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Abstract 
 

Interpolation is used for constructing new data points from known samples of an 

underlying unknown function. The majority of interpolation methods, in particular in 

higher dimensions, require the known data points to be placed on some equidistant grid. 

However, it is a common situation to have only certain measurements at irregularly 

spaced positions available that are additionally afflicted with measurement errors. 

Kriging, a class of linear least square estimators that is named after Daniel Gerhardus 

Krige and was first applied in geostatistics, is very well suited for such situations. The 

presented ordinary Kriging approach is the most popular and commonly used Kriging 

method because of its effectiveness and simplicity. 

 

1 Introduction 
 

A common interpolation situation is to have   positions            
  with 

corresponding function values or measurements  (  )    (  )    of an unknown 

function       available. The aim is to estimate a value   ( ̂) of the true but 

unknown value  ( ̂) at a location  ̂. In the terminology of Kriging methods the function 

  is often called process. According to [1] it is treated as a random process of which 

expected values and variances exist. Moreover its domain   must be compact. 

 

The basic idea of all Kriging methods is that the underlying function  ( ) can be 

decomposed into several components. In the easiest case  ( ) consists of a trend 

component  ( ) and a residual component  ( ) such that 

  ( )   ( )   ( )  (1) 

in which  [ ( )]   ( ) holds. Kriging methods assume that the residual component of 

the sought value is a weighted mean of the measurement residuals 

   ( ̂)  ∑   (  )
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with          . Inserting (1) yields 

   ( ̂)   ( ̂)  ∑  (  (  )   (  )) 

 

   

 (3) 

Because  ( ) is usually unknown further assumptions are necessary. At this point 

several options are possible (for further details see [3]). Ordinary Kriging assumes a 

constant but still unknown trend component  ( )   so that the above equation can be 

written as 
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In order to eliminate   the term within the brackets has to be zero. Therefore the 

assumption ∑       must hold, which reduces equation (4) to a weighted sum of known 

values 

   ( ̂)  ∑   (  ) 

 

   

 (5) 

For calculating the weights two more steps are required. At first the spatial variation 

behavior of  ( ) has to be modeled. Second the equation system for the weights can be 

set up and solved. 

 

 

2  Modeling Spatial Variation 
 

To capture the spatial variation behavior of the function  ( ), nearby function values 

of the residual component  ( ) are characterized. Therefore  ( ) is assumed as a 

stationary process. According to [3] a stationary process can be defined in two ways: 

      is called 

Intrinsic stationary (IS) if 

 [ ( )]    for all     and a fixed     and 
 

 
   [ (   )   ( )]  

 

 
   [ ( )   ( )]    ( ) for all shifts  . 

Second-order stationary (SOS) if 

 [ ( )]    for all     and a fixed     and 

   [ (   )  ( )]     [ ( )  ( )]    ( ) for all shifts  . 
 

 ( ) and  ( ) are referred to as variogram and covariogram, respectively. The definition 

of IS means that the variance of the difference between two measurements does not 

depend on the absolute position of both points, but only on their spatial distance. The 

same applies to SOS and the covariance. The functions are closely connected to each 

other because 



  ( )   ( )   ( )  (6) 

holds which can be derived with elementary calculations. Either  ( ) or  ( ) has to be 

determined through a fitting model   ( ) or   ( ) respectively. Since the definition of IS 

is more general than SOS (IS can still hold in situations where  ( ) might not exist, 

which is assumed in this paper; for more details see [3]) the following derivation is based 

on the variogram whereas the covariogram is still used for explanation purposes. 

 

2.1  Models 
 

To simplify the modeling task ordinary Kriging assumes that  ( ) and  ( ) only 

depend on the distance between two measurement locations, i.e.  ( )   (‖ ‖) and 

 ( )   (‖ ‖) respectively. 

 

The existing (co-)variogram models are based on several observations. If     then 

 ( )    and  ( )     [ ( )]      by definitions. And if     then  ( )    
which means  ( )   ( )     due to equation (6). 

 

Moreover (co-)variogram models have to satisfy the following condition according to [4]. 

For the variance of  ( ̂) the calculation 
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(7) 

holds for any numbers   . The last inequality can be fulfilled by the fact that every 

variance must be positive. This is the exact definition of positive definiteness of the 

function   ( ), so a valid covariogram model   ( ) must be positive definite. 

Using (6) in this calculation yields 

    [ ( ̂)]    ( )∑  
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    (8) 

As mentioned before there are situations where   ( ) does not exist. This term cancels 

out if ∑       holds so that (8) reduces to 

 ∑∑     
 (    )

 

   

 

   

    (9) 

Thus   ( ) must be conditionally negative definite. 

  



A widely-used variogram model is the powered exponential model 

   ( )    (   
 (
‖ ‖
 
)
 

)  (10) 

with          and    ]   ]. Several other models have been proposed for special 

interpolation situations which differ regarding the origins of given data. The application 

of the powered exponential model is recommendable because it is relatively simple and 

covers a wide range of different possible behaviors of the spatial variation to be modeled. 

Further details can be found in [5]. 

 

If the measurements  (  )    (  ) were exact, a variogram model that was constructed 

by the considerations made so far would be sufficient. However if the given data are 

noisy, a modification of the variogram model is necessary. 

It is assumed that the residual component  ( ) that was considered so far is error 

afflicted, now called   ( ). It decomposes into a true part  ( ) and an error component 

 ( ) so that 

   ( )   ( )   ( )  (11) 

The sum of two valid variogram models is also a valid model because (9) would still 

hold. So the chosen model, i.e. the powered exponential model can be used as variogram 

model for  ( ). Only an additional variogram model for the error component is needed. 

 

According to [3] the variance of  ( ) is assumed to be constant but still unknown so that 

   [ ( )]     [ ( )  ( )]     
 . This model parameter is called nugget. Furthermore 

it should be a random error which means    [ (  )  (  )]    should hold for      . 

All in all this yields the covariogram model 

   
 ( )  {

   
    ‖ ‖   

       ‖ ‖    
 (12) 

and by inserting this into (6) the corresponding variogram model 

   
 ( )  {

     ‖ ‖   

     
    ‖ ‖   

 (13) 

is obtained. Hence the so called powered exponential variogram with nugget is the sum 

of (10) and (13) which is 

   ( )  {

                                              ‖ ‖   

  
    (   

 (
‖ ‖
 
)
 

)   ‖ ‖   
 (14) 

with parameters   
             and   ]   ]. These parameters have to be 

determined in the next step. 

  



Figure 1: A powered exponential variogram model obtained by an example 

variogram cloud.   ( )               (   
 (
‖ ‖

      
)
 

) for     

 

2.2  Parameter Estimation 
 

The definition of a variogram can be transformed into a form with an expected value 

  ( )  
 

 
   [ (   )   ( )]  

 

 
 [( (   )   ( ))

 
]   (15) 

By solving (1) for  ( ) and inserting the result into (15) the function  ( ) can be 

eliminated. Because  ( ) is considered constant in ordinary Kriging this yields 

  ( )  
 

 
 [( (   )   ( ))

 
]   (16) 

Thus      
 

 
( (  )   (  ))

 
 can be used as observed estimates for  (    ) with 

     ‖     ‖ . These values form the variogram cloud 

 (         ) (‖     ‖   
 

 
( (  )   (  ))

 
)          (17) 

The variogram model parameters can now be obtained by performing a fitting algorithm, 

e.g. least squares, that fits the variogram model (14) to the variogram cloud (17). This is 

illustrated by figure 1. 

 



3 Equation System 
 

The weights         in (5) are determined such that the error variance is minimized 

as described in [6]. Therefore the error variance can be rearranged to 

 

   (  ( ̂)    ( ̂))

 ∑   [( ( ̂)   (  ))
 
]

 

   

 
 

 
∑∑     [( (  )   (  ))

 
]

 

   

 

   

  ∑   
 ( ̂    )

 

   

 ∑∑     
 (     )

 

   

 

   

    ( )  

(18) 

To minimize  ( ) subject to the constraint ∑      , which the weights have to fulfill, 

the function 

  (   )  ( )   (∑  

 

   

  )  (19) 

has to be minimized with a Langrange multiplier  . Therefore the derivatives 
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have to be zero. That leads to 
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which must hold for every    with        . These     equations arranged in an 

equation system give 

 [
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]  (22) 

by which the weights are uniquely determined. Afterwards an approximate value of  ( ̂) 
can be obtained by inserting         into (5), which yields 

   ( ̂)   ̅  ̅   ̅  ̅   ̅( ̂)  (23) 

with  ̅  [ (  )    (  )  ]
   This formula can be used for every location where a 

value should be estimated because  ̅ is independent of  ̂. Figure 2 shows an example of 

an approximating function computed by ordinary Kriging. 

  Γ̅   �̅�   �̅�  



Figure 2: An example of an approximating function and its 95% confidence 

interval computed by Kriging. The measurements were generated by 

   ( ) and a random error within the interval [  
 
  
 
]. The corresponding 

variogram model is shown in Figure 1. 

 

3.1  Error Estimation 
 

Kriging methods offer the possibility to estimate the error variance of the approximation. 

It can be easily obtained from  ( ) in equation (18) as follows: 
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(24) 

This value is also called Kriging variance. When weights have already been computed, 

the effort for calculating this variance is computationally cheap because only one more 

matrix-vector multiplication is necessary. 

 

According to [3] the Kriging variance can be used to calculate a confidence interval as 

 [  ( ̂)   √ ( ̂)    ( ̂)   √ ( ̂)]   (25) 

This means that the true but unknown value  ( ̂) is within the confidence interval with a 

probability depending on  . If a  % confidence interval is desired   has to be the 

( 
 
  

   
)-quantile of the standard normal distribution. E.g.        yields a 95% 

confidence interval. A confidence interval is also shown in Figure 2. 

 



4 Conclusions 
 

Ordinary Kriging is a method that is suitable for a wide range of interpolation 

problems, in particular where derivatives are not available and further function 

evaluations are expensive and/or time-consuming. Moreover, the error variance that can 

be easily calculated, is often very important. Ordinary Kriging is the basis for many other 

Kriging variants that modify certain ideas to meet more specific requirements [7]. 
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