Mesh Generation, Repair, and Optimization

Leif Kobbelt
RWTH Aachen University

Remeshing

RWНHAACHEN

Computer Graphics Group
Leif Kobbelt

Shape Editing

"per object"

RNHAACHEN

Shape Editing

RNHAACHEN

Geometry Processing Pipeline

- raw data
\rightarrow shape information
(points, polygons, voxels)
- mesh generation
(triangles)
\rightarrow continuity
- mesh repair
\rightarrow topological consistency (manifolds)
- mesh optimization \rightarrow geometric quality (smoothing, decimation, remeshing)
- mesh editing \rightarrow intuitive handling / dynamics (shape control handles)

Generate - Repair - Optimize

- ... from volume data
- thresholding (marching cubes et al.)
- deformable surfaces
- ... from point clouds
- surface-based vs. volumetric
- signed vs. unsigned distance function

Generate - Repair - Optimize

Marching Cubes

Generate - Repair - Optimize

Marching Cubes

RNIHAACHEN

Generate - Repair - Optimize

Marching Cubes

RNНААСНЕN

Generate - Repair - Optimize

Extended Marching Cubes

Generate - Repair - Optimize

Marching Cubes

RINHAACHEN

Generate - Repair - Optimize

Extended Marching Cubes

RINHAACHEN

Generate - Repair - Optimize

- thresholding is sensitive to noise
- deformable surfaces preserve smoothness and connectedness
- explicit formulation: snakes
- re-parameterization issues
- implicit formulation: level sets
- topology control

Generate - Repair - Optimize

$$
00=00
$$

Generate - Repair - Optimize

RINHAACHEN

Generate - Repair - Optimize

RWHAACHEN

Generate - Repair - Optimize

RNHAACHEN

Implicit Representation

- contour $\mathcal{C}(t) \subseteq R^{3}$
- arrival time $\eta(x, y, z) \in R$
- level set $\mathcal{C}(t)=\left\{\mathbf{p} \in R^{3}: \eta(\mathbf{p})=t\right\}$
- solve PDE for η

Fast Marching Method

- Each grid point is assigned one of three states.
- conquered, fixed $\eta(\mathbf{p})$
- front, tentative $\eta(\mathbf{p})$
- far away, unknown $\eta(\mathbf{p})=\infty$

RWHAACHEN

Fast Marching Method

- The fast marching method provides no topology control, i.e. the contour may merge.

Generate - Repair - Optimize

RINHAACHEN

Cut-Edge Grid

Cut-Edge Grid

Generate - Repair - Optimize

- ... from unstructured triangle soups
- ... from tesselated NURBS models

Generate - Repair - Optimize

- 3D models may look nice at the first glance ...

Generate - Repair - Optimize

- ... but most often they are just "triangle soups"

RNHAACHEN

Generate - Repair - Optimize

- surface-based techniques
- volumetric techniques
- hybrid representations
- voxel grid ... simple topology
- triangle mesh ... best available geometry

Generate - Repair - Optimize

volumetric representation

volumetric representation

extract mesh

RINHAACHEN

Generate - Repair - Optimize

- given: input model M maximum approx. tolerance ϵ maximum hole/gap size ρ
- find: watertight, manifold model R with
- distance(M,R) <
- distance(R,M) < ρ
- distance $(R, M)>\epsilon \Rightarrow$ boundary of M
- faithful normal reconstruction

Generate - Repair - Optimize

RNHAACHEN

Computer Graphics Group Leif Kobbelt

Generate - Repair - Optimize

- adaptive scan conversion

RNHAACHEN

Generate - Repair - Optimize

RINHAACHEN

Generate - Repair - Optimize

RNHAACHEN

Generate - Repair - Optimize

Generate - Repair - Optimize

RWНHAACHEN

Computer Graphics Group Leif Kobbelt

Generate - Repair - Optimize

original
| 124 triangles
reconstruction
279892 triangles (at 1000^{3})

Generate - Repair - Optimize

original
3346 triangles

reconstruction
| 370802 triangles (at 1000^{3})

decimated
I8032 triangles

Generate - Repair - Optimize

Generate - Repair - Optimize

- types of artifacts
- inconsistent normal orientation
- non-manifold configurations
- boundaries
- overlaps
- gaps
- intersections

Generate - Repair - Optimize

- types of artifacts
- inconsistent normal orientations
- non-manifold configurations
- boundaries
- overlaps
- gaps
- intersections

Generate - Repair - Optimize

- surface oriented approaches
- structure preserving, minimal modification of the input
- no guarantee on output quality
- volume oriented approaches

+	+	+	+	+	+
+	+	+	+	+	+
+	+	-	-	+	+
+	+	-	-	+	+
+	+	-	-	+	+
+	+	+	+	+	+

Generate - Repair - Optimize

- input: set of patches $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}$

Generate - Repair - Optimize

- remove boundaries by duplicating each patch and stitching them along their common boundary.

Generate - Repair - Optimize

- setup a e-grid within the critical regions

Generate - Repair - Optimize

- reconstruct surface within the critical regions and merge it with the outside

Generate - Repair - Optimize

- reconstruct surface within the critical regions and merge it with the outside

Generate - Repair - Optimize

- remove internal geometry
- decimation / optimization

Generate - Repair - Optimize

RNHAACHEN

Computer Graphics Group
Leif Kobbelt

Generate - Repair - Optimize

RWНHAACHEN

Computer Graphics Group
Leif Kobbelt

Generate - Repair - Optimize

RWНHAACHEN

Computer Graphics Group
Leif Kobbelt

Generate - Repair - Optimize

Generate - Repair - Optimize

RWПHACHEN

Computer Graphics Group
Leif Kobbelt

Generate - Repair - Optimize

Generate - Repair - Optimize

Helicopter, 10k triangles, 60 patches, $\mathrm{V}=1$				
resolution	1024^{3}	2048^{3}	4096^{3}	8192^{3}
critical verts	242 k	505 k	1037 k	2079 k
critical cells	68 k	141 k	277 k	561 k
output	28 k	34 k	44 k	60 k
time	47 s	116 s	291 s	868 s

Generate - Repair - Optimize

Generate - Repair - Optimize

RINHAACHEN

Generate - Repair - Optimize

- isotropic remeshing
- anisotropic remeshing

Generate - Repair - Optimize

- isotropic remeshing prefers ...
- equal edge length
- remove too short edges
- remove too long edges
edge collapses
2-4 edge split
- regular valences
- valence balance
edge flip
- uniform vertex distribution
- tangential smoothing Laplace operator

Generate - Repair - Optimize

0. specify target edge length L
1. split all edges long than $L_{\max }$
2. collapse all edges shorter than Lmin
3. flip edges to promote valence 6
4. relax vertex positions by tangential smoothing
5. goto 1

Generate - Repair - Optimize

- optimal thresholds !?

$$
\begin{aligned}
& -\left(L_{\min }, L_{\max }\right)=(0.5,2.0) \\
& -\left(L_{\text {min }}, L_{\max }\right)=(4 / 5,4 / 3)
\end{aligned}
$$

Generate - Repair - Optimize

- tangential smoothing with area equalization (leads to symmetric Laplace matrix)
- area-weighted centroid

$$
\mathbf{g}_{i}:=\frac{1}{\sum_{\mathbf{q}_{i}} A\left(\mathbf{q}_{i}\right)} \sum_{\mathbf{q}_{i}} A\left(\mathbf{q}_{i}\right) \mathbf{q}_{i}
$$

- tangential update

$$
\mathbf{p}_{i} \mapsto \mathbf{p}_{i}+\lambda\left(I-\mathbf{n}_{i} \mathbf{n}_{i}^{T}\right)\left(\mathbf{g}_{i}-\mathbf{p}_{i}\right)
$$

Generate - Repair - Optimize

Original $\left(\frac{1}{2}, 2\right) \quad\left(\frac{4}{5}, \frac{4}{3}\right) \quad$ Area Eq.

RWНHAACHEN

Computer Graphics Group Leif Kobbelt

Generate - Repair - Optimize

- an-isotropic remeshing prefers ...
- quad faces
- curvature dependent size and aspect ratio (approximation measure)
- local orientation
(curvature directions, shape operator)
- global alignment
(feature detection and handling)

Generate - Repair - Optimize

- approximation measure
- L² vs L2,1
- L² measures geometric deviation
- L2,1 leads to $k_{\min } / k_{\max }$ aspect ratios

Generate - Repair - Optimize

- local orientation
- 2nd fundamental form defines a local orthogonal frame (min-/max-curvature directions plus normal)

Generate - Repair - Optimize

- local orientation
- 2nd fundamental form defines
a local orthogonal frame
(min-/max-curvature directions plus normal)
- discretization
- eigenbasis of a symmetric 3x3 matrix
- "shape operator"

Generate - Repair - Optimize

- projection to edges $\mathbf{e e}^{T} \quad\|\mathrm{e}\|=1$ (minimum curvature direction)
- weighted sum of edge projection operators

$$
\mathcal{S}(\mathbf{p})=\sum_{\mathbf{e} \in B(\mathbf{p})} \beta(\mathbf{e})\|\mathbf{e} \cap B(\mathbf{p})\| \mathbf{e} \mathbf{e}^{T}
$$

Generate - Repair - Optimize

Generate - Repair - Optimize

RINHAACHEN

Computer Graphics Group Leif Kobbelt

Generate - Repair - Optimize

Generate - Repair - Optimize

RINHAACHEN

Generate - Repair - Optimize

- compute curvature direction field
- estimate local reliability
- propagate orientation information from anisotropic regions to isotropic ones
- trace curve network along minimum and maximum curvature directions (starting from anisotropic regions)

Generate - Repair - Optimize

Computer Graphics Group Leif Kobbelt

Generate - Repair - Optimize

RWНHAACHEN

Computer Graphics Group
Leif Kobbelt

Generate - Repair - Optimize

- marching techniques cannot capture the global structure of the model
- two-step procedure:
- segmentation (global structure)
- quad meshing per segment
(local shape and alignment)

Generate - Repair - Optimize

RINHAACHEN

Computer Graphics Group
Leif Kobbelt

Generate - Repair - Optimize

Generate - Repair - Optimize

- combinatorial optimization
- energy functional
- orthogonality at intersections
- parallelism within faces

Generate - Repair - Optimize

RNНААСНЕN

Computer Graphics Group Leif Kobbelt

Generate - Repair - Optimize

RINHAACHEN

Generate - Repair - Optimize

RINHAACHEN

