Mesh Generation, Repair, and Optimization

Leif Kobbelt RWTH Aachen University

Remeshing

RNTH AACHEN

Shape Editing

"per object"

RNTH AACHEN

Shape Editing

Geometry Processing Pipeline

- raw data (points, polygons, voxels)
- mesh generation (triangles)

mesh repair

(manifolds)

- → shape information
 - → continuity
- → topological consistency

Computer Graphics Group

Leif Kobbelt

- mesh optimization → geometric quality (smoothing, decimation, remeshing)
- mesh editing → intuitive handling / dynamics (shape control handles)

RNTH AACHEN

In the form volume data

- thresholding (marching cubes et al.)
- deformable surfaces
- In the form point clouds
 - surface-based vs. volumetric
 - signed vs. unsigned distance function

RNTH AACHEN

Marching Cubes

RVITHAACHEN

Marching Cubes

NITHAACHEN

Marching Cubes

Extended Marching Cubes

RNTH AACHEN

Marching Cubes

Extended Marching Cubes

thresholding is sensitive to noise

 deformable surfaces preserve smoothness and connectedness

explicit formulation: snakes
 re-parameterization issues

implicit formulation: level sets
topology control

Computer Graphics Group

Leif Kobbelt

RNTH AACHEN

RNTH AACHEN

RNTH AACHEN

RNTH AACHEN

Implicit Representation

- contour $\mathcal{C}(t)\subseteq R^3$
- arrival time $\eta(x,y,z) \in R$
- level set $\mathcal{C}(t) = \{\mathbf{p} \in R^3 : \eta(\mathbf{p}) = t\}$
- solve PDE for η

Fast Marching Method

Each grid point is assigned one of three states.

- ${\rm \circ}\,$ conquered, fixed $\eta({\rm p})$
- front, tentative $\eta(\mathbf{p})$
- ullet far away, unknown $\eta(\mathbf{p})=\infty$

Fast Marching Method

• The fast marching method provides no topology control, i.e. the contour may merge.

Cut-Edge Grid

Cut-Edge Grid

... from unstructured triangle soups ... from tesselated NURBS models

• 3D models may look nice at the first glance ...

but most often they are just "triangle soups"

RVITH AACHEN

- surface-based techniques
- volumetric techniques
- hybrid representations
 voxel grid ... simple topology
 triangle mesh ... best available geometry

volumetric representation

scan convert fill gaps, remove interior volumetric representation

> extract 7 mesh

RITHAACHEN

 given: input model M maximum approx. tolerance c maximum hole/gap size p

find: watertight, manifold model R with

- distance(M,R) < ϵ
- distance(R,M) < ρ
- distance(R,M) > $\epsilon \Rightarrow$ boundary of M
- faithful normal reconstruction

RNTH AACHEN

adaptive scan conversion

RNTH AACHEN

RNTH AACHEN

RITHAACHEN

RNHAACHEN

original I 124 triangles

reconstruction 279892 triangles (at 1000³) decimated 7018 triangles

RNTH AACHEN

original 3346 triangles

reconstruction 1370802 triangles (at 1000³)

decimated 18032 triangles

RNTH AACHEN

RNTH AACHEN

types of artifacts

- inconsistent normal orientation
- non-manifold configurations
- boundaries
- overlaps
- gaps
- intersections

- types of artifacts
 - inconsistent normal orientations
 - non-manifold configurations
 - boundaries
 - overlaps
 - gaps
 - intersections

RITHAACHEN

surface oriented approaches

- structure preserving, minimal modification of the input
- no guarantee on output quality

 volume oriented approaches
 guaranteed manifold output
 aliasing artifacts, limited resolution, global resampling

RITH AACHEN

input: set of patches P₁,...,P_n

 remove boundaries by duplicating each patch and stitching them along their common boundary.

RVITH AACHEN

setup a e-grid within the critical regions

RITHAACHEN

reconstruct surface within the critical regions and merge it with the outside

reconstruct surface within the critical regions and merge it with the outside

RVITH AACHEN

- remove internal geometry
- decimation / optimization

RVITH AACHEN

RVITHAACHEN

RNTHAACHEN

RITHAACHEN

RNHAACHEN

Helicopte	lelicopter, 10k triangles, 60 patches, γ =1								
resolution	1024 ³	2048 ³	4096 ³	8192 ³					
critical verts	242k	505k	1037k	2079k					
critical cells	68k	141k	277k	561k	•				
output	28k	34k	44k	60k					
time	47s	116s	291s	868s					

RNTH AACHEN

Computer Graphics Group

	Fan, 26	Fan, 269k triangles, 12 patches, γ =2					
	resolution	1024 ³	2048 ³	4096 ³	8192 ³		
	critical verts	238k	460k	828k	1649k		
	critical cells	64k	113k	229k	523k		
	output	503k	512k	529k	556k		
	time	83s	123s	193s	303s		

RITH AACHEN

RITHAACHEN

- isotropic remeshing
- anisotropic remeshing

• isotropic remeshing prefers ...

 equal edge length remove too short edges edge collapses 2-4 edge split remove too long edges regular valences valence balance edge flip uniform vertex distribution Laplace operator tangential smoothing

RVITH AACHEN

0. specify target edge length L

- 1. split all edges long than L_{max}
- 2. collapse all edges shorter than L_{min}
- 3. flip edges to promote valence 6
- 4. relax vertex positions by tangential smoothing

5. goto 1

RNTH AACHEN

optimal thresholds !?
 (L_{min}, L_{max}) = (0.5, 2.0)
 (L_{min}, L_{max}) = (4/5, 4/3)

RNTH AACHEN

- tangential smoothing with area equalization (leads to symmetric Laplace matrix)
- area-weighted centroid

$$\mathbf{g}_i := \frac{1}{\sum_{\mathbf{q}_i} A(\mathbf{q}_i)} \sum_{\mathbf{q}_i} A(\mathbf{q}_i) \mathbf{q}_i$$

tangential update

$$\mathbf{p}_i \mapsto \mathbf{p}_i + \lambda \left(I - \mathbf{n}_i \mathbf{n}_i^T \right) \left(\mathbf{g}_i - \mathbf{p}_i \right)$$

RNTH AACHEN

an-isotropic remeshing prefers ...

- quad faces
- curvature dependent size and aspect ratio (approximation measure)
- local orientation
 (curvature directions, shape operator)
- global alignment (feature detection and handling)

RNTH AACHEN

approximation measure

- L² VS L^{2,1}
- L² measures geometric deviation
- L^{2,1} leads to k_{min} / k_{max} aspect ratios

RITH AACHEN

- Iocal orientation
- 2nd fundamental form defines a local orthogonal frame (min-/max-curvature directions plus normal)

- Iocal orientation
- 2nd fundamental form defines a local orthogonal frame (min-/max-curvature directions plus normal)

- discretization
 - eigenbasis of a symmetric 3x3 matrix

Computer Graphics Group

Leif Kobbelt

- "shape operator"

RNTH AACHEN

- projection to edges ee^T ||e|| = 1(minimum curvature direction)
- weighted sum of edge projection operators

 $\mathcal{S}(\mathbf{p}) = \sum_{\mathbf{e} \in B(\mathbf{p})} \beta(\mathbf{e}) \| \mathbf{e} \cap B(\mathbf{p}) \| \mathbf{e} \mathbf{e}^T$

RNTH AACHEN

RITH AACHEN

RNTH AACHEN

RNTH AACHEN

- compute curvature direction field
- estimate local reliability
- propagate orientation information from anisotropic regions to isotropic ones
- trace curve network along minimum and maximum curvature directions (starting from anisotropic regions)

RNHAACHEN

- marching techniques cannot capture the global structure of the model
- two-step procedure:
 - segmentation (global structure)
 - quad meshing per segment (local shape and alignment)

RNTHAACHEN

- combinatorial optimization
- energy functional
 - orthogonality at intersections
 - parallelism within faces

RNTH AACHEN

RVITH AACHEN

