
Varying the level of detail during simulation

Alexandra Mehlhase
a.mehlhase@tu-berlin.de

TU Berlin
Ernst-Reuter-Platz 7 / 10587 Berlin

Abstract
The quality of a simulation model depends on the selected level of detail. If an
inadequate level is chosen, the simulation will either lack accuracy or simulation
performance. Often, it is not possible to find the optimal level of detail and a trade-off
is necessary. To avoid such a trade-off it would be necessary to change the level of
detail during the simulation. Such a change is not possible in modeling tools such as
Matlab/Simulink or Dymola, because a change of the equation system would be
required during simulation. In this paper we present a script that enables the user to
specify a switch from one level of detail to another. With this approach a model of a
diesel combustion engine can be simulated in less simulation time without significant
accuracy losses.

1 Introduction
Models of physical systems need to become more detailed to fulfill the growing need
for accuracy. Such detailed models usually take up more simulation time which is
often not feasible. Often, a level of detail which satisfies the accuracy requirements
and still simulates in an adequate time cannot be found thus compromises are
necessary.
We regard variable-structure models as a possible solution to avoid such
compromises. With a variable-structure model the physical equations that describe the
behavior of the model can change during runtime. This means the model can switch
from one mode with one set of equations to another mode with a different set of
equations. Each mode itself is therefore represented by a model with a set of
equations. There are two different application areas for variable-structure models:

• The behavior of the system changes: variable-behavior model
• The level of detail changes: variable-detail model

An example for a variable-behavior model is a pendulum that becomes a free-falling
mass (see Figure 1).

Figure 1: Pendulum becoming a free-falling mass

An example of a variable-detail model is a beam which can be modeled with two
different levels of detail. When crossing a certain bending point (decision of the
modeler) the model needs to be calculated more accurately (see Figure 2).

Figure 2: Bending beam with different level of detail

A variable-detail model could be simulated in more detailed form in critical situations
and in less detailed form in less significant regions. Consequently, the variable-detail
approach can make a simulation faster and more accurate.
In the available modeling tools such as Matlab/Simulink® [4] (here called Simulink)
and Dymola® [2] it is currently not possible to change the equation system during
runtime. Researches on the topic of variable-structure models have been done [3, 5, 7]
which resulted in e.g. the Modelica-based tool Mosilab [6] and the experimental
language SOL [9]. All approaches present means to create variable-structure models
but the model needs to be created in the specific tool or language. In contrast, our
approach supports the standard tools Simulink and Dymola.
The general approach of starting, stopping and initializing different modes is
equivalent for variable-behavior and variable-detail models. Therefore, Section 2 and
Section 3 use the pendulum variable-behavior model to introduce two different
approaches to model variable-structure models. While the first introduced way is
feasible for small models only, the second way scales with large models. The mode
switches in the second approach are realized though a programmed script that
initializes and starts the modes. The scripting method is then used to create a variable-
detail model of a diesel combustion engine. In the presented example, the simulation
time of the variable-detail model was reduced about 50% without significant losses in
accuracy compared to a one level of detail model. Based on the findings of the
experiments, Section 4 gives an outlook on requirements for modeling variable-
structure models. Finally Section 5 presents the conclusions of the paper.

2 Variable-structure models in Simulink and Dymola without
scripting

To illustrate how a variable-structure model can be modeled in Simulink and Dymola
the pendulum example from the introduction is used. The model has two modes:

• Mode 1: pendulum
• Mode 2: free-falling mass

The simulation starts in the pendulum mode and goes over to the free-falling mass
mode when the centrifugal force becomes less than zero. As soon as the mass reaches
the rope length again the mode switches back to the pendulum mode. The movement
of the pendulum with the two mode switches is illustrated in Figure 3. In the
following sections, this example is implemented in Simulink and Dymola without
using any other means than the ones the modeling tool offers.

Figure 3: Pendulum simulation results

2.1 Simulink
To implement the pendulum in Simulink enabled subsystems for each mode were
used. These modes have to run exclusively and the end values of the old mode need to
be the initial values for the new mode. This results in a complicate switching
procedure presented in Figure 4. Depending on the mode the model is in, different
switching conditions have to be checked. This is done through the switch block on the
right hand side (mode test). Furthermore, the pendulum starts once with start values
given at the beginning of the simulation and once with the end values of the free-
falling mass (switch occurred).
This implementation is not recommended when more than two modes are required for
the needed switching conditions would become more complicated and the model
might not be understandable anymore.

Figure 4: Pendulum in Simulink

2.2 Dymola
In Dymola it is not possible to run the modes exclusively as in Simulink. In Dymola
both modes need to run simultaneously and the coordinates for the pendulum have to
be chosen according to the mode the model should be in. Therefore, unnecessary
calculations are done and more simulation time is required. The shortened code of the
Modelica model is presented in Listings 1.

 algorithm

 when (F<=0 and fall <=0) then
 // initialize ball ...
 end when;

 when (r>L and fall>=1) then
 // initialize pendulum ...
 end when;

 equation
 // pendulum equations ...
 px = sin(phi)*L;
 py = -cos(phi)*L;

 // ball equations
 ...
 r^2 =bx^2+by^2;

 // choosing the right coordinates
 if (fall>=1) then
 x = bx;
 y = by;
 else
 x = px;
 y = py;

 end if;
Listings 1: Shortened Modelica-script of a variable-structure pendulum

2.3 Rating of the approaches

The two approaches to model variable-structure systems are in our opinion not
recommendable when modeling complex systems. In both tools it is more a
workaround than a feasible method. In Simulink the switching procedure gets more
complicated for more complex systems and will not be manageable for large systems.
The Dymola model has even more deficiencies, because the simulation time will rise
with an increasing number of modes due to the simultaneous calculation of the modes.
A better approach to model variable-structure systems in Simulink and Dymola is
presented in the next section.

3 Variable-structure models with scripting
The switching from one mode to another is done with a script which initializes and
starts the new mode. For this approach each mode of the model needs to be
implemented as separate model: in Simulink as separate model files (mdl-file) and in
Dymola as separate classes. In each model, which represents a mode, a switching
condition is required which stops the simulation of the mode. The script then takes
control and starts the new mode with initial values calculated from the old mode.
Figure 5 illustrates the course of events when switching back and forth between two
modes independent of the modeling tool.
To introduce the scripting approach the pendulum example from Section 2 is used.
Three different scripts are presented and discussed:

• Matlab-script with a Simulink model
• MOS-script with a Dymola model
• Matlab-script with a Dymola model

Afterwards, the same three scripts are used to implement a variable-detail combustion
engine and the pros and cons regarding the simulation times are discussed.

Figure 5: Course of events for a structural change with scripting

3.1 Pendulum example

To model the pendulum example in Simulink with the scripting approach, the enabled
subsystems of the Simulink model from Section 2 are saved in two different modeling
files. In Dymola a ball and a pendulum model is implemented in one package but as
separate classes.

Simulink with Matlab-script
The Matlab-script for the pendulum derived from Figure 5 is shown in Listings 1.
The scripting approach provides the means to run the modes exclusively and the
switching condition can be stored directly in the mode. Therefore, the script is rather
simple because it only sets the initial values and starts the new mode.

 sim('pendel.mdl');
 xy = [pendel(end,1);pendel(end,2), pendel(end,3);pendel(end,4)] % initial value
 sim('ball.mdl');

 start_phi = asin(1/L*ballXY(end,1)); % initial value
 sim('pendel.mdl');

Listings 1: Matlab-script for the mode switch of the pendulum

Dymola with MOS-script
For the Dymola model a MOS-script is implemented which performs the necessary
switches (see Listings 2).

st =5;
simulateExtendedModel("script.pendulum",stopTime=st,
 initialNames={"phi"}, initialValues={2},finalNames = {"x"});
 x=readTrajectory(fileName,{"x","y", "dx","dy","L"},n);

simulateExtendedModel("script.ball(L=2)",stopTime=5,
 initialNames={"x","y","vx","vy"}, initialValues=x[1:4,n], finalNames = {"x"});
 phi=readTrajectory(fileName1,{"phi"},n);

simulateExtendedModel("script.pendulum",stopTime=st,
 initialNames={"phi"}, initialValues={phi},finalNames = {"x"});

Listing 2: Script for the pendulum model

A drawback of using MOS-scripts is that Dymola can only deal with one compiled
model at a time. Therefore, each time a switch occurs the model for the next mode
needs to be compiled. This means, the pendulum mode of the example needs to be
compiled twice. But it should only be necessary to compile each mode once because
the equation system of a mode does not change. A model which was already compiled
should be reused instead of recompiled. An approach where only necessary
compilations are done is presented in the next section.

Dymola with Matlab-script
To overcome the drawback of MOS-scripts that a recompilation is needed for each
mode switch we make use of the fact that each time a model is compiled an executable
file ‘dymosim.exe’ is created. Matlab provides the functionality to create this
executable through Dymola and start it with defined initial values and parameters.
A Java, Pascal or batch-script could be used instead of Matlab but the needed
functionality to compile and run a model would have to be implemented first. All
modes of the variable-detail model can now be compiled once at the beginning of the
script. Afterwards, the script only runs the executable files and sets initial and
parameter values (see Figure 5).

3.2 Variable-detail engine model

To illustrate the advantages of variable-detail models a diesel combustion engine is
modeled. The engine has a manifold which is connected to the environment through a
throttle. At the beginning of the simulation, the environment has a different pressure
than the manifold. The pressure in the manifold changes as long as there is a pressure
difference between the environment and the manifold. When the difference is less than
0.1bar the manifold and throttle can be replaced by an environment with a constant
pressure. The switch back to the first mode takes place when the difference between
the environment pressure and the initial pressure is greater than a defined threshold. A
schematic view of this model is presented in Figure 6.

Figure 6: Icon view of the two levels of detail in Dymola

For testing more than one mode switch the environment pressure changes every 5
seconds between 1 and 2 bar and the simulation runs for 20 seconds.

Each time the environment pressure changes the detailed model is used to model the
dynamic behavior in the manifold. When a steady-state is reached again the less
detailed model is used. This results in seven mode switches.
The model was implemented in Simulink and Dymola and three scripts were written:
one in Matlab for the Simulink model, one MOS-File and one Matlab-script for the
Dymola model. All scripts work as was presented in Figure 5 only the used syntax is
different dependent on the scripting language and simulation tool. The simulated
cylinder temperature from a variable-detail and a one level of detail model is shown in
Figure 7. The difference between the two models is so marginal that it can be
disregarded. When looking at the timestamp of the switch (vertical line) it can be seen
that the temperature goes from one mode to the other without visible discontinuities.
All performed simulations have equal results and are therefore not presented in
separate figures.

Figure 7: Cylinder temperature of a variable-detail model and a one level of detail model

In Table 1 measured simulation times are presented for different simulations. The
total time is the sum of the simulation time, of the compile time and of the residual
time. The compile time is the result of the multiplication of the number of needed
compilations and the time needed for each of these compilations. The residual time is
the required time for the pre- and postprocessing of all mode switches.
The Dymola variable-detail model needs only one third of the simulation time
compared to the one level of detail model. The Dymola model with the Matlab-script
is also faster regarding the overall time but the advantage is lessened due to the two
compilations. The residual time results from calling the executable and reading the
simulation data after the simulation. For both simulations the residual time is
equivalent and thus the calculation of the new initial values is so fast that it does not
have an effect. The simulation times of the Dymola model with the MOS-script and
Matlab-script is equivalent.

But due to the unnecessary compilations for each mode switch and a slower
postprocessing, the total time of the MOS-script model is longer compared to the total
time of the one level of detail model.
In Simulink the advantages of the variable-detail model are almost non-existing. This
is the case because the less detailed mode needs almost the same simulation time as
the more detailed mode. The switching of modes works in Simulink but to gain time
advantages modes with larger time differences are required. Although, the equations
of the Simulink model and the Dymola model are the same, the Simulink model needs
a lot more simulation time. Regarding the simulation speed, the Dymola variable-
detail model with the Matlab-script yields the best results.

Table 1: Table with simulation times through scripting

4 Drawbacks and future work
In this section an overview of the drawbacks of the scripting approach and ideas to
overcome these is given. The scripting approach will become rather complicated when
many modes are necessary. Therefore, a more convenient approach would be to
describe the switching in the modeling language directly and let the compiler create
the needed script. Furthermore, a method is needed where variable-structure models
can be created independent of a specific tool. A possible syntax for such an approach
might be SysML [8]. In such methods additional information should be added to the
models, such as for which experiments the model is valid [1]. With the knowledge
whether a model is valid for a certain experiment, necessary mode switches can be
detected and the compatibility of subsystems can be proven. We are currently working
on these ideas.
Some rules concerning variable-detailed models can be learned from the simulation
results:

• Switches should not occur too often, because they might consume all performance

gains. Analyses about how switching conditions should be laid out are necessary.
• The switching time needs to be compensated by the speed advantages of the less

detailed model – when the goal is saving simulation time.
• Using Dymola with MOS-scripts is not feasible as long as models need to be

compiled for each mode switch.

Stop time
20sec/

7 Switches

One
detail

Dymola

Variable-detail
Dymola/Matlab

Variable-
detail

Dymola/MOS

One
detail

Simulink

Variable-
detail

Simulink
Simulation

time
45

15

16 180 174

Compilation
time

1* 5sec 2*5sec=
10sec

7*5sec =
35sec

- -

Residual
time

7 7

19 0 2

Total time 57 32 70 180 176

5 Conclusion
In this paper an approach to simulate variable-structure models with scripts was
presented. With this approach the model can be implemented in common modeling
tools such as Simulink or Dymola.
We think that the scripting approach is an easy way to handle variable-structure
models without having to work with complicated language constructs and dynamic
creation/destructions of objects. By creating one model for each mode in Simulink or
Dymola the mode switching can be done with a script. With a Dymola variable-detail
model of a diesel combustion engine the simulation time was reduced significantly
compared to a one level of detail model.
Simulink models have some drawbacks when creating variable-detail models. Firstly
maintaining models can become quite difficult if a submodel is contained in more than
one model. Secondly, the simulation speed of the diesel combustion engine model in
Simulink compared to the equivalent Dymola model is much slower. We think that
Dymola models are in advantage regarding variable-structure models because the
object oriented approach makes it quite easy to create different modes and maintain
them. The scripting approach with Dymola models enables the modeler to create
variable-detail models from existing models and thus benefit from the speed and
accuracy advantages.

6 References
[1] Cellier, F.: Continuous System Modeling. Springer-Verlag New York, 1991.

[2] Dynasim. Dymola version 7.4. http://www.dymola.com [Last access: July 22, 2011]

[3] Friesen, V.: Objektorientierte Spezifikation hybrider Systeme, PhD Thesis TU
Berlin, 1997

[4] Mathworks: Matlab/Simulink version 2011a. http://www.mathworks.de [Last access:
July 22, 1011]

[5] Nordwig, A. Integration von Sichten für die objektorientierte Modellierung hybrider
Systestem, PhD Thesis, TU Berlin, 2003

[6] Nytsch-Geusen, C.: Advanced modeling and simulation techniques in MOSILAB. A
system development case study, In proceedings, 5th International Modelica
Conference TU Hamburg-Harburg, 2006.

[7] Pepper,P., Mehlhase, A. Scholz, L., Höger, C.: Modelica-style variable-structure
modeling., In Equation-Based Object-Oriented Modeling Languages and Tools,
Zürich, Switzerland (to appear), 2011

[8] Weilkiens, T.: System Engineering with SysML. Morgan Kaufmann, 2008.

[9] Zimmer, D, Equation-Based Modeling of Variable-Structure Systems. PhD Thesis,
Swiss Federal Institute of Technology, 2010.

