  and the temperature voltage mVUT 25= , 

assuming ambient temperature. 
 
Figure 5 shows the continuous characteristic curve for the Shockley diode model due 
to the formula above. 

 
Figure 5: Diode model with Shockley equation 

 
This nonlinear formula adds an algebraic equation to the explicit state space, if the 
node equation is resolved in case of forward mode of the diode: 
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Following the previous notation )(tuD  is an algebraic state )()( tutz D=  and is the 
corresponding algebraic equation, so that in feedforward mode the system becomes a 
real DAE system – instead of the ODE : 
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or in state coordinates in more detail 
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4 Case Study 3: Rotating Pendulum with free flight phase 
 

This example describes a classical idealized pendulum on a rope with damping. The 
body, which is considered a point mass, is connected to a fixed point in a room via a 
rope of given length. The rope is assumed to be non-elastic and without mass. As a 
simplification, it is presumed that the body can move freely only in the plane, i.e. the 
area of a circle with a radius equal to the length of the rope. 
Using these assumptions, the behavior of the pendulum can be described with two 
states: 
 
• If the rope is tight, the body is moving along a circular path (state "bound"). Since 

the radius is fixed, the movement in this state can be described by one variable, i.e. 
the angle between the rope and the upper perpendicular. 

• If the rope is loose, the body is free falling (state "flying") until the rope is tight 
again (back in state "bound"). This movement is defined by two state variables, i.e. 
the Cartesian −x  and −y coordinates of the body. 
 

The different states are illustrated in Figure 6, where you can also see that the two 
states have different numbers of degrees of freedom, which is the reason why the state 
space dimension changes as the pendulum alters its state. 
Note that the angle ϕ  is measured from the upper perpendicular in the range [ ]π2,0  
in order to have a continuous parameter when the pendulum is oscillating around the 
lower rest position.  

 

  

Figure 6: Left: Pendulum with mass m  and length ; middle: Classical  
oscillating pendulum (state "bound") with angle ϕ  as degree of freedom;  

right: Free falling pendulum mass (state "flying") and Cartesian  
coordinates as degrees of freedom.   

 

How the various forces are affecting the mass during the circular movement can be 
seen in Figure 7. 



 

Figure 7: Forces affecting the mass in the "bound" state 
 

The state "bound" can be described by using the angular momentum balance, which, 
with regard to Figure 7, leads to 

,0sin =−+ ϕϕϕ
l
g

m
k
  

with the damping factor k , the mass m , the length of the rope l  and the earth 
acceleration g . Furthermore, the force on the rope 

2cos ϕϕ mlgmF ++=  

provides a criteria for the case when a state change from "bound" to "flying" occurs. If 
this force becomes lower than zero, the gravitational force outweighs the centrifugal 
force and the pendulum is entering the "flying" state. 

Being in the "flying" state, the body has one more degree of freedom compared to the 
state "bound". The motion of the mass in this state is described by conservation of 
momentum in −x  and −y direction: 

ykmgymxkxm  −−=−= ,  

Using an additional geometric equation, 

²²² yxr +=  

it is tested if the rope is loose or completely tight. If r  fulfills 1≥r , the rope has 
become tight again, forcing the body back on the circular path and the pendulum 
switches to the ”bound” state again. 

Summing up, Figure 8 shows an overview of the two different models with the criteria 
for all state changes. 

 



 
Figure 8: Summary of the two state models with criteria for the state changes 

representing the rotating pendulum with free flight phase 
 

This example shows that different states of such a hybrid model may have to be 
described by different physical equations and that the number of necessary equations 
can differ among the states. 

The occurring state event is therefore of type four (SE-D): the dimension of the state 
space changes discontinuously. These events are essential state events. They have to 
be located, transformed into a time event and modeled in discrete model parts. 

To Figure out the event functions h , Figure 7 can be used easily. It has to be taken into 
account that, additionally to the classical state event handling, a coordinate 
transformation has to be performed at each event. In case of changing from "bound" to 
"flying", the polar coordinates have to be transformed into Cartesian coordinates, and 
vice versa in the other case. 

Basic simulation. Calculate and visualize a basic simulation run with the following 
parameters 2^81,919,05,1 s

m
s

kg gmlkkgm ==== and the initial conditions 

s
1

040 15)0()0( ==== ϕϕϕϕ π   
Simulate beginning at 0=t  until the maximal oscillation does not exceed 10

π  any 
longer. Identify the corresponding time. 

Plot the coordinate )(tx over the time, the trajectory ( ))(),( tytx  and find the passages 
where the pendulum is in the "bound" state and the "flying" state, respectively. 

Inconstant damping. Modify the model from the first task in a way such that a region 
with different damping factor is implemented. This region can be explained for 
example by the body diving in a medium with different density. 

Assume that the different damping factor is affecting the pendulum only in the 
"bound" state. The "flying" state remains unchanged. An illustration of this situation is 
shown in Figure 9. 



Using this assumption, a new event is created, i.e. an event of type one (SE-P): a 
parameter changes discontinuously. In the defined case, this event cannot be 
implemented without triggering the time point, when the angle ϕ  reaches the region 
with different damping. 

 

Figure 9: Region with different damping factor in the "bound" state 
 

Test the modified model by calculating and visualizing a simulation run with a 
damping factor of s

kgk 9,122 =  in the region [ ]7
8

7
6 , ππϕ ∈ .  For the other parameters 

you can use the same values as above.The event functions detecting the state events 
for changing the damping factor are given as follows: 

( ) ( )
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8,
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21

πϕϕπϕϕ −=−= hh Plot again the coordinate )(tx over time and the 

trajectory ( ))(),( tytx  during the entire simulation period. Identify the time periods of 
the "bound" state and the "flying" state and compare these results to the corresponding 
findings from the basic simulation. 
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