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We present a method for optimal policy calculation of stochastic control problems

whose value functions are convex. Problems of this type appear in many applica-

tions and encompass important examples arising in the area of optimal stopping

and in the framework of control, based on partial observations. Given convexity of

value functions, we suggest a basis-free modi�cation of the classical least-squares

approach.

1. Introduction. Complex industrial problems are frequently formulated as sequential decisions

under uncertainty. Im mathematical terms, these problems can be addressed within the so-called

Markov decision theory, or more generally, as discrete-time stochastic control. Although these �elds

provide theoretical foundations to relevant decision problems, the complexity of typical real-world

questions usually goes beyond what is computationally feasible. From practical view, any good ap-

proximation is of great interest, if exact solution is not reachable. With this perspective, the theory of

approximate dynamic programming aims to provide a generalized view on theoretical insights, working

solutions, and well-performing heuristics in the area of stochastic control. The interested reader will

�nd in the book [10] an in-depth review of current challenges from industrial practice and on the state-

of-art in the theory of approximate stochastic programming. This comprehensive source also contains

detailed bibliographical references to the most important work in this �eld.

Crucial challenges in stochastic control are originated from high-dimensionality of the state space,

of the observation space, and of the space of available actions, as pointed out in [10]. In the present

work, we focus on the �rst dimensionality course. Assuming a Markovian state evolution whose

dynamics can be controlled by a �nite number of actions, we restrict ourselves to problems where only

the state space is possible high-dimensional. Given such complex state space, any practical solution

of a given control problem requires either a �nite discretization of the state space or an e�cient

approximation of value functions. In the latter case, diverse approximation methods of continuous-

value functions are linked to diverse statistical methodologies, including the so-called least squares

Monte Carlo method.

Motivated by applications in �nancial mathematics, the least squares Monte Carlo method has

attracted increasing attention. Utilizing [2] and [12], the work [6] has popularized this approach.

Subsequent research focused on its theoretical justi�cation. For instance, in [3], convergence issues

of the least squares method were addressed and later generalized in [11]. Trying to capture the local

behavior of value function, advanced statistical techniques like kernel-based regression methods [7],

[8], local polynomial regression [4], and neural networks [1] have been investigated. For the particular

case of partially observable Markov decision processes [9], diverse speci�c approaches been suggested.
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A survey [5] gives an overview on these methods, with applications to autonomous robot navigation.

In the case of partially observable Markov decision processes the value functions are convex, which is

related to our approach.

In this work, we suggest an approximate calculation of the optimal control policy based on a

modi�cation of the classical least squares Monte Carlo method. Under the assumption that the value

function of the original problem is convex, we develop a basis-free regression method which is, at least

theoretically, not restricted to the course of dimensionality. Note that the applicability of Monte Carlo

techniques is independent on state space dimension. Thus, we hope that our approach could help

treating large-scale optimal control problems, whose value functions are convex.

This paper is organized as follows. In Section 2, we introduce a controlled system, consisting of

two parts. The �rst part (system position) is on the total deterministic control of the agent and takes

a �nite number values, whereas the other part (system state) follows a free uncontrolled Markovian

evolution, realized on a possible high-dimensional state space. In Section 3, an adaptation of the least

squares method under convexity assumption is discussed, whose theoretical justi�cation is given in

Section 6.

2. Optimal control of a Markov system. Consider an agent who is confronted with a se-

quential decision under uncertainty, where a certain facility interacts with a random environment and

needs to be re-adjusted at any time in order to achieve a position which is optimal with respect to

the present cost caused by the interaction, considering revenue/costs from the potential re-positioning,

which may be required in the future. As an illustration, the reader could imagine a typical example

of storage facility management, where a commodity stock needs to be controlled at any time. Given

storage costs and random price �uctuation, the agent has to decide when to withdraw the commodity

from the storage in order to sell it at the market price and when to buy in order to top up the storage

level.

Let us introduce the ingredients of our model. Consider a �nite set P of positions representing

all possible states of the system, which are under agent's control. For instance, in the above case of

storage, this set naturally corresponds to all possible storage levels. Further, introduce a �nite set A
of possible actions which can be taken to change position and consider the function

α : P ×A → P, (p, a) 7→ α(p, a) (2.1)

which represents position change, with the interpretation that α(p, a) describes a new position which

is reached from the previous position p by taking the action a . In our inventory example, the action

a may describe one of the decisions to withdraw or to accommodate a unit of stock, which yields a

transition from the previous storage level p to the new level α(p, a) .

Further, let us consider the cost of position change. Here, we suppose that due to a random

interaction with the environment, the reward from position control is uncertain, driven by a time

homogenous Markov process (Zt)t∈N on a state space Z . At any time t ∈ N , the instantaneous

reward depends on the position p , on the action a , and on the current realization z ∈ Z of the state

variable Zt and is described by a pre-speci�ed function

Rt : P × Z ×A → R, (p, z, a) → Rt(p, z, a).
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In this context, Rt(p, z, a) stands for the revenue/costs caused by the action a at time t ∈ N depending

on the current position p and on the system state z .

To continue the illustration by inventory, the reader may imagine (Zt)t∈N as a process, which

describes the Markovian evolution of the market price of the underlying good. Realistically, only one

of the components of Zt stores the market price listed at time t , whereas other components may

contain latent variables (representing market situation) which are needed to ensure the Markovian

property of the dynamics. In the inventory example, the value Rt(p, z, a) describes the cash �ow

associated with the decision a to buy or to sell the good at time t . Note that the value Rt(p, z, a)

depends not only on the action a and on the market price through the corresponding price-component

of z , but may also depend on the recent inventory level p . For instance, in the case of gas storage,

the injection/withdawal costs depend on the storage level through the gas pressure.

Let us introduce the control at time t = 0, 1, 2, . . . , by

πt : P × Z → A, (p, z) → πt(p, z)

which stands for a rule to chose at time t in the position p ∈ P and in the system state z ∈ Z the

action a := πt(p, z) . A control policy π = (πt)
N
t=0 is given by a sequence of decision rules, where each

control πt is applied at corresponding time t . Following π , the system positions (pπt )
N
t=0 and actions

(aπt )
N
t=0 evolve as stochastic processes, recursively given by

aπt := πt(p
π
t , Zt), pπt+1 := α(pπt , a

π
t ), t = 0, . . . , N,

started at time t = 0 in the state Z0 with the initial position p0 = pπ0 . In the storage example,

a = πt(p, z) could denote the decision a to buy or to sell a unit of stock at time t depending on the

present inventory level p and on the current market situation z .

Finally, let us turn to the de�nition of the control target. We suppose that the reward from

following a policy π is accumulated within the entire time horizon 0, 1, 2, . . . , N whose expected value

is given by

E(
N∑
t=0

Rt(p
π
t , Zt, a

π
t )). (2.2)

The problem of the optimal stochastic control deals with the the calculation of the policy π∗ which

maximizes the expected total reward (2.2).

According to maximum principle of the stochastic control, the calculation of the optimal policy

π∗ is addressed in terms of the so-called value functions. The value function V πt (p, z) stands for the

remaining revenue, expected at time t = 0, . . . , N , if the if the policy π = (πs)
N
s=0 is supposed to be

followed until the end of the time horizon, conditioned on the position p ∈ P and on the state z ∈ Z ,

in other words

V πt (p, z) = E(
N∑
s=t

Rs(p
π
s , Zs, a

π
s ) |Zt = z, pπt = p)

for t = 0, . . . , N , p ∈ P , and z ∈ Z . The value functions (V πt (p, z))Nt=0 of the policy π = (πs)
N
s=0

obey a recursive relation

V πt (p, z) = Rt(p, z, πt(p, z)) +

∫
Z
V πt+1(α(p, πt(p, z)), z

′)K(z, dz′), (2.3)
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for all (p, z) ∈ P×Z . Here K(z, dz′) denotes the transition kernel of the Markovian time-homogeneous

process (Zt)t∈N . Note that if the recursion (2.3) can be followed backward through time, starting from

t = N with convention V πN+1 = 0 . This backward calculation method yields all value functions

(V πt (p, z))Nt=0 . The policy optimization is addressed in terms of value functions. Namely, the policy π∗

is called optimal among policies from appropriately speci�ed class, if π∗ maximizes the total reward

(2.2), in other words, if

V π
∗

0 (p, z) ≥ V π0 (p, z) for all (p, z) ∈ P × Z

holds for each policy π chosen from this class. Under speci�c assumptions on the state space Z , an

optimal policy π∗ is characterized by the following optimality equations

V ∗
t (p, z) = max

a∈A

(
Rt(p, z, a) +

∫
Z
V ∗
t+1(α(p, a), z

′)K(z, dz′)

)
, (2.4)

π∗
t (p, z) = argmaxa∈A

(
Rt(p, z, a) +

∫
Z
V ∗
t+1(α(p, a), z

′)K(z, dz′)

)
(2.5)

for all p ∈ P , z ∈ Z and t = 0, . . . , N . Theoretically, these equations provide a recursive scheme

(called backward induction) to determine an optimal policy π∗ , starting at t = N with V ∗
N+1 ≡ 0 .

3. Least-squares method and convexity. To determine an optimal policy π∗ by backward

induction, one needs to calculate in (2.4) and (2.5) the integrals of the type∫
Z
f(z)K(z, dz′) z ∈ Z.

Such integration can be very involving, particularly if the state space Z is high-dimensional. Note

also that this calculation must be performed for any z ∈ Z . This fact makes the numerics of high-

dimensional optimal control problems persistently challenging. However, although there is no sound

solution to all type of situations, the theory of approximate dynamic programming provides diverse

techniques to tackle several important situations.

For the reminder of this work, suppose that the state space Z is not countable, in which case the

calculation of the optimal policy becomes di�cile. Here, further results can be achieved only under

additional assumptions.

In what follows, we focus on one of the promising directions in the area of approximate stochastic

control, on the so-called least squares approach and suggest an improvement to this technique, which

works under speci�c assumption that

the value functions are convex. (3.1)

Under this restriction, we consider the transition operator associated with the Markov process (Zt)t∈N

(Tf)(z) =

∫
Z
f(z′)K(z, dz′) = E(f(Zt+1) |Zt = z), z ∈ Z (3.2)

which acts on appropriate functions f : Z → R . In terms of the operator T , the characterization of

the optimal policy by (2.4) and (2.5) is given by

V ∗
t (p, z) = max

a∈A

(
Rt(p, z, a) + TV ∗

t+1(α(p, a), ·)(z)
)

(3.3)

π∗
t (p, z) = argmaxa∈A

(
Rt(p, z, a) + TV ∗

t+1(α(p, a), ·)(z)
)

(3.4)
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for all p ∈ P , z ∈ Z , and t = 0, . . . , N . Clearly, an appropriate approximation of T is the key to any

numerical implementation.

Let us demonstrate how the convexity assumption (3.1) can be utilized. For this, we return to

the probabilistic interpretation of the Markov transition operator T and highlight the philosophy of

the standard least squares Monte Carlo projection. Thereby, we explain problems which occur if T is

approximated naively. Consider the Z -valued random variables Z,Z ′ , realized on a probability space

(Ω,F , P ) , whose regular conditional distribution satis�es

P (Z ′ ∈ dz′ |Z = z) = K(z, dz′)

where K is the transition kernel de�ning the time homogenous Markov process (Zt)t∈N . Consider a

�nite sample S ⊂ Z ×Z which consists of a �nite number of point pairs (z, z′) ∈ Z ×Z obtained as a

realizations of independent copies of (Z,Z ′) . By strong law of large numbers, the combination of the

Dirac measures

1

|S|
∑

(z,z′)∈S δ(z,z′) approximates of the distribution of (Z,Z ′) . (3.5)

Let us denote the �rst component of this sample by Ξ

Ξ = {z ∈ Z : there exists z′ ∈ Z such that (z, z′) ∈ S }.

Given real-valued basis functions (ψj)
m
j=1 on Z , the least-squares Monte Carlo transition operator T̃

acts on any function f : Z → R as

T̃ f =
m∑
j=1

λ̃jψj , (3.6)

where the coe�cients (λ̃j)
m
j=1 ∈ Rm are obtained from the solution of the following problem:

determine a minimizer (λ̃j)
m
j=1 of the sum of squared

errors
∑

(z,z′)∈S |f(z′)−
∑m
j=1 λjψj(z)|2 over (λj)

m
j=1 ∈ Rm.

(3.7)

Theoretically, the Monte-Carlo transition T̃ approximates the tue Markov transition operator T if the

basis dimension m and the sample size |S| are chosen su�ciently large (see [11]). Here, we come to

the main problems:

the increase of basis space may cause oscillation

of T̃ f , if the sample size is too low,
(3.8)

furthermore,

an appropriate choice of basis functions turns out to be

di�cult, particularly for high-dimensional state space.
(3.9)

In what follows, we suggest a solution to both problems under the standing assumption (3.1).

3.1. Adaptive choice of convex basis functions. Having in mind the assumption (3.1), sup-

pose that we have ensured that Tf is convex. In this case, the construction of the least-squares

projection should be adapted accordingly.
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We suggest to address(3.8) by searching in (3.7) for a minimizer of squared errors within a pre-

speci�ed cone of convex functions rather than within a given linear space. Based on this idea, we

consider a modi�cation of the Monte-Carlo transition operator T̃ , introducing the convex transition

Ť .

Assume that

the basis functions (ψj)
m
j=1 are convex, (3.10)

then T̆ acts similarly to T̃ , by

T̆ f =

m∑
j=1

λ̆jψj , (3.11)

but the coe�cients (λ̆j)
m
j=1 are obtained by solution of a constrained quadratic optimization problem

minimize
∑

(z,z′)∈S |f(z′)−
∑m
j=1 λjψj(z)|2

subject to λj ∈ [0,∞[ for j = 1, . . . ,m.
(3.12)

Note that the non-negativity restriction ensures convexity of the resulting projection. From numerical

viewpoint, the problem (3.12) is as simple as the classic problem (3.7), since e�cient algorithms for

quadratic minimization under linear constraints are available. The restriction to a cone adds a notable

stability to the problem in the following sense: Too many basis functions can not give oscillations, due

to the convexity constrained.

Next, let us turn to the second problem (3.9). In the applications of Monte Carlo methodology,

the choice of a basis could be one of the most crucial problems. Thereby, this problem addresses the

choice of shape of the basis functions ψj , j = 1, . . . ,m and their number m . At �rst glance, the

intuition may suggest that the dimension of the basis space should be su�ciently high. Still, at least

theoretically, acceptable results can be obtained also with low-dimensional basis spaces, if the basis is

chosen properly. Ideally, the shape of the basis functions should be similar to the targeted projection

Tf . As a limiting case, the reader may imagine that an excellent result can be obtained with one

dimensional basis space, provided it is spanned by the basis function ψ1 = Tf . Of course, such a

basis choice not feasible in practice, since Tf is not known in advance. However, after calculations of

projection with preliminary basis, the new basis can be chosen such that it contains elements whose

shape is similar to what is obtained from the preliminary calculation. Such procedure may be applied

repeatedly, improving the projection step by step.

In what follows, we present a methodology which captures this idea of the basis improvement

operator on a formal level. Given a �nite sample S ⊂ Z × Z , consider the Hilbert space H of

real-valued functions on Z × Z equipped with the scalar product

⟨u, v⟩ =
∑

(z,z′)∈S

u(z, z′)v(z, z′),

and denote by ∥ · ∥ the corresponding norm. For each h : Z → R , we write h⊗ I and I⊗ h to denote

functions on Z × Z :

(h⊗ I)(z, z′) = h(z), (I⊗ h)(z, z′) = h(z′) (z, z′) ∈ Z × Z.
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Similarly, for each convex cone Ψ of functions on Z , we assume that

Ψ⊗ I = {h⊗ I : h ∈ Ψ},

is the corresponding convex cone of functions on Z × Z . Finally, we agree that ΠΨ⊗I stands for the

projector onto the cone Ψ⊗I , acting on the Hilbert space H . With these notations, the approximative

transition T̆Ψ can be re-de�ned as

T̆Ψf ⊗ I = ΠΨ⊗I(I⊗ f) for each f : Z → R. (3.13)

and is characterized by the minimum distance property

T̆Ψf = argminψ∈Ψ∥ψ ⊗ I− I⊗ f∥.

Suppose that for each convex function ϕ : Z → R a speci�c procedure Ψ(·) determines Ψ(ϕ) where

Ψ(ϕ) is a convex cone which consist of convex functions

on Z, contains ϕ and all constant functions.
(3.14)

Let us call such Ψ(·) a cone envelope operator in what follows. Given a convex function ϕ0 , the

preliminary projection is calculated by ϕ1 := T̆Ψ(ϕ0)f . Continuing, the projections can be re-calculated

subsequently

ϕk+1 = T̆Ψ(ϕk)f, k ≥ 1 (3.15)

which gradually improves the approximation

∥ϕk+1 ⊗ I− I⊗ f∥ = ∥T̆Ψ(ϕk)f ⊗ I− I⊗ f∥

= ∥ΠΨ(ϕk)⊗I(I⊗ f)− I⊗ f∥

≤ ∥ϕk ⊗ I− I⊗ f∥

where the last estimate holds since ϕk ∈ Ψ(ϕk) by assumption (3.14). Clearly, the success of the above

projection improvement procedure relies on a lucky choice of the cone envelope operator Ψ(·) . To

clarify this aspect, we call a convex function ϕ non-improvable projection of f with respect to the

operator Ψ(·) if holds

ϕ = T̆Ψ(ϕ)f.

The most desirable property of Ψ(·) would be that the sequence of the improved projections (ϕk)k≥1

converges to a non-improvable projection ϕ and that the non-improvability means that the best ap-

proximation among the entire cone C of convex functions is reached. In the subsequent sections, we

introduce a concrete cone envelope operator and study su�cient conditions for this to hold.

3.2. An algorithm for adaptive convex projection. Let us discuss a particular cone envelope

operator. Write L to denote the linear space of all a�ne linear functions on Z . Given a convex function

ϕ on Z , for each l ∈ L let us agree that

Ψl(ϕ) is the convex cone spanned

by constant functions, ϕ and ϕ ∨ l.

7



The reader may imagine ϕ as a candidate for the targeted projection ϕ ∼ T̆Cf , whereas ϕ ∨ l should
be considered a possible improvement, suggesting to cut o� one of the edges of ϕ . Apparently, if

edge smoothing does not contribute to the projection improvement, we may expect that the best

approximation among all convex functions is already reached:

If ϕ = T̆Ψl(ϕ)f holds for each

a�ne linear l ∈ L, then ϕ = T̆Cf .
(3.16)

Let us postpone the discussion of this issue to the next sections. A practical use would be implemented

as follows: Given a modi�cation ϕ ∨ l of ϕ by a�ne linear l ∈ L , calculate T̆Ψl(ϕ)f . If the result

T̆Ψl(ϕ)f coincides with the candidate ϕ for each l ∈ L , then ϕ is the required projection.

Based on this idea, we suggest a stylized procedure to approach the desired result by a recursive

improvement of two dimensional basis spaces. Such method requires the following steps:

0) Given f , chose a convex function ϕ .

1) For an a�ne linear l ∈ L calculate T̆Ψl(ϕ)f .

2) If the result coincides T̆Ψl(ϕ)f = ϕ with the original basis function ϕ , then repeat the step 1)

with the same ϕ but another a�ne linear l ∈ L .
3) In the other case T̆Ψl(ϕ)f ̸= ϕ repeat the step 1) with the new basis function T̆Ψl(ϕ)f and the

same l .

4) The algorithm terminates if the steps 1)� 2) are followed repeatedly for su�ciently many a�ne

linear functions. Upon termination, the procedure returns the result ϕ .

In a practical implementation, it turns to be more e�cient to work with more that two dimensions.

To improve the algorithm performance, we suggest to replace two functions ϕ and ϕ ∨ l by a number

m := S +D + 1 (S,D ∈ N) of convex functions

φ1, . . . , φS , ϕ , ϕ ∨ l1, . . . , ϕ ∨ lD .

Thereby, the basis elements ϕ1, . . . , ϕS are static, since they do not change during the basis improve-

ment, whereas all other elements are altered. Static elements must be chosen such that the convex

cone, spanned by basis functions, includes all constant functions in order to ful�ll (3.14). In each step,

the preliminary projection ϕ is re-calculated and modi�ed by a�ne linear functions l1, . . . , lD ∈ L ,
which also change from step to step. The algorithm consists of the following parts:

• Step 0 (Initialization) Given f and a �nite sample S , calculate the realizations β :=

(f(z′))(z,z′)∈S of f on all image points. Specify S ∈ N convex static basis elements {φ1, . . . , φS} .
Given D ∈ N a�ne linear functions {l(0)1 , . . . , l

(0)
D } ∈ L and a convex ϕ(0) , de�ne the basis as

{ψ(0)
1 , . . . , ψ(0)

m } = {φ1, . . . , φS , ϕ
(0), ϕ(0) ∨ l1, . . . , ϕ(0) ∨ lD}.

• Step 1 (Minimization) For k ≥ 0 , calculate the matrix M (k) from the realizations of the

basis elements on the sample

M
(k)
z,j := ψ

(k)
j (z), z ∈ Ξ, j = 1, . . . ,m.

Determine the coe�cient vector λ(k) = (λ
(k)
i )mj=1 ∈ [0,∞[M as the minimizer to the con-

strained problem

[0,∞[m→ R, λ 7→ λ⊤M (k) ⊤M (k)λ− 2λ⊤M (k) ⊤β.
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and calculate new projection function

ϕ(k+1) :=
m∑
j=1

λ
(k)
j ψ

(k)
j .

• Step 2 (Test for Termination) Determine the projection error

E(k+1) =

 ∑
(z,z′)∈S

|ϕ(k+1)(z)− f(z′)|2
 1

2

.

If the improvement in the projection error falls below a certain threshold ε > 0

E(k+1) − E(k) < ε for k ≥ 0

then

2a) Interrupt if 2a) is entered repeatedly for a critical number of past steps, else chose other

linear functionals {l(k+1)
1 , . . . , l

(k+1)
D } .

else

2b) proceed with the same {l(k+1)
1 , . . . , l

(k+1)
D } = {l(k)1 , . . . , l

(k)
D } .

• Step 3 (Basis change) De�ne the improved basis

{ψ(k+1)
1 , . . . , ψ(k+1)

m } := {φ1, . . . , φS , ϕ
(k+1), ϕ(k+1) ∨ l(k+1)

1 , . . . , ϕ(k+1) ∨ l(k+1)
D }

and go to Step 1.

Remark Note that the errors (E(k))k≥0 are non-negative and non-increasing, by construction. That is,

the algorithm terminates after a �nite number k∗ of steps. Upon algorithm termination, the projection

ϕ(k
∗) is determined at all points in Ξ as

(ϕ(k
∗)(z))z∈Ξ =Mk∗λk

∗
. (3.17)

However, to calculate ϕ(k
∗)(z) at another point z ̸∈ Ξ one needs to run a recursive procedure, similar to

the above procedure, using all basis change coe�cients and a�ne linear functions used by the algorithm.

That is, all data (λ(k))k
∗

k=0 (l
(k)
1 , . . . , l

(k)
D )k

∗

k=0 must be stored and returned upon termination.

Example Let us consider an illustration of the above procedure. Assume that (Z,Z ′) satis�es Z ′ =

Z + X where Z and X are independent N(0, 1)-distributed random variables and suppose that he

function f is given by f(z) = z2 for all z ∈ R . Thus, the transition operator yields a convex function

z 7→ Tf(z) = z2 + 1 . Let us calculate an approximation to Tf using our algorithm. Introduce S
as realizations of 200 independent copies of (Z,Z ′) . We decided to chose static basis elements such

that each cone contains the linear space of all a�ne liner functions and introduced dynamic elements

l
(k)
1 , . . . , l

(k)
D as constants, equal to the empirical quantiles of the recent projection (ϕ(k)(z))z∈Ξ at

pre-determined probability levels 0 < α1 <, . . . , < αD < 1 . With the initial projection ϕ(0) : z 7→ |z| ,
given a threshold ε = 0.03 and D = 10 quantile levels, equidistantly spaced between 0.05 and 0.95 ,

the algorithm has terminated after k∗ = 3 iterations and returned a result depicted in the Figure

3.1 as a thick polygon line. By construction, this function is piecewise a�ne linear, and as expected,

approximates the quadratic polynomial z 7→ Tf(z) = 1 + z2 , which is plotted as a smooth thin line.

9



−2 −1 0 1 2 3

0
5

10
15

sample realizations

Fig. 3.1. (z, f(z′))z∈Ξ (points), projection (z, ϕ(k∗)(z))z∈Ξ (polygone) and z 7→ Tf(z) (smooth line).

The �t ϕ(k∗) ≈ Tf is not perfect because the sample size n = 200 is relatively small. Note that our

result ϕ(k
∗) gives a better �t than the exact projection Tf , which is seen from the sum of squared

errors  ∑
(z,z′)∈S

|ϕ(k
∗)(z)− f(z′)|2

 1
2

≈ 30.644,

 ∑
(z,z′)∈S

|Tf(z)− f(z′)|2
 1

2

≈ 31.913.

4. Approximate stochastic control. In the Section 6 we prove a su�cient condition (4.8),

which ensures that the non-improvability implies that the best approximation among the entire cone

C of all convex functions is reached:

If (4.8) holds, then ϕ = T̆Ψl(ϕ)f for each l ∈ L implies that ϕ = T̆Cf . (4.1)

It turns out that (4.8) is always satis�ed in one dimensional d = 1 situations. Although in general case

d > 1 the validity of (4.8) is hard to control, numerical experiments suggest that our approach provides

a fast an reliable scheme for approximative calculation of a convex least squares approximation, even

in high dimensions. On this account, we suggest to replace the classical backward induction procedure

(2.4) and (2.5) by

V̆ ∗
t (p, z) = max

a∈A
(Rt(p, z, a) + ϕt(α(p, a))(z)) (4.2)

π̆∗
t (p, z) = argmaxa∈A (Rt(p, z, a) + ϕt(α(p, a))(z)) (4.3)

for all (p, z) ∈ P×Z , where (ϕt(p))p∈P are non-improvable projections of the previous value function:

ϕt(p) = T̆Ψl(ϕt(p))V̆
∗
t+1(p, ·) for all p ∈ P and each l ∈ L. (4.4)

Example: As an illustration, we discuss valuation of an American put option in discrete time. In-

troduce the discounted asset price (Zt)
N
t=0 at time steps 0, . . . , N with step size ∆ > 0 as a sampled

geometric Brownian motion

Zt+1 = Zte
Xt+1 , t = 0, . . . , N − 1, (4.5)

10



0 200 400 600 800 1000

30
35

40
45

50

Index

Z

30 35 40 45 50

0
2

4
6

8
10

12
14

state variable

va
lue

 fu
nc

tio
n

Fig. 4.1. Valuation of American Put Option.

where (Xt)
N
t=1 are independent identically distributed random variables following normal distribution

N(−σ2∆/2, σ2∆) with volatility parameter σ > 0 . Given short rate r > 0 , the fair price of an

American put option with strike price K and maturity date ∆N is given by

sup{E((e−r∆τK − Zτ )
+), τ is {0, 1, . . . , N} -valued stopping time}.

This optimal stipping problem is de�ned by two positions and two actions P = {1, 2} , A = {1, 2} .
The positions 'stopped' and 'goes' are represented by p = 1 , p = 2 respectively and the actions 'stop'

and 'go' denoted by a = 1 and a = 2 . With this interpretation, the position change is given by

(α(p, a))p,a ∼

[
α(1, 1) α(2, 1)

α(1, 2) α(2, 2)

]
=

[
1 1

1 2

]
.

The reward is paid only once, when the system transforms from the position 'goes' to 'stopped'

Rt(p, z, a) = (e−r∆tK − z)+(p− α(p, a)), for all p ∈ P , z ∈ Z , a ∈ A .

Given a path realization (zk)
1000
k=1 with z0 = 40 , ∆ = 1/220 and σ = 0.2 depicted on the left hand

side of the Figure 4.1, we de�ne a sample as S = {(zk, zk+1) : k = 1, . . . , 999} . With this sample,

having supposed that r = 0.1 and K = 45 , an algorithm as in (4.3) � (4.4) for N = 80 returned the

value functions V̆ ∗
0 illustrated on the left in the the Figure 4.1, where the upper line corresponds to

z 7→ V̆ ∗
0 (2, z) whereas the lower line depicts z 7→ V̆ ∗

0 (1, z) = 0 .

Finally, to s explain su�cient condition (4.8) in (4.1), let us introduce some additional notions.

Remember that our functions are given by their values on the sample Ξ , thus all relevant properties

are inferred from them. On this account, it is convenient to treat a function ϕ : Z → R in terms of its

value vector ϕ = (ϕ(z))z∈Ξ . In this setting, we make use of the characterization of convexity in terms

of sub-gradients. That is, ϕ = (ϕ(z))z∈Ξ is convex if and only if there exists a �nite family (lj)j∈J ⊂ L
of a�ne linear functions such that

ϕ(z) =
∨
j∈J

lj(z) for all z ∈ Ξ. (4.6)

Let us �x a convex ϕ = (ϕ(z))z∈Ξ , given in the representation (4.6) to de�ne the sets

Ξj = {z ∈ Ξ : lj(z) =
∨
i∈J

li(z)}, j ∈ J

11



Obviously, ∪j∈JΞj = Ξ . Further, we assume that

Ξi ∩ Ξj = ∅ is satis�ed for all i, j ∈ J with i ̸= j. (4.7)

In turns out that the following property of the sets (Ξj)j∈J ensures that a non-improvable projection

is indeed the best approximation among all convex functions, in the sense of (4.1):

for each j ∈ J , an arbitrary convex function (h(z))z∈Ξj can be

expressed as a linear combination with non-negative coe�cients of

a�ne linear functions and positive parts of a�ne linear functions.

 (4.8)

In one dimensional case, d = 1 the assertion (4.8) holds, since a�ne linear functions and their positive

parts span a cone, which contains all convex functions. In general situation d ≥ 1 , the validity of (4.8)

depends on the dimension, on the geometry and on the cardinality of the sets Ξj , j ∈ J . For instance,

if Ξj contains few elements, then the cone of a�ne linear functions and their positive parts is likely

to span all convex functions.

5. Conclusion. We suggest a methodology for approximate solution of optimal control problems

whose value functions are convex. Although convexity assumption appears restrictive, it is met by a

broad class of problems, originated from many important practical applications. For instance, it is well-

known [9] that diverse control problems based on partial observation yield high-dimensional stochastic

control problems with convex value functions. In particular, autonomous robot navigation is connected

to such control problems, which are also inherently high-dimensional. Namely, realistic applications

require a state space, represented by a simplex of several hundert dimensions. Undoubted, treating

such questions is di�cult. However, since the applicability of Monte-Carlo methods is not restricted by

space dimensionality, this contribution may be helpful in the practice, where where current methods

of sequential decision making under uncertainty meet their computational limits.

6. Appendix: Non-improvable projections. Assume de�nitions and notations from the pre-

vious sections. Given a function f : Z → R , we consider the functional F de�ned by

F (u) =
∑

(z,z′)∈S

|f(z′)− u(z)|2, for each u = (u(z))z∈Ξ .

The functional F is convex and attains its unique minimum ϕ on the cone

C = {h : h = (h(z))z∈Ξ is convex }

of all convex functions. In other words,

ϕ ∈ C is the best convex approximation of f

in the sense that F (ϕ) ≤ F (u) for all u ∈ C.
(6.1)

The best convex approximation can be equivalently characterized in terms of the Frechet derivative

∂F (ϕ) of F at point ϕ , evaluated on the cone of all admissible directions at point ϕ . Namely, ϕ is

the best convex approximation, if and only if holds:

∂F (ϕ) ◦ h ≥ 0 for all h ∈ A(ϕ) with the cone

A(ϕ) = Cone{h = (h(z))z∈Ξ : h = ψ − ϕ where ψ ∈ C}.
(6.2)
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Similarly, the function ϕ ∈ C is a projection, non-improvable by a�ne linear function l ∈ L if holds

F (ϕ) ≤ F (u) for all u ∈ Ψl(u) which implies that ∂F (ϕ) ◦ h ≥ 0 holds for all h ∈ Ãl(ϕ) , where the

cone Ãl(ϕ) of admissible directions can be written in terms of generating vectors as

Ãl(ϕ) = Cone{h = (h(z))z∈Ξ : h = ψ − ϕ with ψ = ϕ ∨ l or ψ = ϕ+ λ1, λ ∈ R}.

On this account, if

ϕ ∈ C is non-improvable projection in the sense that

F (ϕ) ≤ F (u) for all u ∈ Ψl(ϕ) and each l ∈ L,
(6.3)

then

∂F (ϕ) ◦ h ≥ 0 for all h ∈ Ã(ϕ), where the directions cone Ã(ϕ) is generated as

Ã(ϕ) = Cone{h : h = ψ − ϕ with ψ = ϕ ∨ l where l ∈ L or ψ = ϕ+ λ1, λ ∈ R}.
(6.4)

From this, we deduce that the question, whether a non-improvable projection coincides with the best

convex approximation, is now reduced to the comparison of two cones:

If Ã(ϕ) ⊇ A(ϕ), then (6.3) implies that (6.1) holds.

Namely, (6.3) implies (6.4), and with Ã(ϕ) ⊇ A(ϕ) also (6.2), which gives (6.1).

It the reminder of this section, we examine conditions, ensuring the inclusion Ã(ϕ) ⊇ A(ϕ) .

We now determine the function family, which spans the cone A(ϕ) .

Lemma 6.1. Given (4.7), it holds

A(ϕ) = Cone{h = (h(z))z∈Ξ : (h(z))z∈Ξj is convex for each j ∈ J}. (6.5)

Proof. First, we show that A(ϕ) is a subset of the right-hand side of (6.5). Given h ∈ A(ϕ) , for

each j ∈ J it holds

h(z) = ψ(z)− ϕ(z) = ψ(z)− lj(z) for all z ∈ Ξj

which shows that for each j ∈ J , the restriction (h(z))z∈Ξj of h to Ξj yields a convex function. Now,

we show the opposite inclusion. Therefore, it su�ces to show for each j ∈ J that for an arbitrary

convex hj = (hj(z))z∈Ξj there exists an εj ∈]0,∞[ such that the function hj = (hj(z))z∈Ξ obtained

by the extension of εjhj to the entire domain Ξ as

hj(z) =

{
εjhj(z) if z ∈ Ξj

0 if z ∈ Ξ \ Ξj
, (6.6)

satis�es hj ∈ A(ϕ) . Indeed, with this property, an arbitrary h = (h(z))z∈Ξ from the right hand side

of (6.5) can be decomposed into convex components hj = (h(z))z∈Ξj for all j ∈ J giving elements

hj ∈ A(ϕ) along with εj ∈]0,∞[ for all j ∈ J which yield h as convex linear combination

h =
∑
j∈J

1

εj
hj .
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Since 1
εj
hj ∈ A(ϕ) , so we obtain h ∈ A(ϕ) . That is, it remains to prove that for an arbitrary convex

hj = (hj(z))z∈Ξj , there exists εj ∈]0,∞[ such that hj from (6.6) satis�es hj ∈ A(ϕ) .

Given a convex hj = (hj(z))z∈Ξj , determine its representation through a maximum over a family

(ljk)k∈K ⊂ L of a�ne linear functions

hj(z) =
∨
k∈K

ljk(z) for all z ∈ Ξj

and let us denote this natural extension
∨
k∈K l

j
k of hj on the entire set Ξ by the same symbol

hj = (hj(z))z∈Ξ . Due to (4.7), it is possible to �nd a su�ciently small εj > 0 such that

lj(z) + εjhj(z) <
∨

i∈J\{j}

li(z) = ϕ(z) z ∈ Ξ \ Ξj , (6.7)

lj(z) + εjhj(z) >
∨

i∈J\{j}

li(z) z ∈ Ξj . (6.8)

De�ne now a convex function ψ = (ψ(z))z∈Ξ by

ψ =

 ∨
j∈J\{j}

lj

 ∨ (lj + εjhj)

which coincides with ϕ on Ξ \ Ξj

ψ(z) = ϕ(z) for z ∈ Ξ \ Ξj , due to (6.7)

and agrees with ϕ+ εjhj on Ξj

ψ(z) = lj(z) + εjhj(z) = ϕ(z) + εjhj(z) for z ∈ Ξj , due to (6.8).

In other words, the function hj := ψ − ϕ ∈ A(ϕ) ful�lls (6.6) as desired.

For an a�ne linear function l ∈ L , let us agree to denote its positive part by l+ : z 7→ max(l(z), 0) .

Then we characterize the cone spanned by all directions from ϕ to speci�c convex functions ψ = ϕ∨ l
where l is an arbitrary a�ne linear function, similarly to the previous lemma:

Lemma 6.2. Given (4.7), the following inclusion holds:

Cone{h = (h(z))z∈Ξ : h = ψ − ϕ : with ψ = ϕ ∨ l where l ∈ L} (6.9)

⊇ Cone{h = (h(z))z∈Ξ : ∀j ∈ J ∃ l ∈ L such that (h(z) = l+(z))z∈Ξj}. (6.10)

Proof.

As in the previous lemma, it su�ces to prove that given j ∈ J and l ∈ L , there exists εj ∈]0,∞[

sucht that

hj(z) =

{
εj l

+(z) if z ∈ Ξj

0 if z ∈ Ξ \ Ξj
(6.11)

ful�lls

hj(z) = ψ(z)− ϕ(z) for all z ∈ Ξ.
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with

ψ = ϕ ∨ l̃ where l̃ ∈ L . (6.12)

Given l+ and j ∈ J , by the same arguments as in the previous lemma, there exists εj ∈]0,∞[

such that

lj(z) + εj l
+(z) <

∨
i∈J\{j}

li(z) for all z ∈ Ξ \ Ξj ,

lj(z) + εj l
+(z) >

∨
i∈J\{j}

li(z) for all z ∈ Ξj .

De�ne now a convex ψ = (ψ(z))z∈Ξ by

ψ(z) =

 ∨
i∈J\{j}

li(z)

 ∨ (lj(z) + εj l
+(z))

=

(∨
i∈J

li(z)

)
∨ (lj(z) + εj l(z)). (6.13)

By construction, ψ coincides with ϕ on Ξ \ Ξj and agrees with lj + εj l
+ = ϕ + εj l

+ on Ξj . That

is hj = ψ − ϕ is as in (6.11). Furthermore, (6.13) shows that ψ = ϕ ∨ l̃ with a�ne linear function

l̃ = lj + εj l as required in (6.12)

We now extend the inclusion (6.9) of (6.10) and characterize the cone of all directions from ϕ to

speci�c convex functions ψ , where either ψ = ϕ∨ l with an a�ne linear l or ψ = ϕ+ λ1 with λ ∈ R .

Lemma 6.3. Given (4.7), the following inclusion holds:

Cone{h : h = ψ − ϕ : with ψ = ϕ ∨ l where l ∈ L or ψ = ϕ+ λ1, λ ∈ R} (6.14)

⊇ Cone{h : ∀j ∈ J ∃λ ∈ R with (h(z) = λ1)z∈Ξj or ∃ l ∈ L with (h(z) = l+(z))z∈Ξj} (6.15)

Proof. Note that due to the previous lemma, each positive constant function

ej(z) =

{
1 if z ∈ Ξj

0 if z ∈ Ξ \ Ξj
j ∈ J

is in the cone (6.9) and so in the cone (6.14), so we merely need to show only that −ej is also contained
in (6.14). Setting ψ = ϕ−1 we conclude that −1 = ψ−ϕ = −

∑
i∈J e

i is in (6.14). With this, negative

constant functions −ej = −1 +
∑
i∈J\{j} e

i is in (6.14), for each j ∈ J .

Using previous lemmata, we �nally address the inclusion Ã(ϕ) ⊇ A(ϕ) . Therefore, note that

(6.14) is nothing but the cone Ã(ϕ) , which contains a cone (6.15). If in turn, the cone (6.15) includes

A(ϕ) as a sub-cone, then the targeted assertion Ã(ϕ) ⊇ A(ϕ) is ful�lled. Consequently, we deduce

Proposition 6.4. If (4.7) is satis�ed and the following condition holds

Cone{h : ∀j ∈ J ∃λ ∈ R with (h(z) = λ1)z∈Ξj or ∃ l ∈ L with (h(z) = l+(z))z∈Ξj}
⊇ Cone{h : for each j ∈ J , (h(z))z∈Ξj is convex},

(6.16)

then (6.3) implies that (6.1) holds.

Although the condition (6.16) is technical, it allows a natural interpretation (4.8).
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