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OUTLINE

@ MoTIVATION
@ What is a meshfree method?
@ When to use a meshfree method?

© CONSTRUCTION OF MESHFREE METHODS
@ Kernel Techniques
@ Moving Least Squares, partition of unity
@ Enrichment

© COMPUTATIONAL CHALLENGES
@ Appropriate data-structures
@ Parallelization

© APPLICATIONS



EFFICIENT NUMERICAL SIMULATION

@ Optimal complexity automatic algorithms.

e Discretization with minimal degrees of freedom.
o Efficient multilevel solver.
o Load-balanced parallel implementation.

@ Utilize a priori knowledge about solution.

O = O

Material B

Material A

Material discontinuities.

Geometry induced singularities (asymptotic expansions).
High resolution local simulations (homogenization,
multi-scale information).

Spectral analysis.



WHAT IS A MESHFREE METHOD?

@ Particle methods (physics).
o Consider particles x;.
o Dynamics of multi-particle system.
o Newtonian mechanics, system of ODEs.
@ Scattered data approach (reconstruction).
o Consider points x;.
e Choose/construct appropriate function space V on Q2 based
on XN:{Xili:1,...,N}C§.
Define appropriate energy functional.
Minimize energy over function space, system of PDEs.
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@ Note only irregular point cloud assumed.
@ Capability of h-adaptivity built-in.



WHEN TO USE A MESHFREE METHOD?

@ Mesh-generation.
o Complex geometries / complicated structure in solution.
o Time-dependent geometries / topological changes / large
deformations.

@ Higher order problems, i.e. global smoothness.
@ Discontinuities and singularities.




CONTRUCTION OF MESHFREE METHODS

@ Choice of discretization technique.
o Collocation.
o Rayleigh—Ritz—Galerkin.
@ Choice of basis functions.
e Construction from scattered points only.
o Meshfree zoo of acronyms:
e SPH, CSPH, MLSPH, ...
o RBF, WEBS, ...
o EFGM, MLPG, RKPM, ...
o GFEM, XFEM, PUFEM, ...
e Common ingredients in many meshfree methods:
o Partition of unity.
o Enrichment basis.

@ Three separate components.

e Local approximability.
e Inter-particle continuity.
o Geometry resolution.



SPECIAL KERNEL TECHNIQUES

RECOVERY PROBLEM

Given Xy = {(x;,f)|i=1,...,N,x; € Q}. Find u: Q — R such
that
u(xj) = f; foralli=1,...,N. (1)

SMOOTHED PARTICLE HYDRODYNAMICS

@ Convolution with ¢-distribution

) = [ oly - ()i
@ Convolution with approximate §-distribution

f(y) = /QW(y — x)f(x)dx

@ Discretization of integration

N
f(y) = D aW(y — x)f(x)
=



ABSTRACT KERNEL TECHNIQUES

KERNEL APPROXIMATION
e Akernelis afunction K: Q2 x Q — R.
e Trial space
K =span(K(,y),y € Q)
e Generalized interpolation, e.g. K(x,y) = K(x — y)

N
X) = Z iK(x = X;)
=1

e Integral transformation

/f K(x, y)dp(x)

@ Gaussian exp(—||x — y||?), RBF ®(||x — y||), splines, ...



SCATTERED DATA APPROXIMATION

RECOVERY PROBLEM

Given Xy = {(x;,f;)|i=1,...,N,x; € Q}. Find u: Q — R such
that
u(xj)~ f; foralli=1,...,N. (2)

LEAST SQUARES FIT
Consider the space Px(Q2) of all polynomials p with degree less

than k. Minimize the quadratic functional

N

dus(m) = D (fi = m(x))? (3)

i=1

over all polynomials = € Px(2).

@ Solution u is global polynomial.
@ Approximation order determined by k.
@ Increasing N does not improve quality.



MOVING LEAST SQUARES TECHNIQUE

LOCALIZED WEIGHTED LEAST SQUARES FIT
Consider the space P«(2) and a set of weight functions?
W, : RP? — R with supp(W)) = w;.

Minimize the pointwise quadratic functional

N

dhs(1)(X) = 3 Wi(x)(f = 7(x))? @)

i=1

over all polynomials 7 € Px(Q).

#“Moving” refers to choice Wi(x) = W(x — xi).

@ Localized approximation. @ Solution is not a global polynomial.
@ Approximation order is k. @ For each x* there is 7 € P ()
UMLS(X*) = 7T(X*).
@ There is a representation
umis(x) = 3 figi(x).

@ |Increasing N improves quality.

@ Smoothness inherited from
weights.



REPRESENTATION

With particular basis P = (pg) and Guis(X"),,, == 31, Pq(X:) Wi(x™)pr(x)

$i(X) := Wi(x)P(xi) - (Gws (X))~ P(x).
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PROPERTIES

@ Locally supported basis functions ¢;

supp(¢;) = supp(W;) = w.

@ Basis known implictly only.

@ In general ¢;(x;) # d; -

@ Existence of Pk-unisolvent subset in Xy N w;.

@ Smoothness of ¢;, u determined by smoothness of all W;.
@ Polynomial basis is globally fixed.'

@ Partition of unity

N
Z¢,‘ =1
i=1

independent of polynomial degree k > 0.

Can be generalized to other global approximation space.



DECOMPOSITION OF A FUNCTION

@ Consider a general function u € H%(Q)

u
u= Ujump(usmooth + Usingular) = Hjump(usmooth + Usingular)

@ Employ approximation scheme with
o higher order basis in smooth regions,
o discontinuous basis across local jumps,
e singular basis in vicinity of singularity.
@ Consider an arbitrary partition of unity ¢;

u= Z pil = Z liump (Piusmooth + (Piusingular)

A PU is the perfect glue!
@ Define approximation space

N
= Z Pi ‘/I(wl)
i=1

o Vi:Pk(i) @ Vi=HY Pk e Vi=H! (Pk +{ smgular})

Jjump jump



ENRICHMENT OF PARTITION OF UNITY

ERROR ESTIMATE [BABUSKA, MELENK |
Consider u € H'(Q), u; € Vi(w;), {i} a PUon {w;}, and uPY .= SN o

(SE

N
[lu— UPUHLZ(Q) <VMCx (ZHU - UiH%z(wi))
i=1

N

G
90— ")z < VEM(Y(Gomrs)lu = il + Gl V(= wlfz,)
1

o=

i=1

Constants M, C, and Cy depend on PU only.

External p-adaptivity (basis and degree).

External local enrichment for singularities.

External local jump enrichment for discontinuities.

Problem-dependent local approximation spaces.
@ Regularity theory, spectral theory, asymptotic expansion, homogenization.
o Numerical homogenization, microscale simulation, atomistic simulation.

Resulting approximation functions

ei(X)(Hi(x)pq(x)), and  @i(x)(Hi(x)r*)
@ Basis property?



PARTICLE—PARTITION OF UNITY METHOD

@ Stability of global basis holds if flat-top PU.

MLS-Function
MLS~Function O, MLS=Functio

xxxxxxxxxxxxx

@ Explicit representation of PU.

_ Wik Wi(x)
SR W) P We(X)

pi(Xx)

@ Po-unisolvent iff @ ¢ UV, w;.
@ Small overlap of patches w; for flat-top PU.



PARTICLE-PUM FEATURES

Generous Overlap Small Overlap
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@ Shepard PU {¢;} with spline weight functions W;.
@ Local approximation spaces.

o Legendre poynomials 7, ...

o Point / edge singularities n[", ...
@ Assembled basis functions

VPY = span(pf, oimf")
@ Adaptive sub-division sparsegrid integration scheme.
@ Automatic a-priori enrichment identification.
@ A-posteriori sub-domain error estimator, hp-adaptivity.
@ Multilevel solver and nested iteration.




COMPUTATIONAL CHALLENGES

@ Construction of Cq := {w;} such that Px(£2)-unisolvent
subset is contained in each w;, and Q C |J; w.

@ Search for all neighbors
Ni={x€ An|X cwi}, Ci:={wj€Cq|wjNuw;#0}.

@ Integration of weak form.
o Analytic integration not feasible.
o Appropriate numerical quadrature (piecewise rational and
singular integrands).
o Domain approximation.

@ Approximation of essential boundary conditions.

@ Parallelization and dynamic load-balancing.

o Irregular point clouds.
e Varying local polynomial degrees.
e Varying local enrichment (discontinuous, singular).



ESSENTIAL BOUNDARY CONDITIONS

Model problem:
—V-uVu+rvu=finQ, u=gponlp, Vu-n=gyonly
Approaches in meshfree methods:

@ Collocation. @ Lagrange multipliers.
@ Penalty formulation. @ Nitsche’s method.

a(U,V)://LVU'VV—i-I/UV—/[L(VU-I?V-FUVV'n)-I-B uv
Q r

D s}

/(V)z/fV+ gNV_/MQDVV'rH‘/B 9oV
Q v r

D Ip

@ Symmetric positive definite system.
@ Optimal error bounds, provided inverse estimate holds.
@ Regularization parameter g can be estimated efficiently.



TASKS & DATA STRUCTURES

given particle given particles and patches

@ Construction of a cover from points.
o Delaunay triangulation, Voronoi cells.
e Sub-division approach, trees.
e Dimension-recursive construction.
o Partition Q in sub-domains C; with simple shape.
@ Use a minimal number of sub-domains C;.
@ Geometric search problem.

e k-nearest neighbors.

e Minimal trees (e.g. kd-trees).

o Geometric trees (e.g. PR-trees).
e Fast insert operations, adaptivity and dynamics.
o Aspect ratios of cells.



SPACE TREES

DIVISON OF SPACE BY QUADTREE, OCTREE, ...
e Top node / root is associated with complete domain.
e Non-leaf node splits region into 2P equal sized sub-cells.
e Leaf node is associated with at most g number of points.

H
MESH APPLICATIONS | PARTICLE APPLICATIONS
e Mesh-generation. e Multipol methods.
e Parallel h-adaptive FEM. e Barnes—Hut method.

o Tree-SPH.



GEOMETRIC HIERARCHY

ace

PU _ . i\ J PU _ . Pi,d—1 PU _ X Pi,J—2
Vit =X eigVi, Vizi =2 ®ig—1 Vit Vit =X wig-2V ;5

Define patches w; = aC; on leaf cells Cj, a > 1.
Set weights W; on patches w;, choose local space V; on w;.

W.
VEU = SOV = ——V
Z i Vi Z Zm W,

Coarsen tree by removing appropriate subset of leafs.

Refine tree using local estimate on patch w; using V; D V.

No treatment of hanging nodes, i.e., arbitrary irregularity of tree.
Spaces ViV non-nested, i.e., ViV ¢ VY.

Multilevel solver with appropriate interlevel transfers.



TREE IMPLEMENTATIONS

POINTER-BASED DATA STRUCTURE

treenode {
datatype data;
treenode *successors[Zd];

}

@ Store links to successors in tree-node.
@ Topology explicitly given via graph of links.
@ Parallel computation: Pointers to remote nodes?

KEY-BASED DATA STRUCTURE

map<keytype, datatype> tree;
hash_map<keytype, datatype> tree;

@ Without any explicit links between tree nodes.

@ Topology implicitly encoded by key-labels.

@ Store complete tree in (hashed) associative container.
@ Parallelization by sub-division of key-range.



KEY-BASED MEMORY ACCESS

@ Direct-address tables / ordinary arrays.
@ Allocate memory for every possible key O(#U).
@ Assumption universe of keys is small.

universe of keys (U) h(k1)

set of used keys (K) o h(k2)
k1 - h(k3)
k3 k2

5 k4

= h(kd)

h(k5)

@ Indirect-address tables / associative containers.
@ Universe of keys is large.

@ Allocate memory for N = O(#K) only.

@ Hash-function h: U — [0, N — 1].



KEY GENERATION

@ Tree topology:
e Parent/child information easily accessible.

@ Tree node L corresponds to geometric cell C; .
@ Cheap unique keys (small number of bits).

Construction of path key? k; for cell C;:
@ Assign initial key value k; = 1 at root cell.
@ Concatenate key k; with d binary descent decisions.
@ Descend tree in direction of cell C;.

: 11 X
00 01

2Also known as bit interleaving.




PARALLELIZATION

@ Data equi-distributed among processors (memory).

@ Work load equi-distributed among processors (CPU).

@ Number of neighboring processors minimal (latency).

@ Boundary of data among processors minimal (bandwidth).

Consider one-dimensional problem.
@ Data locations are contained in interval [0, 1].
@ Data are fully ordered.

@ Linear walk over data gives optimal partition.
0—0—-00-000-0-0-0—00-0—00-0— 00— 00— 00— 00— 0—0—0—0

processor 1 processor 2 processor 3

LOAD-BALANCING

Memory load and work load estimate per tree-node.
Summation according to ordering of data.

Ordering data in higher dimensions?  Use order in key range!



PARALLELIZATION OF TREE

110 11

100 101

@ Key range is one-dimensional.
@ Simple sub-domain description via

O=rn<rn < <r,=Knax, Qq:={CL|KL € [rg,rg+1)}-

@ Path keys induce horizontal order of tree.
o Maps levels to processors (parallel traversal?).
o All-to-all communication.
e # boundary data ~ # volume data.
@ Transformation of keys to obtain vertical ordering.
o Maps sub-trees to processors (local traversal!).
o Small number of neighbors.
e # boundary data < # volume data.



SPACE-FILLING CURVES

SPACE-FILLING CURVE
A space-filling curve is the graph of a continuous surjective
mapping

c:[0,1]=-QeRrRP

for Q with pRo(2) > 0.

@ There is no such injective mapping for smooth 0.
@ lterative construction procedure for some SFC.

DISCRETIZATIONS OF SPACE-FILLING CURVE

The curves ¢, associated with the nth iteration of a Lebesgue
or Hilbert SFC construction are injective, i.e., self-avoiding.

@ Travelling sales man. @ Cache optimization.
@ Computer graphics. @ Parallelization.
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PERFORMANCE OF PARTICLE-PUM

@ Simple construction of VPV = span{p;y"):  O(Nglog No

)
e Efficient assembly Al = f; O(N(p? + €)?)
@ Multilevel solution: O(N(p? + €)%)
@ Adaptive refinement: O(N((p+1)? + €)%)
@ Optimal with respect to number of particles, almost optimal

with respect to local approximation spaces.
Highly flexible general purpose solver.

o General particle input.
e Choice of local spaces / enrichments.
e Automatic refinement in h and p.

Load-balanced parallel implementation / optimal scaling.



PARALLEL PERFORMANCE

Model problem:

/a(u):e(u)+/ pu-v—u-(o(v) -n)—(o(v)-n)-v
Q

I'p

execution times execution times execution times ) convergence history VoS(1, 1)-cycle
1

 oad=a2es

2 0 120 2 0 120 0 120

W 6 o CE L W w0 w N 3
number of processors number of processors number of processors number of erations

@ Scaling of cover construction, neighbor search, and
load-balancing step.

@ Scaling of assembly of discrete linear system.
@ Scaling ofa V — (1, 1)-cycle.
@ Convergence history of V(1,1)-iteration.



SINGULARITIES IN TWO DIMENSIONS (H-ADAPTIVE)

particles approximate solution
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J dof €[00 pLoo .2 P2 e Pyt e p:ﬂ E:ﬂ

4 17937 2851_, 1.02 5.109_5 1.17 7.102_3 0.54 5047_3 0.53 0.71
15 26235 1.796_, 1.22 3.806_5 077 5.863_; 050 4.173_; 0.50  0.71
16 41598 1.131_, 1.00 2.404_s 1.00 4.710_; 0.47 3.347_; 0.48 0.71
17 67266 7.1426_5  0.96 1.344_5 1.21 3.654_5 0.53 2.602_3 0.52 0.71
18 99162 4.489_5 119 9.895_g 0.79 2999_5 0.51 21438_3 0.51  0.71
19 157779  2.828_5 099 6.324_g 096 2.410_; 0.47 1.714_; 0.48  0.71
20 259047 1.781_5 093 3.465_g 1.21 1.861_; 052 1.325_; 0.52 0.71
21 383805 1.122_5 1.18 2.532_g 0.80 1.521_; 051 1.085_; 0.51  0.71
22 612792 7.070_g  0.99 1.621_g 0.95 1.220_; 0.47 8.686_4 0.47  0.71
23 1014804  4.454_g  0.92 8.828_; 1.20 9.39%6_, 0.52 6.695_, 0.52  0.71
24 1509102  2.806_g 1.16  6.403_; 0.81 7.659_, 0.51 5465_, 0.51  0.71
25 2412608  1.767_g  0.98  4.109_; 0.95 6.143_, 0.47 4.375_, 0.47 0.7
26 4014459  1.113_g  0.91 2.230_; 1.20 4.723_, 0.52 3.366_4 0.51  0.71
27 5983155  7.014_; 1.16 1.610_; 0.82 3.844_, 052 2.743_, 0.51 0.71
28 9575469  4.419_;  0.98 1.034_; 0.94 3.082_, 047 2195_, 0.47 0.71
29 15969915 2.784_;  0.90  5.600_g 1.20 2.368_,  0.52

optimalrates: p,p =1=2andp 4 =3 = &




J dof e[ co pLoo €2 P2 e,1 Py 9;1 p:n G
2 30 7.824_» 0.13 3.138_» 0.53 1.407 _4 0.29 9.962_» 0.45 0.71
3 57 4.255_5 0.95 1.288_» 1.39 1.059_ 4 0.44 7.899_» 0.36 0.75
4 105 2.678_» 0.76 5.366_3 1.43 7.193_» 0.63 5.158_» 0.70 0.72
5 156 1.686_o 1.17 3.265_3 1.25 4.846_» 1.00 3.490_» 0.99 0.72
6 218 9.969_3 1.57 2.730_3 0.54 3.230_» 1.21 2.329_, 1.21 0.72
7 280 6.248_3 1.87 1.536_3 2.30 2.192_, 1.55 1.620_» 1.45 0.74
8 358 3.883_3 1.94 7.558_4 2.88 1.477_5 1.61 1.093_» 1.60 0.74
9 454 2.446_4 1.95 5.363_4 1.44 9.885_3 1.69 7.367_3 1.66 0.75
10 612 1.503_3 1.63 2.393_4 2.70 6.540_3 1.38 4.828_3 1.41 0.74
11 852 9.326_4 1.44 1.464_4 1.49 4.373_3 1.22 3.235_3 1.21 0.74
12 1220 5.834_4 1.31 5.753_5 2.60 2.739_3 1.30 2.010_3 1.33 0.73
13 1664 3.675_4 1.49 4.750_5 0.62 1.812_3 1.33 1.337_3 1.31 0.74
14 2018 2.315_4 2.40 2.671_5 2.99 1177 _3 2.24 8.683_4 2.24 0.74
15 2369 1.458_4 2.88 1.640_5 3.04 7.914_4 2.47 5.885_4 2.43 0.74




SINGULARITIES IN THREE DIMENSIONS (H-ADAPTIVE)

particles particles

05

05 s

xyeanis x,axis xaxis

dof €00 pLoo €2 P2 e Pyt el P €
32 1.424_4 0.25 1.823_»5 0.49 1.702_4 0.07 1.206_4 0.14 0.71
256 1.124_4 0.11 4.048_3 0.57 1.007_4 0.25 6.927_» 0.27 0.69

480 8.913_» 0.37 1.987_3 1.13 7.291_» 0.51 4.992_, 0.52 0.68
704 7.074_» 0.60 1.674_3 0.45 6.183_» 0.43 4.220_» 0.44 0.68
928 5.614_5 0.84 1.644_5 0.07 5.792_» 0.24 3.947_» 0.24 0.68
2440 4.521_5 0.22 8.566_4 0.67 4.102_» 0.36 2.750_» 0.37 0.67
4540 3.537_» 0.40 4.784_4 0.94 3.229_5 0.39 2.143_5 0.40 0.66
7424 2.805_5 0.47 3.924_4 0.40 2.795_5 0.29 1.847_5 0.30 0.66
15964 2.226_5 0.30 2.610_4 0.53 2.178_» 0.33 1.423_» 0.34 0.65
10 30076 1.767_5 0.36 1.426_4 0.95 1.705_» 0.39 1.110_» 0.39 0.65
11 53148 1.402_5 0.41 1.028_4 0.57 1.425_5 0.32 9.227_3 0.33 0.65
12 110100 1.113_5 0.32 714115 0.51 1.137_5 0.31 7.314_3 0.32 0.64
13 213840 8.830_3 0.35 4.137_5 0.82 8.885_3 0.37 5.723_3 0.37 0.64
14 372124 7.007_3 0.42 2.792_5 0.71 7.401_3 0.33 4.752_3 0.34 0.64

i o _2_ 2 _1_1
optimal rates: P2=35=7%5 and Pt =3=3
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CONTINUUM MECHANICS
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MAGNETOSTATICS AND PHOTONIC CRYSTALS

—V - uVu=V-(uM)

particles approximate solution
. '

—V-uVu—-k2u=0




OBSTACLE PROBLEM

f inQ=10,1%, u < o = distg iIngQ,

—Au
0 onoqQ, (-Au—f)(lu-0) = 0 in Q,

[ IA

obstacle - solution

4

yaxis D yaxis Rt
xaxis xaxis

@ Variational inequalities, minimization in cone of valid
functions.

@ Coarse local approximation spaces such that fine
constraints satisfied.



SUMMARY

@ Meshfree methods.

e Many different names, many common ingredients.

e Partition of unity and enrichment.

o Fluid dynamics, structural mechanics, multi-scale
phenomena.

@ Data-structures.

o Key-based tree implementation.
@ Dynamic load-balancing.

e Space-filling curves.

4th International Workshop on Meshfree Methods for PDE,
17.-20. September 2007, Bonn, Germany.

http://wissrech.ins.uni-bonn.de/meshfree

@ Coupling atomistic to continuum models.
@ Multiscale simulation techniques.
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