
Comparison of Hybrid Modelling Approaches:
ARGESIM-Comparison BCP - Bouncing Ball, Circuit

with Diodes, Rotating Pendulum

Andreas Körner1, Bernhard Heinzl1, Matthias Rößler1, Günther Zauner2,
Felix Breitenecker1, Horst Ecker3

akoerner@asc.tuwien.ac.at
1Institute for Analysis and Scientific Computing, Vienna University of Technology

Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
2dwh Simulation Services

Neustiftgasse 57-59, 1070 Vienna, Austria
3Institute for Mechanic and Mechatronics, Vienna University of Technology

Wiedner Hauptstraße 8-10, 1040 Vienna, Austria

Abstract

Modelling and simulation of hybrid systems is getting more and more important in
advanced modelling theory and application. Therefore, the requirements regarding
flexibility on modern simulators are getting higher and higher. The necessity of fast
and stable algorithms is increasing considering more complex systems of interest. In
the last ten years, physical modelling started to support simulation experts in building
their complex structures. Thereby the needs for simulators are going up a second time.
To see how modelling and simulation environments deal with state events of different
order, three classical examples are discussed. These parts offer a spectrum of
questions for testing basic features and they represent minimum requirements to
hybrid simulators regarding state events.

At first, the bouncing ball with some extensions is discussed. The following section
deals with an electrical circuit - it can be used to compare the simulation results of
different implementation techniques (e.g. physical modelling vs. classical DAE form)
in one simulator. The third example is a definition of a pendulum on a rope with free
flight phase, representing a simple system with changes in the state space dimension
depending on the state variables. The main focus lies on different implementation
techniques and the comparison of solution quality, calculation time and/or usability of
the implementation strategy.

1 Introduction

Since 2000 the relatively old CSSL standard for simulation systems has become
obsolete, and new standards and techniques for system simulation are arising.
At modelling level, Physical Modelling or Component-based Modelling has
introduced a new era for multidomain modelling and system simulation. The
‘components’ may be part of textual or graphical libraries in various domains. With
Modelica and with competitive VHDL-AMS, modelling languages with a certain
standard have emerged, using component-based modelling with a-causal relations; the
figure at right shows graphical physical modelling in mechanics and electrical
engineering.

Figure 1: Modelica physical modelling for Analog Electrical Domain
and Mechanics Multibody Domain.

Thereby, the components may be part of textual or graphical libraries in various
domains. Of course it makes sense to couple this component based a-causal graphical
modelling with the classical signal-oriented graphical modelling.
From mathematics’ viewpoint, instead of explicit state models now implicit ‘law-
oriented’ model descriptions have become basis for subsequent simulation, resulting
in implicit differential-algebraic systems (DAEs).

The additional algebraic equations have emerged a new problem, which relates to
simulation level. In principle, the simulator must translate the model description into a
DAE system with proper structure of differential and algebraic equations for the
extended state space (consisting of differential states and algebraic states), so that a
‘modern’ DAE solver can handle the implicit state space model with sufficient
accuracy and sufficient convergence. These conditions are given, if roughly speaking,
dependencies of differential states and algebraic states are not too ‘weak’;
unfortunately this is not the case in many e.g. mechatronic systems. Here either the
simulation system is capable of automatic symbolical ‘extension‘ of the systems
(introduction of new differential states by differentiating the system symbolically – so-
called index reduction), or the model description is split into different models,
whereby the algebraic conditions only control switching between the models (handling
a Structural-dynamic System). Consequently modern DAE solvers offer also features
for state event handling: the solver checks the algebraic condition.

The algebraic equations, e.g. constraints, are coming along with another new
challenge, with structural dynamic systems, which on the other hand are also coming
along with parallel and serial model coupling (co-simulation). Constraints are very
often coupled with state-dependent conditions for their validity – like loss of freedom,
etc., requiring a conditional change of the model description controlled by thresholds
etc . – and resulting in structural-dynamic systems; consequently the problem of state
event description and state event handling becomes much more complex than in
classic ODE models and raises new questions for proper hybrid model description.
Hybrid systems and structural-dynamic Systems are more or less efficiently supported
at modelling level, but another novelty in system simulation can help: modelling with
statecharts.

At experiment level / experimental frame, new approaches have been driven by
computer science. While object oriented programming became the quasi standard of
software development, the object-oriented modelling paradigm, as a method for
modelling of systems, has emerged as very useful for modelling of simulation models
and object-oriented techniques have been introduced in simulation modelling.
Especially statechart diagrams as part of the Unified Modelling Language (UML), a
set of graphical modelling techniques and the de facto modelling standard in object-
oriented programming, have shown to be really useful for discrete event simulation
modelling.

Statechart diagrams were introduced by David Harel of the Weizmann Institute of
Science in the 1980s. He extended the conventional state-transition-diagram
formalism by the concepts of hierarchy, concurrency and communication. The basic
principles of state-transition modelling include only a handful of concepts, basically
drawing states a system can be in and transitions from one state to another.
But not until the adding of the principles invented by Harel, statechart modelling
became a powerful and at the same time easy to apply method to model arbitrary
systems. The first version of statecharts was applicable for just discrete systems, but in
the meantime a real time compliant version as part of the UML for real time (UML-
RT) - standard, was developed, allowing also ‘dynamic states’ governed by
ODEs/DAEs. With hybrid statecharts – the figure at left shows an example for the
pilot ejection model – the era of Dynamic Statechart Modelling started which allow
for transparent modelling of structural-dynamic systems and bridging between model
level and experiment level.

The Physical Modelling approach sets new challenges for the translators of simulation
systems, with some side effects to the environments (simulation level/runtime
level/experiment level) of the simulation systems. The Dynamic Statechart Modelling
approach not only sets challenges for the modelling level, but it also sets challenges
for the experiment level and the approach constitutes a generic alliance between model
frame and experimental frame – in contrary to Zeigler’s early postulation of
‘separation of model frame and experimental frame’.

The new ARGESIM Benchmark C20 – Hybrid and Structural-dynamic Systems
intends to investigate new approaches to hybrid modelling and to handling of
structural dynamic systems, with emphasis on physical modelling techniques and state
event modelling and state event handling. Three case studies allow investigation of
different modelling techniques and different implementations for hybrid systems or
structural-dynamic systems, resp.: the Bouncing Ball, a Switching RLC Circuit, and
the Rotating Pendulum – the initials of the case studies set up the abbreviation for this
benchmark: the ARGESIM BCP – Benchmark.

2 Case Study 1: Bouncing Ball

Event Contact Phase.
Free Falling/Flying Phase. The motion of a free falling mass in a gravitational field is
given by the following two differential equations for position x and velocity v :

)(² vsignvgv
vx

β−−=
=

with g acceleration of gravity (²81,9 s
m on Earth) and β as coefficient for the air

resistance. β is a cumulative constant combining the drag coefficient dC (0.47 for a
sphere), the density of the surrounding medium ρ , the cross section area A and the
mass m :

m
ACd ⋅⋅= ρβ

2
1

In reality the density would be a function of the height, but for small heights it can be
assumed as a constant, thereby getting a simpler model. The state vector is

()Ttvtxtx)(),()(= for the falling/flying phase.

Setting β to zero can either represent a very small, but heavy ball, or indicate that the
experiment is made in a vacuum, or simply neglecting the air resistance, resulting in a
very simple linear model of linear type:

−

=

1
0

)(
00
10

)(gtxtx
dt
d

Event Contact Model. Bounce and contact can be implemented using different models.
The event contact model is quite a simple approach, using Newton’s 3rd law, and a
coefficient to describe the loss of energy in case of bounce or impact, resp., and
neglecting the deformation [3]. The velocity)ˆ(I

prev tv of the ball right ‘before’ the

impact with the ground ‘jumps’ to the velocity)ˆ(I
new tv due to ‘reflection’ and energy

loss.

Mathematical analysis. The linear model (41) allows an analytical calculation of the
impact time instants mAt , . Assuming initial position 00 >x and initial velocity

00 =v , the first impact can be calculated using cbtttx g ++−= ²)(2 the analytic
solution :

g
x

t A
0

1,
2

=

Using the analytic solution, starting flight at 1,At with

1,1,1,1,)()(,0)(AprevAAA tgtvtvtx ⋅⋅=−== µµ

gives the next impact time

,2
),12(

1,1,2,2,

1,2,

AAAA

AA

tttt
tt

⋅=−=∆
+=
µ

µ

implying the general recursion for the impact instants mAt , and for the time distances

mAt ,∆ between the bounces:

()
() 21

211

1 −−−−−

−−−−−−−−

−+=
−=−=∆

mAmAmA

mAmAmAmAmA

ttt
ttttt

µµ
µ

This recursion allows calculating the time instant mAt , of the m -th bounce by means

of the geometric series

+−⋅= ∑

−

=

1

0

0
, 21

2 m

i

i
mA g

x
t µ

As 1<µ , the above series converges and gives the limit for the series of bouncing

time instants ∞t :

µ
µ

−
+

⋅=∞ 1
12 0

, g
x

t A

- being a finite number! These analytical considerations proof, that in finite time
infinite many bounces take place, or that there is a final time, where the last impact
takes place. Furthermore, numerical solutions using an event algorithm can be
validated with the analytical results.

Dynamic Contact Phase.

In case of a significant contact phase, a more realistic model is necessary, which takes
into account the elasticity in the contact region. The deformation can be modelled in
first approximation by a spring-damper-element in parallel to the flying phase

Free falling/flying phase. Ignoring for simplicity the air resistance, the equations can
be used for position and velocity, and the deformation is a damping of first order –
during flight not coupled with position and velocity, but active:

w
d
kwgvvx −=−== ,,

The linear state space is given by

)()()(tuBtxAtx
dt
d

FF += where

−

=

0
1
0

)(
00

000
010

)(gtxtx
dt
d

d
k

The variable v is still the velocity, x is the distance from the ground to the virtual
bottom point of the not deformed ‘ball’ (may become negative), and represents the
deformation, so that the actual bottom position of the deflected ‘ball’, the distance

)(ty from the bottom of the deflected ‘ball’ to ground is given by

)()()(twtxty +=
whereby the deflection/deformation is measured in positive direction.
Contact phase. In the contact phase, the normalized contact force cf determines the
dynamic behaviour:

dvkxfc −−=

Due to the unilateral contact between the ball and the ground, the contact force cf

cannot be negative, so that cf is in fact given by)0,max(ˆ dvkxfc −−= .

In case of contact, the dynamic equation (38) for velocity gets the contact force cf
added as counterforce to gravity, and w , the change of deflection must equilibrate to
velocity .The dynamic equations in the continuous contact phase are consequently:

vwdvkxgfgvvx c −=−−−=+−== ,,

The linear state space is given by

)()()(tuBtxAtx
dt
d

CC += where

−

−
−−=

0
1
0

)(
010
0
010

)(gtxdktx
dt
d

3 Case Study 2: Switching RLC Circuit

Figure 2: RLC Circuit for Case Study 2

Basic RLC Modelling – RLC-B model. Kirchhoff’s laws and node equation allow setup
of state equations for the basic RLC model (RLC-B model), which are also used by
simulation systems with physical modelling features. Manual derivation of the system
equations circuit will usually choose a state vector)(tx consisting of current)(ti and
capacitor voltage)(tuC and result in a linear state space:

() ()

()TC

S
T

C

uitx

tuBtxAtx
dt
d

tutututitx

0,00 ,)(

)()()(

)()(,)(),()(

=

+=

==

Automatic model generation e.g. by means of physical modelling will probably make
a similar state space choice, but in general the principle choice is a general nonlinear
system:

() ()

()TC

S
T

C

uitx

tutxftx
dt
d

tutututitx

0,00 ,)(

))(),(()(

)()(,)(),()(

=

=

==

RLC model with switching Resistor – RLC-R. Switching in a circuit may be
designed by a resistor, which switches from low to high resistance values, and vice
versa, in parallel to the circuit.

Kirchhoff’s law and node equations give a model description, extended by resolution
of the additional parallel resistor, whereby time-dependent resistance values)(tR can
be seen as time-dependent input:

() ()TS
T

C tRtutututitx)(),()(,)(),()(==

()TC
T

C

R
uitxtutxftx

dt
d

0,00 ,)(,))(),(()(==

The switching of values is not a real jump in the resistance values, it is imagined as
fast transient from on level to off level, and back. Figure 3 shows the typical
characteristic time-dependent curve for a time-dependent resistor switching, whereby
the transient phases ffon tt ∆=∆

soffeoffoffsoneonon tttttt ,,,, −=∆−=∆

are usually very short.

Figure 3: Characteristic of the time-dependent resistor

For proper modelling the question arises, how accurate the time-dependent resistance
must be traced. For accurate and comparable results it is necessary to synchronize

eoffsoffeonson tttt ,,,, ,,, , the switching time instants of the resistor, with the time instants

kt of the ODE solver. Especially the transient phases must be traced sufficiently
accurate; the stepsize of the solver must be less than the solver’s stepsize, i.e.

offiionkk tttttt ∆<−∆<− +− 11 ,

For this synchronisation is necessary to model state events of type SE-I - input change
event.

RLC model with witching Diode – RLC-D.
Simple diode models mimicry the dynamic behaviour as an ideal switch for the
current)(ti depending on diode voltage Du limited as given in Figure 3, which
switches from low to high resistance values, and vice versa, in parallel to the circuit.

><
≤<

≤
=

SDDS

SDD

DD

D

ItiuuI
Itiuuti

uu
ui

)(,,
)(,),(

,0
)(

0,

0,

0,

This mathematical formulation describes the modes of the diode:
• Diode Backward Mode: for input voltage less forward voltage ()0,DD uu < , the

current through the diode is zero.

• Diode Forward Mode: for input voltage beyond forward voltage ()0,DD uu > , the

diode is assumed to be an ideal conductor and feeds the current)(ti forward, but

limited up to a maximal current SIti ≤)(.
Figure 4 shows summarizes the ideal switching behaviour of a diode, at left with‘very’
ideal forward voltage 00, =Du , at right with more realistic forward voltage 00, >Du .

Figure 4: Characteristics of ideal diode

A diode is a nonlinear element, and indeed the switching dynamics evolve nonlinear
dynamics. One nonlinear model is known as Shockley diode model.

The mathematical description is given by an exponential-like function for the
switching transient behaviour:

><

≥

−

<

=

SDDS

D
U
u

S

D

D

ItiuuI

ueI

u

ui T

D

)(,

01

0,0

)(

0,

with the saturation current AI S
1210−= and the temperature voltage mVUT 25= ,

assuming ambient temperature.

Figure 5 shows the continuous characteristic curve for the Shockley diode model due
to the formula above.

Figure 5: Diode model with Shockley equation

This nonlinear formula adds an algebraic equation to the explicit state space, if the
node equation is resolved in case of forward mode of the diode:

012 =++

− DC

U
u

S uueRI T

D

Following the previous notation)(tuD is an algebraic state)()(tutz D= and is the
corresponding algebraic equation, so that in feedforward mode the system becomes a
real DAE system – instead of the ODE :

() ()

() () 0)();()(),(),(

)();();(),()(),(),()(

,,

,,

==

==

tutugtutztxg

tutututiftutztxftx
dt
d

DC
FDSFDS

SDC

FDSFDS

or in state coordinates in more detail

()
()

() 0;

;;,
;;,

,

,
2

,
1

=

=

DC
FDS

SDC
FDS

SDC
FDS

C

uug

uuuif
uuuif

u
i

dt
d

.

4 Case Study 3: Rotating Pendulum with free flight phase

This example describes a classical idealized pendulum on a rope with damping. The
body, which is considered a point mass, is connected to a fixed point in a room via a
rope of given length. The rope is assumed to be non-elastic and without mass. As a
simplification, it is presumed that the body can move freely only in the plane, i.e. the
area of a circle with a radius equal to the length of the rope.
Using these assumptions, the behavior of the pendulum can be described with two
states:

• If the rope is tight, the body is moving along a circular path (state "bound"). Since

the radius is fixed, the movement in this state can be described by one variable, i.e.
the angle between the rope and the upper perpendicular.

• If the rope is loose, the body is free falling (state "flying") until the rope is tight
again (back in state "bound"). This movement is defined by two state variables, i.e.
the Cartesian −x and −y coordinates of the body.

The different states are illustrated in Figure 6, where you can also see that the two
states have different numbers of degrees of freedom, which is the reason why the state
space dimension changes as the pendulum alters its state.
Note that the angle ϕ is measured from the upper perpendicular in the range []π2,0
in order to have a continuous parameter when the pendulum is oscillating around the
lower rest position.

Figure 6: Left: Pendulum with mass m and length ; middle: Classical
oscillating pendulum (state "bound") with angle ϕ as degree of freedom;

right: Free falling pendulum mass (state "flying") and Cartesian
coordinates as degrees of freedom.

How the various forces are affecting the mass during the circular movement can be
seen in Figure 7.

Figure 7: Forces affecting the mass in the "bound" state

The state "bound" can be described by using the angular momentum balance, which,
with regard to Figure 7, leads to

,0sin =−+ ϕϕϕ
l
g

m
k

with the damping factor k , the mass m , the length of the rope l and the earth
acceleration g . Furthermore, the force on the rope

2cos ϕϕ mlgmF ++=

provides a criteria for the case when a state change from "bound" to "flying" occurs. If
this force becomes lower than zero, the gravitational force outweighs the centrifugal
force and the pendulum is entering the "flying" state.

Being in the "flying" state, the body has one more degree of freedom compared to the
state "bound". The motion of the mass in this state is described by conservation of
momentum in −x and −y direction:

ykmgymxkxm −−=−= ,

Using an additional geometric equation,

²²² yxr +=

it is tested if the rope is loose or completely tight. If r fulfills 1≥r , the rope has
become tight again, forcing the body back on the circular path and the pendulum
switches to the ”bound” state again.

Summing up, Figure 8 shows an overview of the two different models with the criteria
for all state changes.

Figure 8: Summary of the two state models with criteria for the state changes

representing the rotating pendulum with free flight phase

This example shows that different states of such a hybrid model may have to be
described by different physical equations and that the number of necessary equations
can differ among the states.

The occurring state event is therefore of type four (SE-D): the dimension of the state
space changes discontinuously. These events are essential state events. They have to
be located, transformed into a time event and modeled in discrete model parts.

To Figure out the event functions h , Figure 7 can be used easily. It has to be taken into
account that, additionally to the classical state event handling, a coordinate
transformation has to be performed at each event. In case of changing from "bound" to
"flying", the polar coordinates have to be transformed into Cartesian coordinates, and
vice versa in the other case.

Basic simulation. Calculate and visualize a basic simulation run with the following
parameters 2^81,919,05,1 s

m
s

kg gmlkkgm ==== and the initial conditions

s
1

040 15)0()0(==== ϕϕϕϕ π
Simulate beginning at 0=t until the maximal oscillation does not exceed 10

π any
longer. Identify the corresponding time.

Plot the coordinate)(tx over the time, the trajectory ())(),(tytx and find the passages
where the pendulum is in the "bound" state and the "flying" state, respectively.

Inconstant damping. Modify the model from the first task in a way such that a region
with different damping factor is implemented. This region can be explained for
example by the body diving in a medium with different density.

Assume that the different damping factor is affecting the pendulum only in the
"bound" state. The "flying" state remains unchanged. An illustration of this situation is
shown in Figure 9.

Using this assumption, a new event is created, i.e. an event of type one (SE-P): a
parameter changes discontinuously. In the defined case, this event cannot be
implemented without triggering the time point, when the angle ϕ reaches the region
with different damping.

Figure 9: Region with different damping factor in the "bound" state

Test the modified model by calculating and visualizing a simulation run with a
damping factor of s

kgk 9,122 = in the region []7
8

7
6 , ππϕ ∈ . For the other parameters

you can use the same values as above.The event functions detecting the state events
for changing the damping factor are given as follows:

() ()
7

8,
7

6
21

πϕϕπϕϕ −=−= hh Plot again the coordinate)(tx over time and the

trajectory ())(),(tytx during the entire simulation period. Identify the time periods of
the "bound" state and the "flying" state and compare these results to the corresponding
findings from the basic simulation.

5 References

[1] Breitenecker F., Zauner G., Popper N., Judex F. and Troch I..: Development and

New Concept for External and Internal State Events. SNE Simulation News Europe
17/2, 2007.

[2] Ecker H.: The bouncing ball problem – modeling and simulation aspects. SNE
Simulation News Europe, 34:9 – 14, 2002.

[3] Fritzson P.: Principles of Object-Oriented Modeling and Simulation with Modelica
2.1. John Wiley and Sons, 2004.

[4] Sokal N.O. and Sokal A.D.: Class E - a newclass of high-efficiency tuned single-
ended switching power amplifiers. IEEE Journal of Solid-State Circuits, SC-
10:168–176, 1975.

[5] Viertl N. and Breitenecker F.: Comparison 3 - analysis of a generalized class-e
amplifier. SNE Simulation News Europe, 27:40, 1999.

	Basic simulation. Calculate and visualize a basic simulation run with the following parameters and the initial conditions

