Fahrplanoptimierung im ÖPNV

Mehr Pünktlichkeit im ÖPNV: Entwurf robuster Fahrpläne

von Prof. Dr. Ewald Speckenmeyer

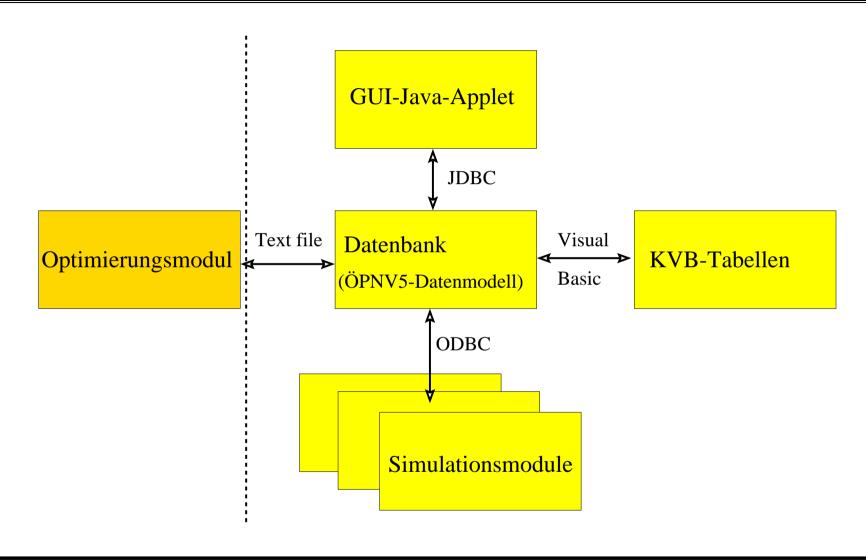
in Zusammenarbeit mit Dr. Zülfükar Genç und Gero Lückemeyer

Institut für Informatik Universität zu Köln

Vortragsübersicht

- Planungsprozesse im ÖPNV
- Optimierung
 - Motivation
 - Modellierung des Fahrplanoptimierungsproblems
 - Zerlegung des Streckennetzwerks
 - Experimentelle Ergebnisse
- Eingabedaten der Kölner Verkehrsbetriebe (KVB)
- Simulationsmodul auf Basis von Zellularautomaten
 - Definition und benötigte Zusätze
 - Störungen
 - Kalibrierung
- Grafische Oberfläche
- Zusammenfassung und Ausblick

Struktur des Projekts



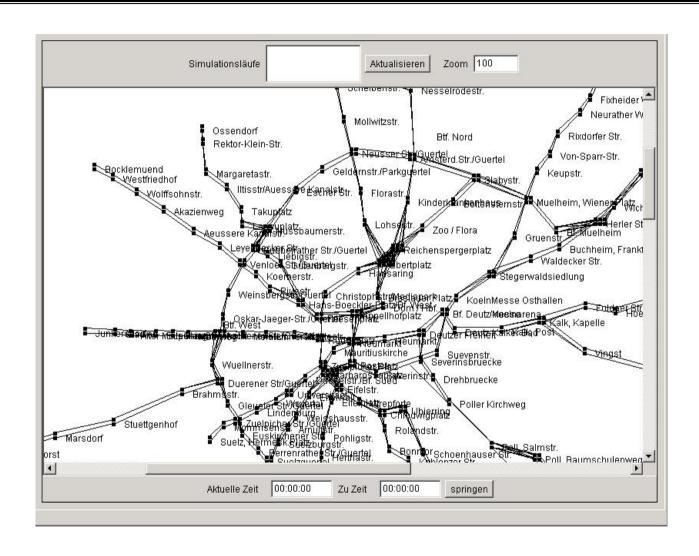
Institut für Informatik der Universität zu Köln

Planungsprozesse im ÖPNV

Die Planung eines öffentl. Nahverkehrssystems erfolgt in drei Phasen:

- strategische Planung
 - Ermittlung des Verkehrsbedarfs
 - Entscheidung über das Systemangebot
- taktische Planung
 - Netzstrukturplanung
 - Linienplanung
 - Fahrplan-Planung
- operative Planung
 - Fahrzeugumlaufplanung/Fahrzeugeinsatzplanung (vehicle scheduling)
 - Dienstplanung(crew scheduling)/Dienstreihenfolgeplanung

Schienennetzstrukturplan der KVB (Ausschnitt)

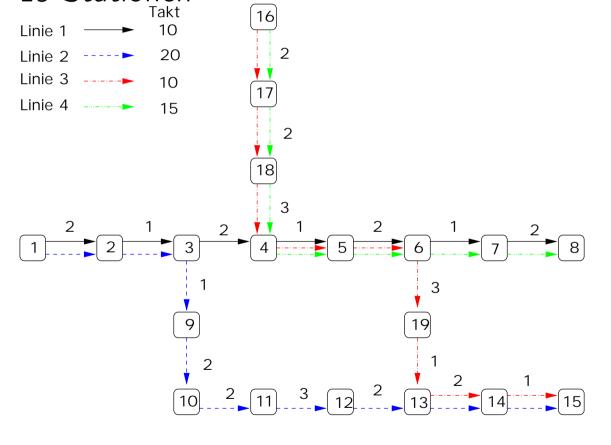


Motivation

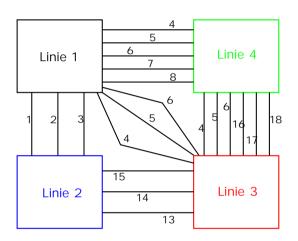
- Anschlussoptimierung sinnvoll im Fernverkehr und in Ballungsräumen am Wochenende und in Abendzeiten
- In Hauptverkehrszeiten: dichter Takt, Wartezeit der Fahrgäste auf Anschlüsse gering
- Verspätungen entstehen, lassen sich kaum verhindern: technische Störungen, erhöhtes Passagieraufkommen, Witterungseinflüsse
- kleine Verspätungen (1-5 Minuten) sollten keine oder nur geringe Auswirkungen auf andere Linien haben
- Möglichkeiten zum Auffangen kleiner Verspätungen
 - Ankunftszeiten der Linien an den einzelnen Stationen gleichmäßig verteilen
 - Zahl der Linien, die in einem Zeitintervall eine Station durchfahren, sollte klein sein

Modellierung

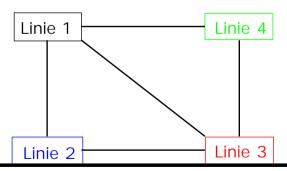
Ein Streckennetzwerk mit 4 Linien und 19 Stationen



Multi-Linienkonflikt-Graph



Linienkonflikt-Graph

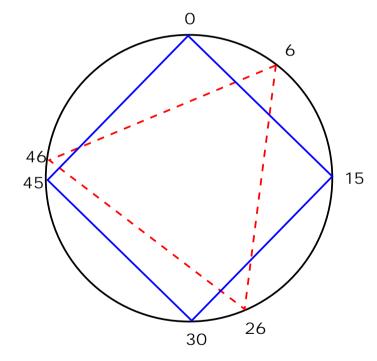


Sicherheitsabstand bei vorgegeben Fahrplan

Sicherheitsabstand bei einem vorgegebenen Fahrplan

- an einer Station: kleinster zeitlicher Abstand der Ankunftszeiten aufeinander folgender Linien
- im Streckennetzwerk: Minimum der Sicherheitsabstände über alle Stationen

Sicherheitsabstand zweier Linien an einer Station mit Takt 15 und 20.

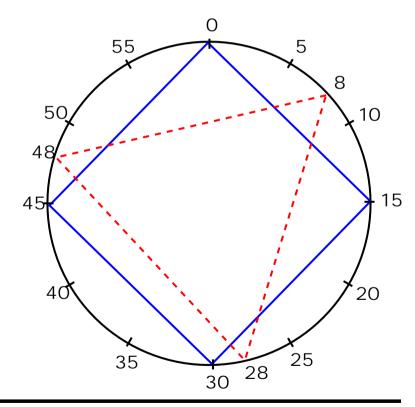


Sicherheitabstand = 1

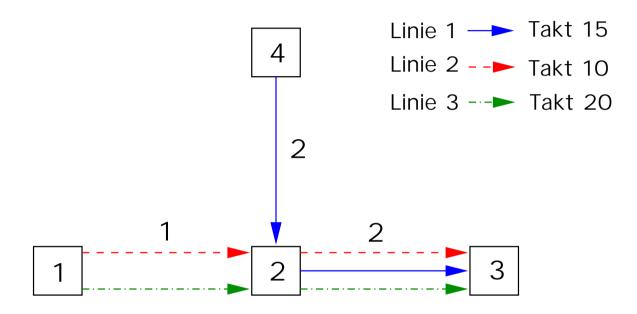
Sicherheitabstand: allgemeine obere Schranken

Satz: Seien l_1 , l_2 zwei Linien, die durch die Station s fahren und T_1 , T_2 die Takte der beiden Linien. Dann gilt für jeden Fahrplan: Sicherheitabstand an der Station $\leq \left|\frac{ggT(T_1,T_2)}{2}\right|$

Beispiel: Zwei Linien mit den Takten 15 und 20 obere Schranke für den Sicherheitabstand = $\left\lfloor \frac{ggT(15,20)}{2} \right\rfloor = \left\lfloor \frac{5}{2} \right\rfloor = 2$

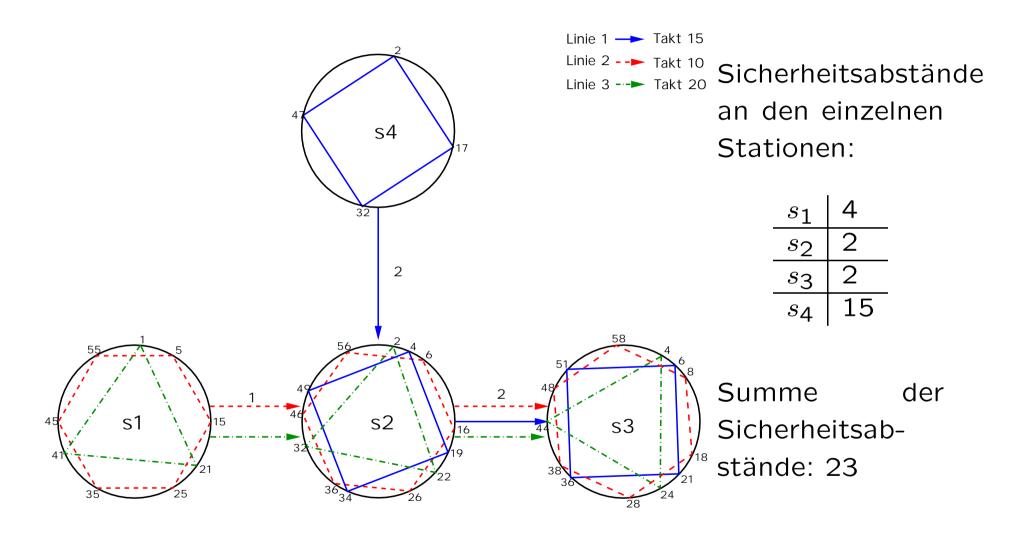


Ein Streckennetzwerk mit 3 Linien und 4 Stationen

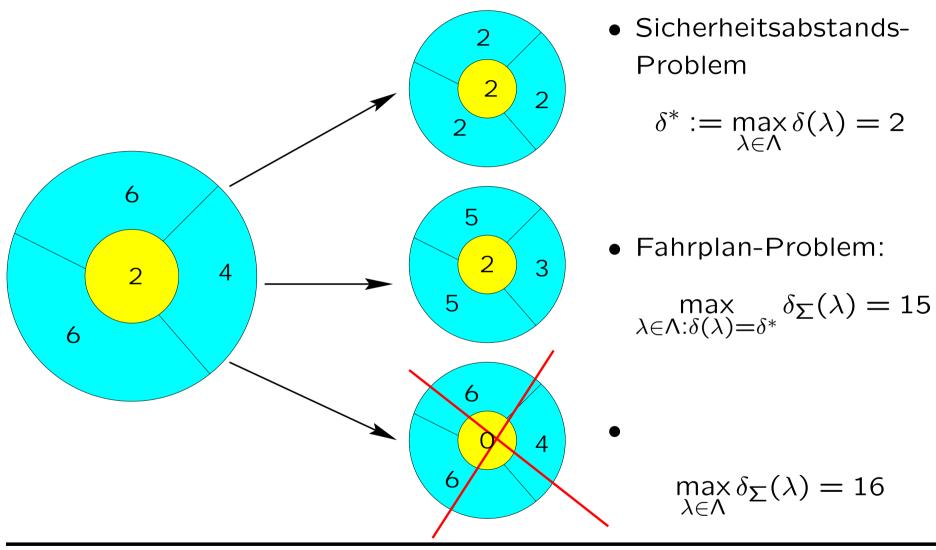


Taktfahrplan: $[l_1, 4, 15; 2]$, $[l_2, 1, 10; 5]$, $[l_3, 1, 20; 1]$ Alle Ankunftszeiten der Linien an Stationen errechnen sich aus den Fahrzeiten für die Strecken.

Modellierung: Beispiel mit Fahrplan $\lambda = (2,5,1)$



Unterschied der Zielfunktionen



Institut für Informatik der Universität zu Köln

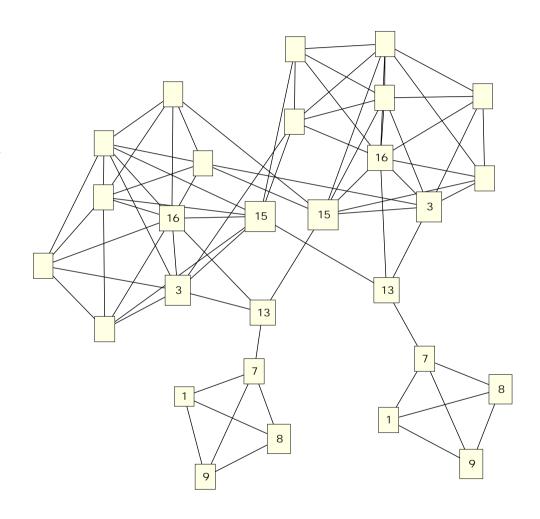
Reduktion der Haltepunkte

- Reduktionsergebnisse für das Liniennetz der KVB (2001):
 - um 12 Uhr: 28 Linien, 542 Haltepunkte (Stationen)
 - für die Optimierung des Fahrplans relevante Haltepunkte: 48
- Haltepunkt ist nicht von Bedeutung, wenn
 - er nur von einer Linie befahren wird oder
 - ein vorgelagerter Haltepunkt von gleichen Linien befahren wird
- Beschleunigung der Rechenzeit um Faktor 4
- Weitere Reduktionen auf den Kanten des Linienkonflikt-Graphen ergeben einen Beschleunigungsfaktor von 10.

Zerlegung des Streckennetzwerkes

Linienkonflikt-Graph für eine Instanz des Liniennetzes der KVB (2001)

- 28 Linien, 543 Stationen
- 383 (76) Linienkonflikte (Kanten)



Darstellung des Problems als ganzzahliges lineares Programm

$$\max \quad \delta \cdot \overline{\delta_{\Sigma}} + \sum_{s \in S} \delta_{s}$$

$$a_{i}^{s} = \lambda_{i} + a(s, l_{i}, 0) \qquad \forall s \in S \qquad \forall i \in L(s)$$

$$x_{ij}^{s} = a_{i}^{s} - a_{j}^{s} - z_{ij}^{s} \cdot ggT(T_{i}, T_{j}) \qquad \forall s \in S \qquad \forall i, j \in L(s), i \neq j$$

$$\delta_{s} \leq x_{ij}^{s} \qquad \forall s \in S \qquad \forall i, j \in L(s), i \neq j$$

$$\delta_{s} \leq ggT(T_{i}, T_{j}) - x_{ij}^{s} \qquad \forall s \in S \qquad \forall i, j \in L(s), i \neq j$$

$$\delta \leq \delta_{s} \qquad \forall s \in S$$

$$0 \leq \lambda_{i} \leq T_{i} - 1 \qquad \forall i \in L$$

$$0 \leq \delta_{s} \leq \overline{\delta_{s}} \qquad \forall s \in S$$

$$0 \leq \delta \leq \overline{\delta}$$

$$0 \leq x_{ij}^{s} \leq ggT(T_{i}, T_{j}) - 1 \qquad \forall s \in S \qquad \forall i, j \in L(s), i \neq j$$

$$x_{ij}^{s}, z_{ij}^{s}, \lambda_{i}, \delta_{s}, \delta \quad integer$$

Institut für Informatik der Universität zu Köln

Ergebnisse für die KVB-Testinstanzen

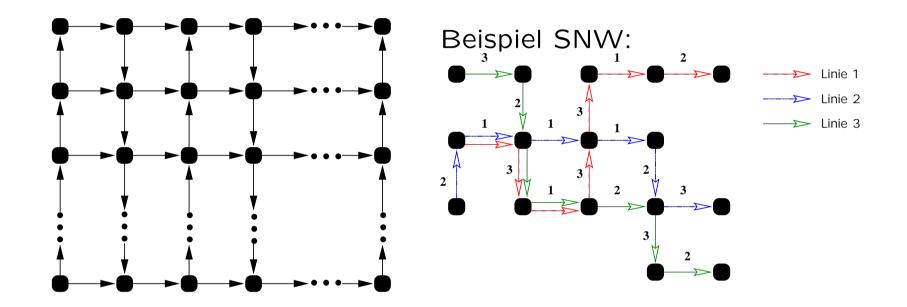
	B&B Ergebnisse							
	Ergebnis nach 5 Minuten				Ergebnis nach einer Stunde			
Inst.	δ	$\delta_{oldsymbol{\Sigma}}$	gap	time	δ	$\delta_{oldsymbol{\Sigma}}$	gap	time
I_2	12	23548	570	156.74	12	23548	445	271.80
I_{12}	2	4613	128	16.80	2	4622	112	92.38
I_{20}	3	6518	173	233.17	3	6544	143	1858.54
	CPLEX Ergebnisse							
	nach 5 Minuten				nach einer Stunde			
Ins.	δ	$\delta_{oldsymbol{\Sigma}}$	gap	time	δ	$\delta_{oldsymbol{\Sigma}}$	gap	time
I_2	12	23214	857	297.02	12	23675	12	1894.54
I_{12}	2	4541	224	37.56	2	4651	99	1043.50

Rechner: SUNW, Ultra-4,

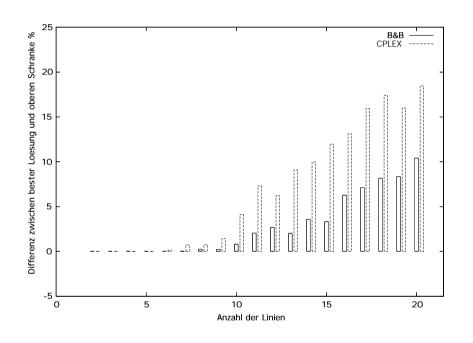
4 CPU's ('296 MHz SUNW, UltraSPARC-II'), 1024 MB RAM

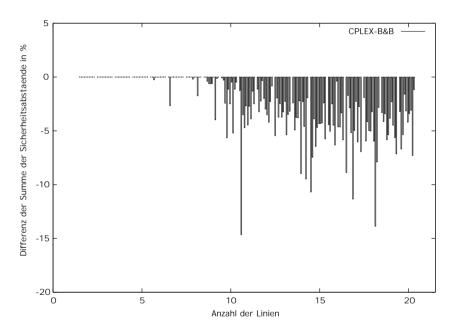
6452 | 262 | 20.59 | 3 | 6570 | 116 | 1452.05

Zufall-Gitter-Streckennetzwerke

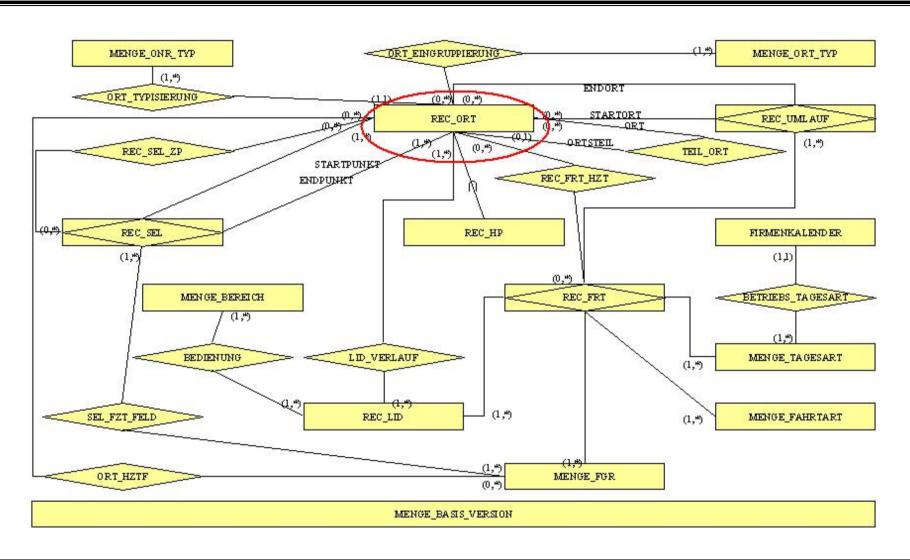


Ergebnisse für 20x20 Gitter-Streckennetzwerke





Straßenbahnsimulation: Objekte



Straßenbahnsimulation: Modellierung und Bedingungen

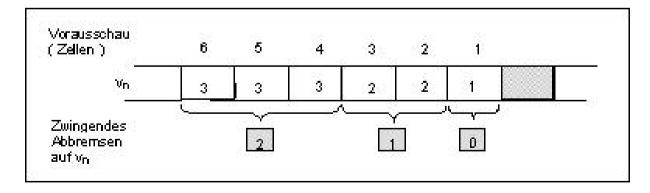
- Haltepunkte, Weichen und Gleise bilden Netzwerk N(V,E) mit Bewertungsfunktion $c:E\to\mathbb{N}_0$, wobei Knoten $v\in V$ entweder Haltepunkte v_h oder Weichen v_w repräsentieren. Kanten $e\in E$ sind gerichtete Gleisstrecken mit Länge c(e).
- ullet Straßenbahnen fließen unter Nebenbedingungen als Pakete durch N.
- Zulässige Höchstgeschwindigkeit des Streckenabschnitts und der Bahn darf nicht überschritten werden.
- Überholen von Bahnen und Überfahren von Haltesignalen sind verboten.
- Eine Bahn darf eine Haltestelle nicht vorzeitig verlassen.
- Verspätungen werden durch schnelleres Fahren möglichst aufgeholt.

Zellularautomat

Ein Zellularautomat ist ein Quadrupel (G, Z, I, f) mit

- ullet einem regulären Gitter G
- ullet einer endlichen Menge von Elementzuständen Z
- einer endlichen Menge von Umgebungsindizes I
- einer lokalen Übergangsfunktion $f: \mathbb{Z}^n \to \mathbb{Z}$ für n = |I|.

Beispielabbildung:



Institut für Informatik der Universität zu Köln

Simulation mit Zellularautomaten

Von Nagel/Schreckenberg erstmals für Verkehrssimulation eingesetzt.

Erweiterungen für Straßenbahnsimulation

- Zellen, die über mehr als eine Zustandsvariable verfügen.
- Unterschiedlich weite Auslegungen der Umgebung von Zellen, so dass Interaktion auch über die direkt angrenzenden Zellen hinaus stattfindet.
- Irreguläre Gitter mit Zellen unterschiedlichen Typs, die eine unterschiedliche Anzahl von Nachbarzellen besitzen können.

Straßenbahnsimulation: Zellen

N wird in äquidistante, disjunkte Zellen unterteilt, die über einen booleschen Belegungsgrad *occupied* verfügen. Die Zellen gehören jeweils genau einem Typ an, wobei gilt:

- SWITCH ist die Menge aller Weichenzellen
- TRAMSTOP ist die Menge aller Bahnsteigzellen
- TRACK ist die Menge aller reinen Gleiszellen

Simulation mit Zellenlängen von 30m (entspricht einer Wagenlänge) und 10m.

Straßenbahnsimulation: Weichen

Zusammenführende Weichen verändern nach Rückschau auf die beiden ankommenden Gleise ihren Zustand und sperren das Gleis, auf dem die nächste Bahn weiter entfernt ist. Sei die Weichenzelle $Cell_{Switch}$, die Entfernung einer Bahn auf dem ersten Gleis $dist_{Track1}$, die Entfernung einer Bahn auf dem zweiten Gleis $dist_{Track2}$, $Cell_{Switch} \rightarrow Previous1$ und $Cell_{Switch} \rightarrow Previous2$ die Vorgängerzellen auf den Gleissträngen:

Falls $dist_{Track1} \leq dist_{Track2}$:

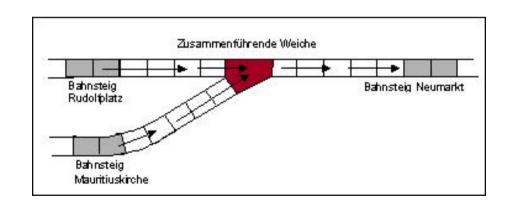
occupied
$$(Cell_{Switch} \rightarrow Previous1)$$
=false

occupied (
$$Cell_{Switch} \rightarrow Previous2$$
)=true

Sonst:

occupied (
$$Cell_{Switch} \rightarrow Previous1$$
)=true

occupied
$$(Cell_{Switch} \rightarrow Previous2)$$
=false



Straßenbahnsimulation: Objekte

- Linienverläufe definieren gerichtete Wege durch das Streckennetzwerk
- Fahrten definieren den Startzeitpunkt für eine Bahn für deren Fluss durch das Netzwerk gemäß eines Linienverlaufs
- restliche Abfahrzeiten an Haltepunkten ergeben sich aus tageszeitabhängigen Fahrzeiten über Gleisabschnitte
- Signale zur Kontrolle von Sicherungsblöcken
- Verkehrsampeln zur Koordination von mobilem Individualverkehr (MIV) und öffentlichem Personennahverkehr (ÖPNV)

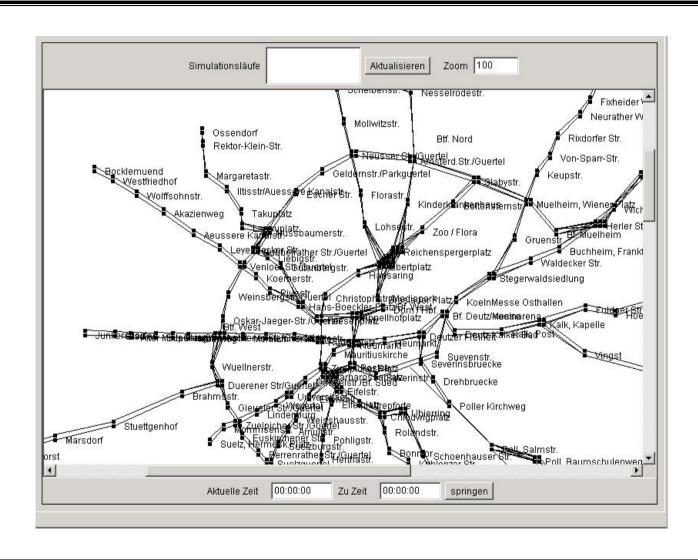
Straßenbahnsimulation: Störungen

- kurzfristig (approximiert durch Trödel- und Beladeparameter)
 - Witterung
 - Längere Verweildauer an der Haltestelle durch verzögerte Beladezeiten
 - Kleinere Bahndefekte
 - Warten auf das Umschalten von Signalen oder Verkehrsampeln
 - Behinderung durch Individual- und Wirtschaftsverkehr
 - Wartungs- und Reparaturarbeiten
- gravierend (explizit angegeben in Tabelle REC_SIM_PARAM, Zusammenfassung zu Szenarien möglich), u.a.
 - Verkehrsunfälle, in die Bahnen verwickelt wurden (49%)
 - Behinderungen durch Falschparker (31%)
 - Abgeirrte Kraftfahrzeuge im Gleis (12%)
 - Fahrleitungsstörungen durch Fremdeinwirkung (7,5%)

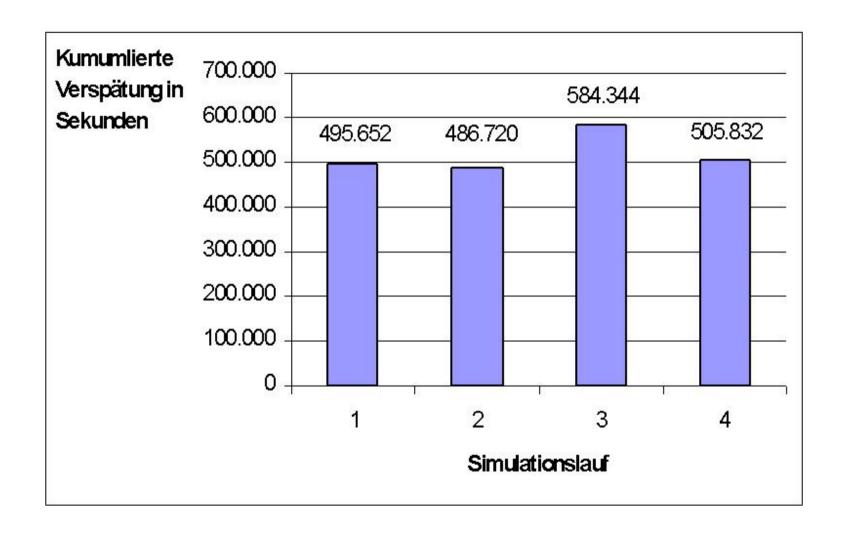
Eigenschaften von Straßenbahnfahrzeugen

- Länge (ca. 30m)
- Kapazität
- Fahreigenschaften (unterliegen wetterbedingten Veränderungen)
 - Höchstgeschwindigkeit (ca. 80 km/h), entsprechend 7 Zellen pro Zeitschritt (3 sec)
 - Beschleunigung (ca. 1,4 m/s^2)
 - Abbremsvermögen (ca. 1,4 m/s^2)
 - Notbremsvermögen (ca. 3 m/s^2)

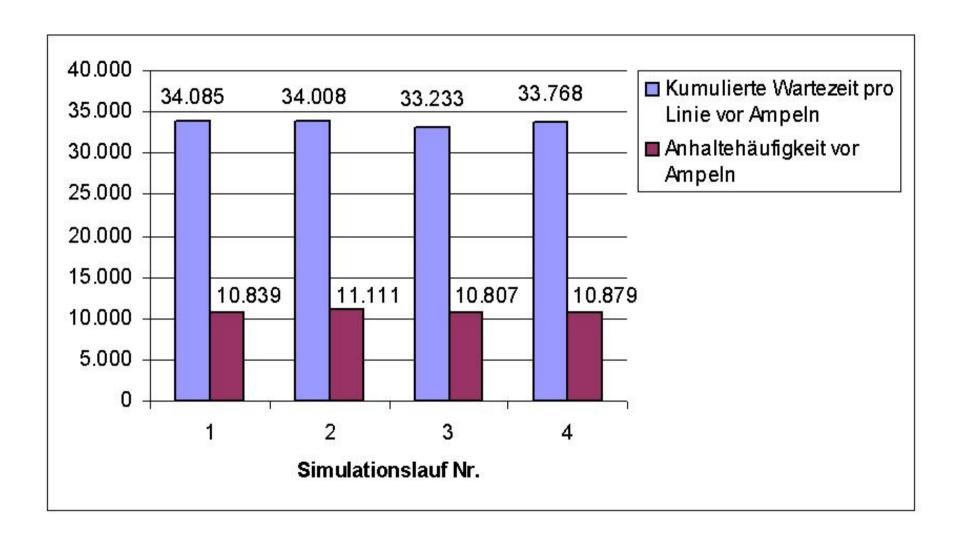
JAVA-GUI-Applet



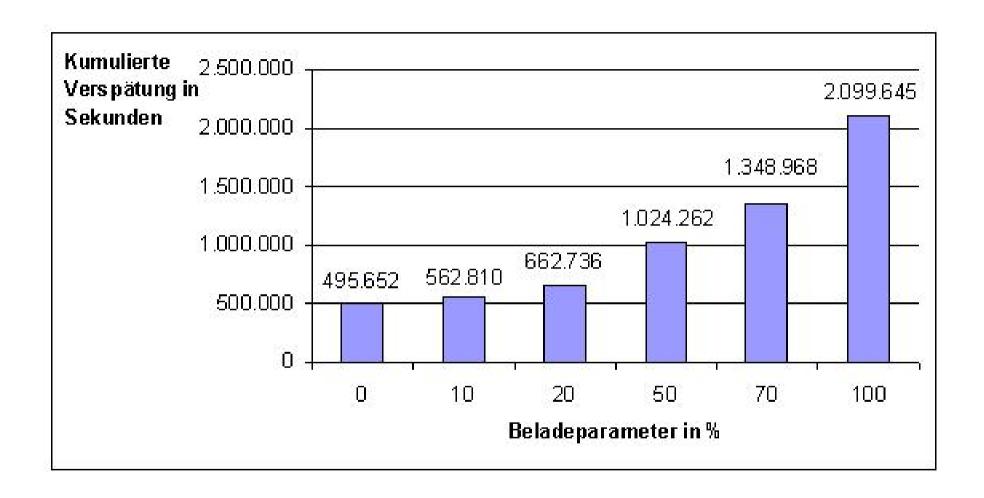
Straßenbahnsimulation: Ampelinitialisierung



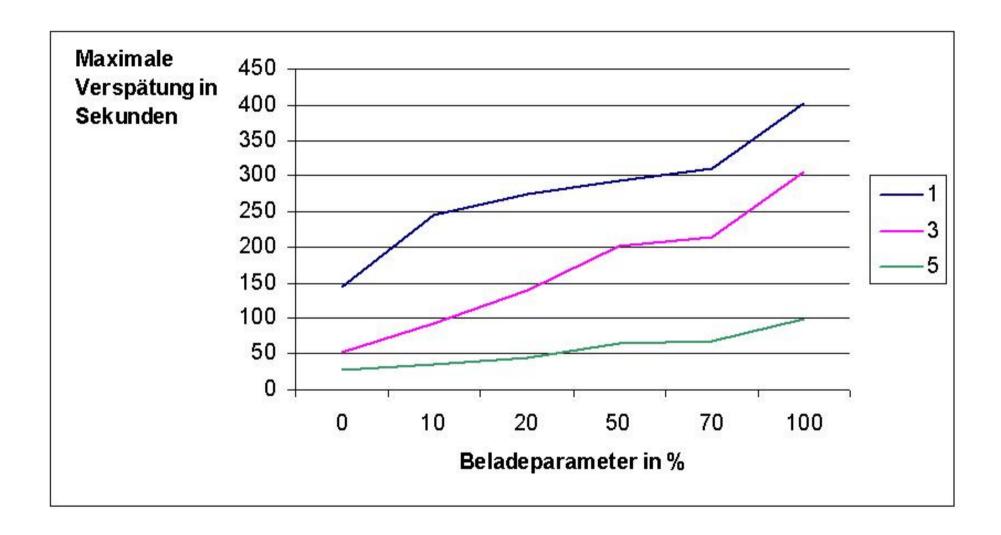
Straßenbahnsimulation: Einfluss der Ampeln



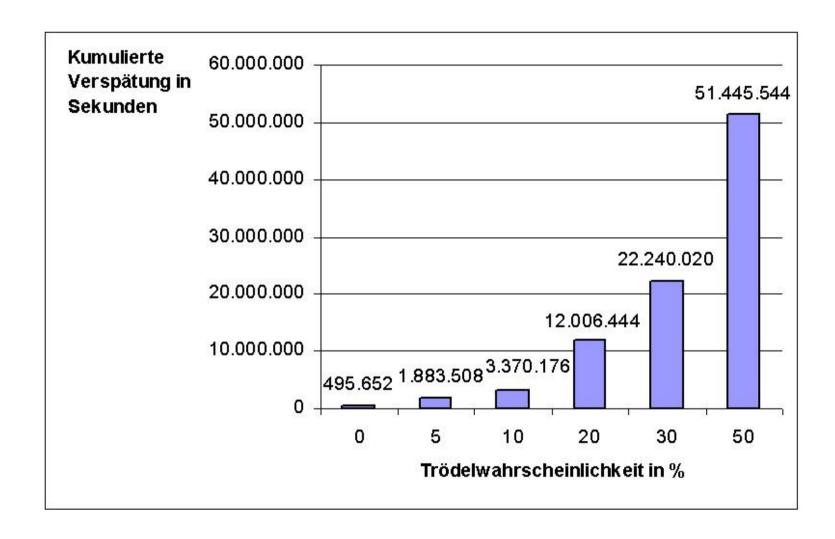
Straßenbahnsimulation: Einfluss des Fahrgastaufkommens



Einfluss des Fahrgastaufkommens auf unterschiedliche Linien



Straßenbahnsimulation: Einfluss kleinerer Störungen



Zusammenfassung und Ausblick

Optimierung

- Verfahren B&B, LP-Ansatz liefern nach kurzer Zeit gute Fahrpläne
- Zerlegung des Streckennetzwerkes beschleunigt Berechnung eines guten Fahrplans
- Darstellung als ganzzahliges lineares Programm
- Zerlegungsansatz erweitern und neue obere Schranken untersuchen

Simulation

- Simulation mittels Zellularautomaten reproduziert viele reale Phänomene bei Variation von nur drei Parametern (Trödel-, Beladeparameter und Ampelinitialisierung)
- Variation weiterer Parameter (z.B. Wahrscheinlichkeitsverteilung für Beladung und Ampelschaltung) nähert Realität weiter an
- Mikroanalyse der Ergebnisse mit erweiterter Protokollierung von Simulationsdaten möglich