INTRODUCTION TO MESHFREE METHODS

Marc Alexander Schweitzer

Institut für Numerische Simulation Rheinische Friedrich–Wilhelms Universität Bonn

ASIM 2007, Aachen

- What is a meshfree method?
- When to use a meshfree method?
- CONSTRUCTION OF MESHFREE METHODS
 - Kernel Techniques
 - Moving Least Squares, partition of unity
 - Enrichment
- **3** COMPUTATIONAL CHALLENGES
 - Appropriate data-structures
 - Parallelization

EFFICIENT NUMERICAL SIMULATION

- Optimal complexity automatic algorithms.
 - Discretization with minimal degrees of freedom.
 - Efficient multilevel solver.
 - Load-balanced parallel implementation.
- Utilize a priori knowledge about solution.

- Material discontinuities.
- Geometry induced singularities (asymptotic expansions).
- High resolution local simulations (homogenization, multi-scale information).
- Spectral analysis.

WHAT IS A MESHFREE METHOD?

- Particle methods (physics).
 - Consider particles x_i.
 - Dynamics of multi-particle system.
 - Newtonian mechanics, system of ODEs.
- Scattered data approach (reconstruction).
 - Consider points x_i.
 - Choose/construct appropriate function space V on Ω based on X_N = {x_i | i = 1,..., N} ⊂ Ω.
 - Define appropriate energy functional.
 - Minimize energy over function space, system of PDEs.

- Note only irregular point cloud assumed.
- Capability of h-adaptivity built-in.

WHEN TO USE A MESHFREE METHOD?

Mesh-generation.

- Complex geometries / complicated structure in solution.
- Time-dependent geometries / topological changes / large deformations.

- Higher order problems, i.e. global smoothness.
- Discontinuities and singularities.

CONTRUCTION OF MESHFREE METHODS

• Choice of discretization technique.

- Collocation.
- Rayleigh-Ritz-Galerkin.
- Choice of basis functions.
 - Construction from scattered points only.
 - Meshfree zoo of acronyms:
 - SPH, CSPH, MLSPH, ...
 - RBF, WEBS, ...
 - EFGM, MLPG, RKPM, ...
 - GFEM, XFEM, PUFEM, ...
 - Common ingredients in many meshfree methods:
 - Partition of unity.
 - Enrichment basis.
- Three *separate* components.
 - Local approximability.
 - Inter-particle continuity.
 - Geometry resolution.

SPECIAL KERNEL TECHNIQUES

RECOVERY PROBLEM

Given $\mathcal{X}_N := \{(x_i, f_i) \mid i = 1, ..., N, x_i \in \overline{\Omega}\}$. Find $u : \Omega \to R$ such that

$$u(x_i) \approx f_i$$
 for all $i = 1, \dots, N$. (1)

SMOOTHED PARTICLE HYDRODYNAMICS

Convolution with δ-distribution

$$f(y) = \int_{\Omega} \delta_0(y-x)f(x)dx$$

Convolution with approximate δ-distribution

$$f(y) \approx \int_{\Omega} \mathcal{W}(y-x) f(x) dx$$

Discretization of integration

$$f(\mathbf{y}) \approx \sum_{i=1}^{N} \alpha_i \mathcal{W}(\mathbf{y} - \mathbf{x}_i) f(\mathbf{x}_i)$$

KERNEL APPROXIMATION

- A kernel is a function $K : \Omega \times \Omega \to \mathbb{R}$.
- Trial space

$$\mathcal{K} = \operatorname{span}\langle K(\cdot, y), y \in \Omega
angle$$

• Generalized interpolation, e.g. K(x, y) = K(x - y)

$$f_{\mathcal{K}}(x) = \sum_{j=1}^{N} f_j \mathcal{K}(x - x_j)$$

Integral transformation

$$K_{\Omega}^*f(x) := \int_{\Omega} f(y) K(x,y) d\mu(x)$$

• Gaussian $\exp(-\|x-y\|^2)$, RBF $\Phi(\|x-y\|)$, splines, ...

RECOVERY PROBLEM

Given $\mathcal{X}_N := \{(x_i, f_i) \mid i = 1, ..., N, x_i \in \overline{\Omega}\}$. Find $u : \Omega \to R$ such that

$$u(x_i) \approx f_i$$
 for all $i = 1, \dots, N$. (2)

LEAST SQUARES FIT

Consider the space $\mathcal{P}_k(\Omega)$ of all polynomials *p* with degree less than *k*. Minimize the quadratic functional

$$J_{\rm LS}(\pi) = \sum_{i=1}^{N} (f_i - \pi(x_i))^2$$
(3)

over all polynomials $\pi \in \mathcal{P}_k(\Omega)$.

- Solution *u* is global polynomial.
- Approximation order determined by k.
- Increasing *N* does *not* improve quality.

MOVING LEAST SQUARES TECHNIQUE

LOCALIZED WEIGHTED LEAST SQUARES FIT

Consider the space $\mathcal{P}_k(\Omega)$ and a set of weight functions^{*a*}

 $W_i : \mathbb{R}^D \to \mathbb{R}$ with supp $(W_i) = \omega_i$.

Minimize the pointwise quadratic functional

$$J_{\rm MLS}(\pi)(x) = \sum_{i=1}^{N} W_i(x)(f_i - \pi(x_i))^2$$
(4)

over all polynomials $\pi \in \mathcal{P}_k(\Omega)$.

^a"Moving" refers to choice $W_i(x) = W(x - x_i)$.

- Localized approximation.
- Approximation order is k.
- Increasing N improves quality.
- Smoothness inherited from weights.

- Solution is *not* a global polynomial.
- For each x^* there is $\pi \in \mathcal{P}_k(\Omega)$ $u_{\mathrm{MLS}}(x^*) = \pi(x^*).$
- There is a representation $u_{\text{MLS}}(x) = \sum f_i \phi_i(x).$

REPRESENTATION

With particular basis $P = (p_q)$ and $G_{\text{MLS}}(x^*)_{q,r} := \sum_{i=1}^N p_q(x_i) W_i(x^*) p_r(x_i)$

 $\phi_i(x) := W_i(x) P(x_i) \cdot (G_{\mathrm{MLS}}(x))^{-1} P(x).$

PROPERTIES

• Locally supported basis functions ϕ_i

 $\operatorname{supp}(\phi_i) = \operatorname{supp}(W_i) = \omega_i.$

- Basis known implicitly only.
- In general $\phi_i(x_j) \neq \delta_{i,j}$.
- Existence of \mathcal{P}_k -unisolvent subset in $\mathcal{X}_N \cap \omega_i$.
- Smoothness of ϕ_i , *u* determined by smoothness of all W_i .
- Polynomial basis is globally fixed.¹
- Partition of unity

$$\sum_{i=1}^{N} \phi_i \equiv 1$$

independent of polynomial degree $k \ge 0$.

¹Can be generalized to other *global* approximation space.

DECOMPOSITION OF A FUNCTION

• Consider a general function $u \in H^{s}(\Omega)$

 $u = u_{\text{jump}}(u_{\text{smooth}} + u_{\text{singular}}) = H^u_{\text{jump}}(u_{\text{smooth}} + u_{\text{singular}})$

- Employ approximation scheme with
 - higher order basis in smooth regions,
 - discontinuous basis across local jumps,
 - singular basis in vicinity of singularity.
- Consider an *arbitrary* partition of unity φ_i

$$u = \sum_{i=1}^{N} \varphi_i u = \sum_{i=1}^{N} H^{u}_{\text{jump}}(\varphi_i u_{\text{smooth}} + \varphi_i u_{\text{singular}})$$

A PU is the perfect glue!

Define approximation space

$$V^{\mathrm{PU}} := \sum_{i=1}^{N} arphi_i V_i(\omega_i).$$

• $V_i = \mathcal{P}_{k(i)}$ • $V_i = H^u_{jump} \mathcal{P}_{k(i)}$ • $V_i = H^u_{jump} (\mathcal{P}_{k(i)} + \{r^{\alpha}_{singular}\})$

ENRICHMENT OF PARTITION OF UNITY

ERROR ESTIMATE [BABUŠKA, MELENK]

Consider $u \in H^1(\Omega)$, $u_i \in V_i(\omega_i)$, $\{\varphi_i\}$ a PU on $\{\omega_i\}$, and $u^{\text{PU}} := \sum_{i=1}^N \varphi_i u_i$

$$\begin{split} \|u - u^{\rm PU}\|_{L^{2}(\Omega)} &\leq \sqrt{M}C_{\infty} \left(\sum_{i=1}^{N} \|u - u_{i}\|_{L^{2}(\omega_{i})}^{2}\right)^{\frac{1}{2}} \\ \nabla(u - u^{\rm PU})\|_{L^{2}(\Omega)} &\leq \sqrt{2M} \Big(\sum_{i=1}^{N} (\frac{C_{\nabla}}{\operatorname{diam}(\omega_{i})})^{2} \|u - u_{i}\|_{L^{2}(\omega_{i})}^{2} + C_{\infty}^{2} \|\nabla(u - u_{i})\|_{L^{2}(\omega_{i})}^{2} \Big)^{\frac{1}{2}} \end{split}$$

Constants M, C_{∞} , and C_{∇} depend on PU only.

- External p-adaptivity (basis and degree).
- External local enrichment for singularities.
- External local jump enrichment for discontinuities.
- Problem-dependent local approximation spaces.
 - Regularity theory, spectral theory, asymptotic expansion, homogenization.
 - Numerical homogenization, microscale simulation, atomistic simulation.
- Resulting approximation functions

 $\varphi_i(x)(H_i(x)p_q(x)), \text{ and } \varphi_i(x)(H_i(x)r^{\alpha_i})$

Basis property?

PARTICLE–PARTITION OF UNITY METHOD

Stability of global basis holds if flat-top PU.

- Zero-order MLS = Shepard functions as PU.
- Explicit representation of PU.

$$\varphi_i(x) = rac{W_i(x)}{\sum_{k=1}^N W_k(x)} = rac{W_i(x)}{\sum_{\omega_k \cap \omega_i \neq \emptyset} W_k(x)}$$

- \mathcal{P}_0 -unisolvent iff $\Omega \subset \bigcup_{i=1}^N \omega_i$.
- *Small overlap* of patches ω_i for flat-top PU.

PARTICLE-PUM FEATURES

- Shepard PU {φ_i} with spline weight functions W_i.
- Local approximation spaces.
 - Legendre poynomials ψ_i^n, \ldots
 - Point / edge singularities η_i^m, \ldots
- Assembled basis functions

$$V^{\mathrm{PU}} := \operatorname{span} \langle \varphi_i \psi_i^n, \varphi_i \eta_i^m \rangle$$

- Adaptive sub-division sparsegrid integration scheme.
- Automatic a-priori enrichment identification.
- A-posteriori sub-domain error estimator, hp-adaptivity.
- Multilevel solver and nested iteration.

COMPUTATIONAL CHALLENGES

- Construction of C_Ω := {ω_i} such that P_k(Ω)-unisolvent subset is contained in each ω_i, and Ω ⊂ ⋃_i ω_i.
- Search for all neighbors

$$\mathcal{N}_i := \{ \mathbf{x}_j \in \mathcal{X}_N \, | \, \mathbf{x}_j \in \omega_i \}, \quad \mathcal{C}_i := \{ \omega_j \in \mathcal{C}_\Omega \, | \, \omega_j \cap \omega_i \neq \emptyset \}.$$

- Integration of weak form.
 - Analytic integration not feasible.
 - Appropriate numerical quadrature (piecewise rational and singular integrands).
 - Domain approximation.
- Approximation of essential boundary conditions.
- Parallelization and dynamic load-balancing.
 - Irregular point clouds.
 - Varying local polynomial degrees.
 - Varying local enrichment (discontinuous, singular).

ESSENTIAL BOUNDARY CONDITIONS

Model problem:

 $-\nabla \cdot \mu \nabla u + \nu u = f \text{ in } \Omega, \quad u = g_D \text{ on } \Gamma_D, \quad \nabla u \cdot n = g_N \text{ on } \Gamma_N$

Approaches in meshfree methods:

- Collocation.
 Lagrange multipliers.
- Penalty formulation.

Nitsche's method.

$$a(u, v) = \int_{\Omega} \mu \nabla u \cdot \nabla v + \nu uv - \int_{\Gamma_D} \mu (\nabla u \cdot nv + u \nabla v \cdot n) + \beta \int_{\Gamma_D} uv$$
$$l(v) = \int_{\Omega} fv + \int_{\Gamma_N} g_N v - \int_{\Gamma_D} \mu g_D \nabla v \cdot n + \beta \int_{\Gamma_D} g_D v$$

- Symmetric positive definite system.
- Optimal error bounds, provided inverse estimate holds.
- Regularization parameter β can be estimated efficiently.

TASKS & DATA STRUCTURES

- Construction of a cover from points.
 - Delaunay triangulation, Voronoi cells.
 - Sub-division approach, trees.
 - Dimension-recursive construction.
 - Partition Ω in sub-domains C_i with simple shape.
 - Use a minimal number of sub-domains C_i .
- Geometric search problem.
 - k-nearest neighbors.
 - Minimal trees (e.g. kd-trees).
 - Geometric trees (e.g. PR-trees).
 - Fast insert operations, adaptivity and dynamics.
 - Aspect ratios of cells.

SPACE TREES

DIVISON OF SPACE BY QUADTREE, OCTREE, ...

- Top node / root is associated with complete domain.
- Non-leaf node splits region into 2^D equal sized sub-cells.
- Leaf node is associated with at most q number of points.

MESH APPLICATIONS

- Mesh-generation.
- Parallel h-adaptive FEM.

PARTICLE APPLICATIONS

- Multipol methods.
- Barnes–Hut method.
- Tree-SPH.

GEOMETRIC HIERARCHY

- Define patches $\omega_i = \alpha C_i$ on leaf cells C_i , $\alpha > 1$.
- Set weights W_i on patches ω_i, choose local space V_i on ω_i.

$$V_{k}^{\mathrm{PU}} := \sum_{i} \varphi_{i} V_{i} = \sum_{i} \frac{W_{i}}{\sum_{m} W_{m}} V$$

- Coarsen tree by removing appropriate subset of leafs.
- Refine tree using local estimate on patch ω_i using V_i ⊃ V_i.
- No treatment of hanging nodes, i.e., arbitrary irregularity of tree.
- Spaces V_k^{PU} non-nested, i.e., $V_k^{\text{PU}} \not\subset V_{k+1}^{\text{PU}}$.
- Multilevel solver with appropriate interlevel transfers.

TREE IMPLEMENTATIONS

POINTER-BASED DATA STRUCTURE

```
treenode {
  datatype data;
  treenode *successors[2<sup>d</sup>];
  ...
}
```

- Store links to successors in tree-node.
- Topology explicitly given via graph of links.
- Parallel computation: Pointers to remote nodes?

KEY-BASED DATA STRUCTURE

```
map<keytype, datatype> tree;
hash_map<keytype, datatype> tree;
```

- Without any explicit links between tree nodes.
- Topology implicitly encoded by key-labels.
- Store complete tree in (hashed) associative container.
- Parallelization by sub-division of key-range.

KEY-BASED MEMORY ACCESS

- Direct-address tables / ordinary arrays.
- Allocate memory for every possible key O(#U).
- Assumption universe of keys is small.

- Indirect-address tables / associative containers.
- Universe of keys is large.
- Allocate memory for N = O(#K) only.
- Hash-function $h: U \rightarrow [0, N-1]$.

KEY GENERATION

- Tree topology:
 - Parent/child information easily accessible.
- Tree node *L* corresponds to geometric cell C_L .
- Cheap unique keys (small number of bits).

Construction of *path key*² k_L for cell C_L :

- Assign initial key value k_L = 1 at root cell.
- Concatenate key k_L with d binary descent decisions.
- Descend tree in direction of cell C_L .

²Also known as bit interleaving.

PARALLELIZATION

- Data equi-distributed among processors (memory).
- Work load equi-distributed among processors (CPU).
- Number of neighboring processors minimal (latency).
- Boundary of data among processors minimal (bandwidth).

Consider one-dimensional problem.

- Data locations are contained in interval [0, 1].
- Data are fully ordered.
- Linear walk over data gives optimal partition.

LOAD-BALANCING

Memory load and work load estimate per tree-node. Summation according to ordering of data.

Ordering data in higher dimensions? Use order in key range!

PARALLELIZATION OF TREE

- Key range is one-dimensional.
- Simple sub-domain description via

 $0 = r_0 \leq r_1 \leq \cdots \leq r_{\wp} = \mathsf{k}_{\max}, \quad \Omega_q := \{\mathcal{C}_L \,|\, \mathsf{k}_L \in [r_q, r_{q+1})\}.$

- Path keys induce horizontal order of tree.
 - Maps levels to processors (parallel traversal?).
 - All-to-all communication.
 - # boundary data \approx # volume data.
- Transformation of keys to obtain *vertical* ordering.
 - Maps sub-trees to processors (local traversal!).
 - Small number of neighbors.
 - # boundary data << # volume data.

SPACE-FILLING CURVE

A *space-filling curve* is the graph of a continuous *surjective* mapping

 $c: [0,1] \rightarrow \Omega \Subset \mathbb{R}^D$

for Ω with $\mu_{\mathbb{R}^{D}}(\Omega) > 0$.

- There is no such injective mapping for smooth $\partial \Omega$.
- Iterative construction procedure for some SFC.

DISCRETIZATIONS OF SPACE-FILLING CURVE

The curves c_n associated with the *n*th iteration of a Lebesgue or Hilbert SFC construction are injective, i.e., self-avoiding.

- Travelling sales man.
- Computer graphics.

- Cache optimization.
- Parallelization.

SPACE-FILLING CURVE PARTITIONING

PERFORMANCE OF PARTICLE–PUM

- Simple construction of $V^{PU} = \operatorname{span} \langle \varphi_i \psi_i^n \rangle$: $O(N_0 \log \theta_i)$
- Efficient assembly $A\tilde{u} = \hat{f}$:
- Multilevel solution:
- Adaptive refinement:

 $\psi_i^n
angle: O(N_0 \log N_0) \ O(N(p^d + e)^2) \ O(N(p^d + e)^3) \ O(N((p + 1)^d + e)^3)$

- *Optimal* with respect to number of particles, almost optimal with respect to local approximation spaces.
- Highly flexible general purpose solver.
 - General particle input.
 - Choice of local spaces / enrichments.
 - Automatic refinement in h and p.
- Load-balanced parallel implementation / optimal scaling.

PARALLEL PERFORMANCE

Model problem:

$$\int_{\Omega} \boldsymbol{\sigma}(\boldsymbol{u}) : \boldsymbol{\epsilon}(\boldsymbol{u}) + \int_{\Gamma_{D}} \beta \boldsymbol{u} \cdot \boldsymbol{v} - \boldsymbol{u} \cdot (\boldsymbol{\sigma}(\boldsymbol{v}) \cdot \boldsymbol{n}) - (\boldsymbol{\sigma}(\boldsymbol{v}) \cdot \boldsymbol{n}) \cdot \boldsymbol{v}$$

- Scaling of cover construction, neighbor search, and load-balancing step.
- Scaling of assembly of discrete linear system.
- Scaling of a V (1, 1)-cycle.
- Convergence history of V(1, 1)-iteration.

SINGULARITIES IN TWO DIMENSIONS (H-ADAPTIVE)

J	dof	eL∞	$\rho_L \infty$	e _{L2}	ρ_{L^2}	e _{H1}	ρ_{H^1}	е _Н 1	$\rho_{H^{1}}^{*}$	$\epsilon_{H^1}^*$
14	17937	2.851_4	1.02	5.109_5	1.17	7.102_3	0.54	5.047_3	0.53	0.71
15	26235	1.796_4	1.22	3.806_5	0.77	5.863_3	0.50	4.173_3	0.50	0.71
16	41598	1.131_4	1.00	2.404_5	1.00	4.710_3	0.47	3.347_3	0.48	0.71
17	67266	7.126_5	0.96	1.344_5	1.21	3.654_{3}	0.53	2.602_{-3}	0.52	0.71
18	99162	4.489_5	1.19	9.895_6	0.79	2.999_{3}	0.51	2.138_3	0.51	0.71
19	157779	2.828_5	0.99	6.324_6	0.96	2.410_3	0.47	1.714_{3}	0.48	0.71
20	259047	1.781_5	0.93	3.465_6	1.21	1.861_3	0.52	1.325_{3}	0.52	0.71
21	383805	1.122_{-5}	1.18	2.532_{-6}	0.80	1.521_3	0.51	1.085_3	0.51	0.71
22	612792	7.070_6	0.99	1.621_6	0.95	1.220_3	0.47	8.686_4	0.47	0.71
23	1014804	4.454_6	0.92	8.828_7	1.20	9.396_4	0.52	6.695_4	0.52	0.71
24	1509102	2.806_6	1.16	6.403_7	0.81	7.659_4	0.51	5.465_4	0.51	0.71
25	2412603	1.767_{-6}	0.98	4.109_7	0.95	6.143_4	0.47	4.375_4	0.47	0.71
26	4014459	1.113_6	0.91	2.230_7	1.20	4.723_4	0.52	3.366_4	0.51	0.71
27	5983155	7.014_7	1.16	1.610_7	0.82	3.844_4	0.52	2.743_4	0.51	0.71
28	9575469	4.419_7	0.98	1.034_7	0.94	3.082_4	0.47	2.195_4	0.47	0.71
29	15969915	2.784 ₇	0.90	5.600_8	1.20	2.368_4	0.52			

optimal rates: $\rho_{12} = 1 = \frac{2}{d}$ and $\rho_{H1} = \frac{1}{2} =$

SINGULARITIES IN TWO DIMENSIONS (EHP-ADAPTIVE)

J	dof	e∟∞	$\rho_L \infty$	e _{L2}	ρ_{L^2}	e _{H1}	ρ_{H^1}	е _Н 1	$\rho_{H^{1}}^{*}$	^е [*] _Н 1
2	30	7.824 ₂	0.13	3.138_2	0.53	1.407 ₁	0.29	9.962 ₂	0.45	0.71
3	57	4.255 ₂₂	0.95	1.288_2	1.39	1.059_1	0.44	7.899_2	0.36	0.75
4	105	2.678_2	0.76	5.366 ₃	1.43	7.193 ₂	0.63	5.158 ₂	0.70	0.72
5	156	1.686_2	1.17	3.265_3	1.25	4.846_2	1.00	3.490_2	0.99	0.72
6	218	9.969_3	1.57	2.730_{-3}	0.54	3.230_2	1.21	2.329_2	1.21	0.72
7	280	6.248_3	1.87	1.536_{-3}	2.30	2.192_2	1.55	1.620_{-2}	1.45	0.74
8	358	3.883_3	1.94	7.558_4	2.88	1.477_{-2}	1.61	1.093_2	1.60	0.74
9	454	2.446_3	1.95	5.363_4	1.44	9.885_3	1.69	7.367 ₃	1.66	0.75
10	612	1.503_3	1.63	2.393_4	2.70	6.540_3	1.38	4.828_3	1.41	0.74
11	852	9.326_4	1.44	1.464_4	1.49	4.373_3	1.22	3.235_3	1.21	0.74
12	1220	5.834_4	1.31	5.753 ₅	2.60	2.739_3	1.30	2.010_3	1.33	0.73
13	1664	3.675_4	1.49	4.750_5	0.62	1.812_3	1.33	1.337_3	1.31	0.74
14	2018	2.315_4	2.40	2.671_5	2.99	1.177_{-3}	2.24	8.683_4	2.24	0.74
15	2369	1.458_4	2.88	1.640_5	3.04	7.914_4	2.47	5.885_4	2.43	0.74

SINGULARITIES IN THREE DIMENSIONS (H-ADAPTIVE)

J	dof	$e_{L^{\infty}}$	$\rho_{L^{\infty}}$	e _{L2}	ρ_{L^2}	e _{H1}	ρ_{H^1}	e*1	$\rho_{H^1}^*$	$\epsilon_{H^1}^*$
1	32	1.424 _ 1	0.25	1.323_2	0.49	1.702_1	0.07	1.206_1	0.14	0.71
2	256	1.124 ₋₁	0.11	4.048_3	0.57	1.007 ₋₁	0.25	6.927 ₂	0.27	0.69
3	480	8.913_2	0.37	1.987_3	1.13	7.291_2	0.51	4.992_2	0.52	0.68
4	704	7.074_2	0.60	1.674_{-3}	0.45	6.183 ₂	0.43	4.220_{-2}	0.44	0.68
5	928	5.614_{2}	0.84	1.644_{-3}	0.07	5.792_2	0.24	3.947_{-2}	0.24	0.68
6	2440	4.521_2	0.22	8.566_4	0.67	4.102_2	0.36	2.750_{-2}	0.37	0.67
7	4540	3.537_2	0.40	4.784_4	0.94	3.229_2	0.39	2.143_2	0.40	0.66
8	7424	2.805_2	0.47	3.924_4	0.40	2.795_2	0.29	1.847_2	0.30	0.66
9	15964	2.226_2	0.30	2.610_4	0.53	2.178_2	0.33	1.423_{-2}	0.34	0.65
10	30076	1.767_{-2}	0.36	1.426_4	0.95	1.705_{-2}	0.39	1.110_{2}	0.39	0.65
11	53148	1.402_2	0.41	1.028_4	0.57	1.425_{-2}	0.32	9.227_3	0.33	0.65
12	110100	1.113_{2}	0.32	7.111_5	0.51	1.137_{-2}	0.31	7.314_3	0.32	0.64
13	213840	8.830_3	0.35	4.137_5	0.82	8.885_3	0.37	5.723_{3}	0.37	0.64
14	372124	7.007_3	0.42	2.792_5	0.71	7.401_3	0.33	4.752_3	0.34	0.64

optimal rates: $\rho_{12} = \frac{2}{3} = \frac{2}{d}$ and $\rho_{H1} = \frac{1}{3} = \frac{1}{d}$

CONTINUUM MECHANICS

MAGNETOSTATICS AND PHOTONIC CRYSTALS

 $-\nabla \cdot \mu \nabla \boldsymbol{u} = \nabla \cdot (\mu \boldsymbol{M})$

$$-\nabla \cdot \mu \nabla u - k^2 u = 0$$

OBSTACLE PROBLEM

- Variational inequalities, minimization in *cone* of valid functions.
- Coarse local approximation spaces such that fine constraints satisfied.

SUMMARY

- Meshfree methods.
 - Many different names, many common ingredients.
 - Partition of unity and enrichment.
 - Fluid dynamics, structural mechanics, multi-scale phenomena.
- Data-structures.
 - Key-based tree implementation.
- Dynamic load-balancing.
 - Space-filling curves.

4th International Workshop on Meshfree Methods for PDE, 17.–20. September 2007, Bonn, Germany. http://wissrech.ins.uni-bonn.de/meshfree

- Coupling atomistic to continuum models.
- Multiscale simulation techniques.