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Abstract 
The performance of three different screening methods proposed by Morris [1] and 

Campolongo et al. [2,3] is investigated using analytical test functions. It is shown that one 

version of the third method, the radial design, demonstrates a superior performance in 

terms of computational efficiency and stability. This method is finally applied to a hydro-

geological model that calculates water flow and solute transport in porous media [4]. 

Strengths and weaknesses of each method are discussed and conclusions are drawn with 

respect to efficient screening of model parameters. 

 

1. Introduction 
In many fields of environmental sciences mathematical models are used for simulation 

of different systems to understand and predict their potential behavior. However, the 

complexity of these models increased over the years. One consequence of model 

complexity is that uncertainty in model prediction increased too. Thus, to quantify where 

does the uncertainty come from (referred to as sensitivity analysis (SA)) is one essential 

part during model application. 

Nowadays many SA techniques are available which can be classified into groups like 

screening methods, variance based methods etc. Screening techniques can be used to 

identify parameters that control most of the uncertainty of model output. Thus, a 

classification of input model parameters – hereinafter simply referred to as parameters – 

into important and non-important ones is possible with low computational effort. 

Therefore, these methods are frequently applied when the model is computationally 

expensive to evaluate and/or the model has a large number of parameters. Once the 

parameters have been classified in a first step, the model can be simplified by fixing non-

important parameters to a constant value without significantly affecting the total output 

variance. Since screening techniques tend to provide qualitative sensitivity measures, i.e. 

a ranking of parameters in the order of importance, a second analysis step is usually done 

using e.g. a variance based method in order to study the uncertainty of the remaining 

important parameters in more detail. 

One well-known screening method is the design proposed by Morris [1] which has 

been refined by Campolongo and co-workers [2]. Their improvement is based on a better 

exploration of the parameter space known as concept of „optimized trajectories“. 

Recently, Campolongo et al. investigated another design using a radial scheme as 

sampling strategy [3]. The authors concluded that this design has superior properties 

compared to other designs, and therefore suggested to use the radial design during a SA. 



In this work, the performance of these screening methods is investigated using 

analytical test functions. Strengths and weaknesses of each method are discussed and 

conclusions are drawn with respect to efficient screening of parameters. Finally, the best 

method is applied to a hydrogeological model that calculates water flow and solute 

transport in porous media [4]. The paper is organized as follows: Notes on the screening 

methods applied are given in the next section. Section 3 briefly describes the numerical 

experiments. Results of the experiments are shown and discussed in section 4. 

 

2. Screening methods 
2.1. Elementary effect method (method A) 

The elementary effect method as introduced by Morris [1] is based on a sample of r 

different trajectories where parameters are changed – one at a time of step Δ  – on a grid 

of levels covering the parameter domain. The number of points of each trajectory is 

(k+1), where k is the number of parameters. Along a trajectory each parameter Xi is 

increased or decreased by the same step Δ assuming a uniform distribution in [0,1] for 

each Xi. The measure EEi = (Y
(2)

 – Y
(1)

) / Δ , known as elementary effect (EE) of the 

parameter Xi, is calculated where Y
(1)

 and Y
(2)

 are the model output before and after the 

change of Xi, respectively. Now, r different EE’s can be estimated by randomly sampling 

r different trajectories. The mean of these effects can be considered as a sensitivity 

measure. However, Campolongo et al. suggested calculating the following measure 
 

                                                         (1) 
 

which uses the absolute value of the EE. This reduces computation errors in case of non-

monotonic models since EE terms of opposite sign cancel out each other. Further details 

of the EE method can be found in Ref. [1][3][5]. 

 

2.2. Elementary effect method with optimized trajectories (method B) 
The original EE method uses a random sampling procedure for the construction of 

trajectories. The design is based on generating a random starting point for each trajectory 

and completing it by changing one parameter at a time in a random order. This strategy 

may result in a poor coverage of the parameter space, especially for models with a large 

number of parameters. Therefore, Campolongo et al. [2] proposed an improvement of the 

sampling strategy which aims at a better scanning of the parameter domain using the 

same number of points. This is achieved by initially generating a high number of 

trajectories and then selecting r trajectories with the largest dispersion in the parameter 

space. In this context, dispersion is defined in terms of distances between couples of 

trajectories. The reader is referred to Ref. [2] for more details. 

 

2.3. Radial sampling method (method C) 
Recently, Campolongo et al. proposed a radial scheme as an alternative design to 

calculate EE’s [3]. The radial scheme and the trajectory design described above are 

illustrated in Table 1, where a and b are two different k-dimensional random vectors. In 

radial sampling, points (1) and (2) of the parameter domain are used for the calculation of 

the EE for the first parameter, points (1) and (3) for the second parameter, points (1) and 

(4) for the third parameter etc. In trajectory sampling however, points (1) and (2) are used 



for the calculation of the EE for the first parameter, points (2) and (3) for the second 

parameter, points (3) and (4) for the third parameter etc. 
 

Point Radial sampling     Trajectory sampling 

(1)  a1, a2, a3, …, ak    a1, a2, a3, …, ak 

(2)  b1, a2, a3, …, ak    b1, a2, a3, …, ak 

(3)  a1, b2, a3, …, ak    b1, b2, a3, …, ak 

(4)  a1, a2, b3, …, ak    b1, b2, b3, …, ak 
…       … 

(k+1)  a1, a2, a3, …, bk    b1, b2, b3, …, bk 

 

      Table 1: Comparison of different sampling schemes for k parameters 

 

Such a block as illustrated on the left side of Table 1 corresponds to one trajectory. For 

proper screening however, more than one trajectory should be used. This means that 

several random vectors a and b are needed for the calculation. Campolongo et al. pro-

posed to use Sobol’s quasi-random numbers [6], known as LPτ sequences, instead of plain 

random numbers for the generation of the vectors [3]. More details, especially of how to 

construct a setup with several trajectories using LPτ sequences, can be found in Ref. [3]. 

 

3. Numerical experiments 
3.1. Methodology 

A series of computer experiments using different test functions was carried out in 

order to evaluate each screening method described above. The test functions applied are 

presented in the next section. For each function, the measure μ* according to formula (1) 

was calculated using the EE method (A), the EE method with optimized trajectories (B), 

and the radial sampling method (C). As for method A and B, a grid of 4 levels was used 

which results in a step Δ = 2/3 [5]. In addition, 200 trajectories were generated first with 

method B. Then, r trajectories with the largest dispersion in the parameter space were 

selected for the test. As for method C however, two versions were applied: the original 

version by Campolongo et al. [3] and another version developed by the author. These 

versions, referred to as C1 and C2 respectively, differ in the way how LPτ sequences are 

used to build a setup with several trajectories. 

In order to evaluate the performance for both very low and typical sample sizes, the 

number of trajectories was varied between 2 and 10 for method B, and between 1 and 10 

for all other methods. The reason is that method B requires at least 2 trajectories to enable 

a determination of distances between them. The μ* values computed were used to 

ascertain important parameters from non-important ones. According to Campolongo et al. 

[3], the following measure, referred to as score g, is calculated 
 

                                                           (2)                                                             
 

which allows a comparison of results of the different screening methods. φ and ξ are both 

sets of important parameters, however, the measure which characterizes a parameter as 

being important or not is different. As for φ, a parameter is defined as an important one 

whose total order sensitivity index ST is higher than 1/k, where k is the number of 

parameters. The index ST, which can be estimated using a variance based SA method, 

characterizes the total effect of a parameter including its first order effect and interactions 



with other parameters of any order. As for the test functions applied, analytical values for 

ST can be computed. Thus, φ is considered to be a “true” set of important parameters. On 

the other hand, in screening experiments parameters are ranked according to their μ* 

value. Then, ξ defines the set of the first n important parameters identified by μ* where n 

is the cardinality of φ. The interested reader is referred to Ref. [5] for more details on 

variance based methods calculating sensitivity indices. Finally, the following experiment 

was performed:  

 for each parameter calculate one EE per trajectory  

 for each parameter calculate μ* over all trajectories r 

 determine ξ and calculate g for this particular run  

This procedure was repeated 1000 times for each screening method and test function in 

order to calculate mean and standard deviation of g. Experiments were performed using a 

notebook computer with Intel Core 2 Duo 2.1 GHz processor and 3.4 GB RAM. 

 

3.2. Test functions 
The screening methods described in section 2 were tested on the following analytical 

functions commonly used as benchmark in SA, where each parameter Xi was assumed to 

be uniformly distributed in [0,1]. 

(1) G-function as defined by Sobol [6] with k = 30 and the constants ai : 

 

 

 

 

Xi ai ST Xi ai ST 

24 0 0.4915 9 7 0.0102 

8 0.5 0.2537 12 8 0.0081 

15 0.5 0.2537 27 9 0.0065 

19 1 0.1512 17 10 0.0054 

3 3 0.0401 5 20 0.0015 

1 4 0.0259 30 50 0.0003 

20 5 0.0180 all other p. 99 0.0001 

23 6 0.0133       

 

Table 2: G-function parameters for test case (1). ST was calculated analytically [7]. 

 

The value of a particular ai determines the relative importance of Xi, i.e. the 

smaller ai the more important Xi. In this first test case, the constants ai were set 

such that the 5 parameters X24, X8, X15, X19, and X3 fulfill the criterion of an 

important parameter as described in section 3.1 because their index ST is higher 

than the threshold 1/k = 0.033 (see Table 2). Thus, 5 out of 30 parameters have a 

significant impact on the uncertainty of the model. However, all parameters 

interact with one or more other parameters on a moderate level considering their 

first order sensitivity index (not shown here). 



(2) A modified version of the G-function introduced as G4* in [3], i.e. 4 out of 20 

parameters are identified as important parameters:  
 

 

 

The same parameter values were applied except for the parameter δ which has a 

very strong stochastic impact on the model output, i.e. it causes a shift of the 

function. Therefore, each random number generated for δi was multiplied by a 

factor 0.1. Thus, in contrast to test case (1) the function represents a stochastic 

component and a level of interaction among the parameters which is very strong. 

(3) The K-function as applied with 20 parameters in [3]. Thus, 3 out of 20 parameters 

are identified as important parameters: 
 

 

 

In contrast to the other test cases, the important parameters of this function exhibit 

a degree of interaction with other parameters which is on a low level. Thus, this 

test case may characterize a default case of SA which often occurred in practice. 

 

3.3. Hydrogeological model 
After having evaluated the screening methods, the best algorithm in terms of 

computational efficiency, reproducibility, and stability is applied to a hydrogeological 

model described in [4]. In general, this model allows the calculation of water flow and 

solute transport in porous media. In this work, the model is used to simulate the diffusion 

of a pollutant into an unsaturated soil zone typical for a groundwater risk assessment. In 

this case, the soil zone extends from the groundwater level to the soil surface. It is 

assumed that the groundwater level (lower boundary condition (LB)) and the groundwater 

recharge rate (upper boundary condition (UB)) do not change during simulation. Further, 

the pollutant dissolved in rain water diffuses into the soil for a period of 2000 days. 

Afterwards, the source of the pollutant is considered as fully exhausted. The model 

domain is divided into 5 horizontally extending soil layers where the top soil layer is 

considered to be identical to the bottom soil with respect to its hydraulic properties. Thus, 

4 layers remain where the properties of a particular layer can be chosen independently of 

the other layers. In this application, the corresponding layer properties were adjusted such 

that the first (and fifth) layer represents coarse sand, the second layer middle sand, the 

third layer a medium-grained coarse sand, and the fourth layer sandy silt. As for the 

screening test, lower and upper boundaries of the soil parameters were set individually for 

each layer such that these main properties were preserved during simulation. Further, the 

concentration of the dissolved pollutant was calculated at a given level above the 

groundwater surface, i.e. in the capillary fringe, and considered as model output. Table 3 

briefly describes all model parameters used. Finally, the test was carried out using 10 

trajectories. 



Xi description symbol LB UB unit 

1 residual water content of layer 1 thr1 0.01 0.015 [-] 

2 residual water content of layer 2 thr2 0.02 0.045 [-] 

3 residual water content of layer 3 thr3 0.01 0.02 [-] 

4 residual water content of layer 4 thr4 0.07 0.16 [-] 

5 porosity of layer 1 ths1 0.31 0.34 [-] 

6 porosity of layer 2 ths2 0.35 0.41 [-] 

7 porosity of layer 3 ths3 0.31 0.35 [-] 

8 porosity of layer 4 ths4 0.41 0.49 [-] 

9 van Genuchten parameter (scale)  of layer 1 α1 0.08 0.15 1/cm 

10 van Genuchten parameter (scale) of layer 2 α2 0.009 0.06 1/cm 

11 van Genuchten parameter (scale)  of layer 3 α3 0.07 0.1 1/cm 

12 van Genuchten parameter (scale) of layer 4 α4 0.002 0.007 1/cm 

13 van Genuchten parameter (slope)  of layer 1 n1 2.8 3.5 [-] 

14 van Genuchten parameter (slope) of layer 2 n2 1.8 2.5 [-] 

15 van Genuchten parameter (slope)  of layer 3 n3 2.6 3.1 [-] 

16 van Genuchten parameter (slope)  of layer 4 n4 1.3 1.5 [-] 

17 saturated hydraulic conductivity of layer 1 Ks1 500 800 cm/d 

18 saturated hydraulic conductivity of layer 2 Ks2 100 200 cm/d 

19 saturated hydraulic conductivity of layer 3 Ks3 400 700 cm/d 

20 saturated hydraulic conductivity of layer 4 Ks4 20 80 cm/d 

21...24 longitudinal dispersivity of layer 1...4 DispLi 15 100 cm 

25...28 transversal dispersivity of layer 1...4 DispTi 1 20 cm 

29 pollutant diffusion coefficient in water Difw 0 1.728 cm2/d 

30 pollutant diffusion coefficient in air phase Difg 0 1.2E04 cm2/d 

31...34 adsorption coefficient in solid phase of layer 1...4 KSi 0 20 l/kg 

35...38 Henry distribut. coefficient betw. liquid and air phase of l. 1...4 Hi 0 0.01 1/d 

39...42 first order break down rate of the pollut. in liquid phase of l. 1...4 SnkLi 0 7E-06 1/d 

43...46 first order break down rate of the pollutant in gas phase of l. 1...4 SnkGi 0 7E-06 1/d 

 

Table 3: Parameters of the hydrogeological model used in the simulation 

 

4. Results and discussion  
4.1. Test cases 

Fig. 1 shows the mean, left side of Fig. 2 the standard deviation of the score g as a 

function of the number of trajectories for test case (1). As expected, the mean of g 

increases and the standard deviation decreases with increasing number of trajectories. As 

for one trajectory, a score of around 0.8 was obtained which means that 4 out of 5 

parameters are identified as important ones. This result can be improved by increasing the 

sample size, i.e. using a higher number of trajectories. For example, 10 trajectories will 

lead to the identification of almost all important parameters in this test case. However, 

one can also see that g calculated with method A exhibits significant fluctuations. The 

reason for this behavior is not completely clear, however, the constant step width and the 

limited number of points in the parameter domain are limitations when scanning this 

domain. These constraints do not exist when applying method C, and therefore are 

believed to be responsible for the observed behavior. The score calculated with method B 



also shows fewer fluctuations and is on average higher compared to method A. However, 

it should be mentioned that method B requires much larger computation time compared 

to the other methods. To provide a relative comparison, the computer run time for this 

test case was determined for one run with 10 trajectories using the hardware described in 

section 3.1. Computer run times were 4.5 ms, 6.2 ms, 3.7 ms, and 63 s for method A, C1, 

C2, and B, respectively. Obviously, the selection procedure of method B requires large 

computation resources. Fig. 1 also shows that both methods C1 and C2 demonstrate a 

good performance in terms of stability and convergence, whereas method C2 delivers the 

highest score averaged across the trajectories of 6 to 10. 
 

 
 

Fig. 1: Mean of score g as a function of the number of trajectories for test case (1) 

 

Fig. 2 (right) and Fig. 3 illustrate results for test case (2). In general, the computed scores 

are lower and their standard deviations are higher due to the stochastic impact of the 

model parameter δ. The g values increase up to 0.9 if all stochastic parameters δi are set 

to zero (not shown here). Surprisingly, method C1 delivers the lowest mean values and 

the highest standard deviations of g compared to the other screening methods. Further, 

the score does not improve with increasing sample size. The other methods exhibit more 

or less the same performance in terms of g except for small fluctuations seen with method 

A and B, respectively. 

Results for test case (3) are depicted in Fig. 4 and 5. As can be clearly seen, method C1 

and C2 demonstrate almost the same performance which is significantly higher compared 

to method A and B, respectively. For all trajectories applied, the mean of g is higher and 

the standard deviation of g is lower. In contrast to the methods A and B, fluctuations are 

almost absent and the convergence behavior is perfect. It should also be noted that the 

selection procedure inherent to method B cannot improve the performance compared to 

method A. 
 

0,70

0,75

0,80

0,85

0,90

0,95

0 1 2 3 4 5 6 7 8 9 10

M
e

an
 o

f s
co

re
 g

Number of trajectories r

A

B

C1 (Ref. 3)

C2 (this work)



 
 

Fig. 2: Standard deviation of score g (related to the mean of g) as a function of the number of 

trajectories for test case 1 (left) and test case 2 (right) 

 

 
 

Fig. 3:  Mean of score g as a function of the number of trajectories for test case (2) 

 

To summarize these results, method C2 provided the best performance in terms of 

stability and convergence, and also on average the highest score and lowest standard 

deviation if 5 or more trajectories are considered. Therefore, this method is selected for a 

screening test on the model described in section 3.3. 
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Fig. 4: Mean of score g as a function of the number of trajectories for test case (3) 

 

 
 

Fig. 5: Standard deviation of score g vs. 

number of trajectories for test case (3) 

 
 

Fig. 6: σ versus μ* as calculated for the 

hydrogeological model 

 

4.2. Hydrogeological model 
Standard deviations (σ) and means of EE’s (μ*) were calculated during a screening 

test on the model (see Fig. 6). The plot of σ as a function of μ* reveals that only one para-

meter (KS2) has a strong influence on the model output due of its high μ* and σ. 

Following Morris, a high σ means that the corresponding parameter is characterized by a 

strong nonlinearity and/or a strong interaction with one or more parameters. Within the 

context of the application, this seems to be plausible because the adsorption process is 
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well known to have a large influence on the pollutant spreading. Further, this process is 

strongly assisted by the second layer because it has the largest volume in the model. 

As can be seen in Fig. 6, the screening method detected a small subset of parameters 

which show a significant lower influence on the model than KS2. Moreover, interaction 

and nonlinearity effects of these parameters are negligible due to their low σ. The 

following parameters, in descending order, belong to this subset: DispL2, KS1, KS3, α2, 

KS4, Difg, H2, DispL4, n2, H3, H1, DispL3. Finally, the remaining parameters were 

identified as non-influential parameters because their μ* and σ values are far too low. 

This may open up the ground for a model simplification process. 

 

5. Conclusions 
In this work, the performance of three different screening methods has been 

investigated using analytical test functions. The well-known EE method by Morris, an 

improved version by Campolongo et al., and two different versions of a radial design 

have been tested in numerical experiments. It has been shown that the application of a 

radial design for screening of model parameters, if properly used, provides a better 

performance in terms of computational efficiency and stability compared to the other 

screening techniques. In particular, a more stable and convergent behavior of the 

algorithm has been demonstrated. In contrast, the classical EE method as well as its 

improved version using optimized trajectories tend to be affected by stability issues. 

Moreover, the latter algorithm requires far more computation resources than the other 

methods. Therefore, the algorithm developed in this work seems to be a good choice for 

an efficient SA, especially of deterministic models where only a small subset of 

parameters control the model uncertainty and parameters interact on a low level. 
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