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Geometry Processing Pipeline
• raw data                             →  shape information

(points, polygons, voxels)

• mesh generation                              →  continuity
(triangles)

• mesh repair                →  topological consistency
(manifolds)

• mesh optimization               →  geometric quality
(smoothing, decimation, remeshing)

• mesh editing      →  intuitive handling / dynamics
(shape control handles)
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• ... from volume data
- thresholding (marching cubes et al.)
- deformable surfaces

• ... from point clouds
- surface-based vs. volumetric
- signed vs. unsigned distance 

function
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Generate - Repair - Optimize 

• thresholding is sensitive to noise

• deformable surfaces preserve 
smoothness and connectedness

• explicit formulation: snakes
- re-parameterization issues

• implicit formulation: level sets
- topology control
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Implicit Representation

• contour

• arrival time

• level set

• solve PDE for η

C(t) ⊆ R
3

η(x, y, z) ∈ R

C(t) = {p ∈ R3 : η(p) = t}
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Fast Marching Method
• Each grid point is assigned one of three states.

- conquered, fixed- front, tentative- far away, unknown

η(p)

η(p) = ∞

η(p)
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Fast Marching Method
• The fast marching method provides no 

topology control, i.e. the contour may merge.
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Cut-Edge Grid
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• ... from unstructured triangle soups

• ... from tesselated NURBS models
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Generate - Repair - Optimize
• 3D models may look nice at

the first glance ...
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Generate - Repair - Optimize
• ... but most often they are just “triangle soups”

interior
geometry

non-manifold
configurations

intersecting
geometry

degenerate
triangles
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Generate - Repair - Optimize

• surface-based techniques

• volumetric techniques

• hybrid representations
- voxel grid ... simple topology
- triangle mesh ... best available geometry
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Generate - Repair - Optimize
volumetric

representation

scan
convert

extract
mesh

volumetric
representation

fill gaps,
remove
interior
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• given:  input model M
           maximum approx. tolerance ε
           maximum hole/gap size ρ

• find: watertight, manifold model R with
- distance(M,R) < ε
- distance(R,M) < ρ
- distance(R,M) > ε  ⇒  boundary of M
- faithful normal reconstruction

Generate - Repair - Optimize
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• adaptive scan conversion
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original
1124 triangles

reconstruction
279892 triangles

(at 1000³)

decimated
7018 triangles
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original
3346 triangles

reconstruction
1370802 triangles

(at 1000³)

decimated
18032 triangles
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Generate - Repair - Optimize

modeling tesselation repair simulation

minutes days

(trimmed)
NURBS

(manifold)
triangle mesh
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- inconsistent normal orientation
- non-manifold configurations
- boundaries
- overlaps
- gaps
- intersections
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• surface oriented approaches
- structure preserving, minimal 

modification of the input
- no guarantee on output quality

• volume oriented approaches
- guaranteed manifold output
- aliasing artifacts, limited

resolution, global resampling
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Generate - Repair - Optimize
• input: set of patches P1,...,Pn

P1

P2
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Generate - Repair - Optimize
• remove boundaries by duplicating each 

patch and stitching them along their 
common boundary.
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Generate - Repair - Optimize
• setup a ε-grid within the critical regions



Computer Graphics Group
Leif KobbeltAACHEN

Generate - Repair - Optimize
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regions and merge it with the outside
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• reconstruct surface within the critical 

regions and merge it with the outside
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Generate - Repair - Optimize
• remove internal geometry

• decimation / optimization



Computer Graphics Group
Leif KobbeltAACHEN

Generate - Repair - Optimize



Computer Graphics Group
Leif KobbeltAACHEN

Generate - Repair - Optimize



Computer Graphics Group
Leif KobbeltAACHEN

Generate - Repair - Optimize



Computer Graphics Group
Leif KobbeltAACHEN

Generate - Repair - Optimize



Computer Graphics Group
Leif KobbeltAACHEN

Generate - Repair - Optimize



Computer Graphics Group
Leif KobbeltAACHEN

Generate - Repair - Optimize



Computer Graphics Group
Leif KobbeltAACHEN

Generate - Repair - Optimize

Helicopter, 10k triangles, 60 patches, γ=1

resolution 10243 20483 40963 81923

critical verts 242k 505k 1037k 2079k

critical cells 68k 141k 277k 561k

output 28k 34k 44k 60k

time 47s 116s 291s 868s
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Generate - Repair - Optimize

Fan, 269k triangles, 12 patches, γ=2

resolution 10243 20483 40963 81923

critical verts 238k 460k 828k 1649k

critical cells 64k 113k 229k 523k

output 503k 512k 529k 556k

time 83s 123s 193s 303s
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Generate - Repair - Optimize

• isotropic remeshing

• anisotropic remeshing
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• isotropic remeshing prefers ...

- equal edge length
- remove too short edges
- remove too long edges

- regular valences
- valence balance

- uniform vertex distribution
- tangential smoothing

edge collapses
2-4 edge split

edge flip

Laplace operator
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Generate - Repair - Optimize

1. split all edges long than Lmax

2. collapse all edges shorter than Lmin

3. flip edges to promote valence 6
4. relax vertex positions by tangential smoothing
5. goto 1

    0. specify target edge length L



Computer Graphics Group
Leif KobbeltAACHEN

Generate - Repair - Optimize

• optimal thresholds !?
- (Lmin, Lmax) = (0.5, 2.0)
- (Lmin, Lmax) = (4/5, 4/3)

Computer Graphics Group
Mario Botsch

Remeshing Results

Original
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• tangential smoothing with area equalization
(leads to symmetric Laplace matrix)

• area-weighted centroid

• tangential update

Computer Graphics Group
Mario Botsch

Area Equalization

• Assign mass A(p) to each vertex p

• Mass weighted centroid

•
• Tangential update

gi :=
1∑

qi
A(qi)

∑

qi

A(qi)qi

pi !→ pi + λ
(
I − nin

T

i

)
(gi − pi)
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• an-isotropic remeshing prefers ...

- quad faces
- curvature dependent size and aspect ratio

(approximation measure)
- local orientation

(curvature directions, shape operator)
- global alignment

(feature detection and handling)
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• approximation measure
- L2 vs L2,1

- L2 measures geometric deviation
- L2,1 leads to kmin / kmax aspect ratios
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Generate - Repair - Optimize
• local orientation

• 2nd fundamental form defines
a local orthogonal frame
(min-/max-curvature directions plus normal)
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• local orientation

• 2nd fundamental form defines
a local orthogonal frame
(min-/max-curvature directions plus normal)

• discretization
- eigenbasis of a symmetric 3x3 matrix
- “shape operator”
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• projection to edges
(minimum curvature direction)

• weighted sum of edge projection operators

e e
T ‖e‖ = 1

S(p) =
∑

e∈B(p)

β(e) ‖e ∩ B(p)‖ e e
T
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Generate - Repair - Optimize

• compute curvature direction field

• estimate local reliability

• propagate orientation information from
anisotropic regions to isotropic ones

• trace curve network along minimum
and maximum curvature directions
(starting from anisotropic regions)
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Generate - Repair - Optimize

• marching techniques cannot capture
the global structure of the model

• two-step procedure:
- segmentation (global structure)
- quad meshing per segment

(local shape and alignment)
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• combinatorial optimization
• energy functional

- orthogonality at intersections
- parallelism within faces

M. Marinov & L. Kobbelt / A Robust Two-Step Procedure for Quad-Dominant Remeshing

L iff by this the energy E(L) decreases. At each iteration we
evaluate all possible steps, compute the energy change for
each candidate and choose the one that yields the largest de-
crease of E(L). This phase concludes when no “downhill”
moves are possible anymore, i.e., we have converged to a
local minimum.

Figure 6: Swapping curves: the pair of curves (bk, j,bi,l)⊂ L
(left) can be replaced by the pair (bi, j,bk,l) (middle) or the
pair (b j,l ,bi,k) (right).

Phase III: The third and final phase attempts to escape from
the current local minimum by first removing all curves from
L which have an intersection point incident with a small an-
gle (< π/4). After all such “bad” curves are removed, we
iteratively saturate the unconnected boundary vertices by
adding at each iteration the curve which yields the small-
est energy value. After each addition, phase II is again exe-
cuted in order to optimize the new set of curves, potentially
leading to a better configuration. This process is terminated
as in phase I — whenever all boundary points are saturated
or all available curves are processed. Since adding a curve
can actually lead to an increment of E(L) (even after opti-
mization), a backup of the best configuration found up to the
moment is kept at all times and is restored at the end the
procedure if needed. This might lead to several unconnected
points, which potentially generates T-joints or obtuse angles
in the final mesh.

Figure 7: Reconnecting curve: The curve bi, j ∈ L (left) is
replaced by the bi,k (right), connecting c̃i to the currently
unlinked vertex c̃k.

7. Post-processing

Since samples in the interior of a given region R are gener-
ated only at the intersections of the selected cubic curves bi, j,
their location might be suboptimal. Therefore once the selec-
tion process is complete, we relax the mesh structure in the
parameter domain by Laplacian smoothing. In some cases,
this simple procedure improves the distribution of the mesh
samples quite significantly. Once the smoothing is complete,
we evaluate the parameterization of the intersection points
and find the corresponding 3D positions.

Note that due to the method we used in Section 4 to map
the boundary curves and points to the parameter space, they
(usually) do not lie entirely inside Ω. Hence it is possible
(although highly unlikely) that an intersection point cannot
be located in Ω, i.e., in the parameterization of a face be-
longing to R. There are several possible ways to resolve this
issue. We simply represent such points using barycentric co-
ordinates with respect to the closest face of R in Ω and then
evaluate the coordinates in 3D. This linear extrapolation is
sufficient, since in practice the boundary curves lie close to
the parameter domain of R and therefore the extrapolation
error is small.

Figure 9: Top row: The Alpha model and its segmentation.
Middle and bottom row: Output meshes at two resolutions.

8. Results

We tested our algorithm on several models, mostly mechan-
ical objects and parts, which are difficult to process by pre-
vious techniques. Our two-step remeshing method has two

c© The Eurographics Association and Blackwell Publishing 2006.
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their location might be suboptimal. Therefore once the selec-
tion process is complete, we relax the mesh structure in the
parameter domain by Laplacian smoothing. In some cases,
this simple procedure improves the distribution of the mesh
samples quite significantly. Once the smoothing is complete,
we evaluate the parameterization of the intersection points
and find the corresponding 3D positions.

Note that due to the method we used in Section 4 to map
the boundary curves and points to the parameter space, they
(usually) do not lie entirely inside Ω. Hence it is possible
(although highly unlikely) that an intersection point cannot
be located in Ω, i.e., in the parameterization of a face be-
longing to R. There are several possible ways to resolve this
issue. We simply represent such points using barycentric co-
ordinates with respect to the closest face of R in Ω and then
evaluate the coordinates in 3D. This linear extrapolation is
sufficient, since in practice the boundary curves lie close to
the parameter domain of R and therefore the extrapolation
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