



Electromagnetically excited audible noise evaluation and optimisation of electrical machines by numerical simulation

> Christoph Schlensok Benedikt Schmülling Michael van der Giet <u>Kay Hameyer</u>

Institute of Electrical Machines RWTH Aachen University Germany

ASIM Workshop 2007









2 2 9 10 16

Tables to determine the mechanical order and associated frequency regarding the source of the excitation

2

Example:

| Magnetische Anregungen für Geräusche bei Asynchronmaschinen (Katiglaufer): |    |     |           |     |          |    |  |
|----------------------------------------------------------------------------|----|-----|-----------|-----|----------|----|--|
| Strangzahl m                                                               | 3  |     |           |     | Lochzahl | q1 |  |
| Polzahl 2p                                                                 | 6  | >   | р         | 3   |          |    |  |
| Frequenz f <sub>1</sub>                                                    | 50 |     |           |     |          |    |  |
| Nutzahl N <sub>1</sub>                                                     | 36 |     |           |     |          |    |  |
| N <sub>2</sub>                                                             | 28 |     |           |     |          |    |  |
| Schlupf s                                                                  | 0  |     |           |     |          |    |  |
| Exzentrizität K                                                            | 0  | K=0 | für stst. | Ex. |          |    |  |
|                                                                            |    | K=1 | für dyn.  | Ex. |          |    |  |

Geräuschanregungen der Oberfelder des Ständers in dem Zusammenwirken mit den:

| Läuf | ferrestf | felde | r des G | runds | stromb | elages | 5    | 4.5  | 1.5  | 0    | 2    | 0.5  | 0.5  | 2    | 2    | 0.5  | 0.5  | 4    |      | 4.5  | 4.5  | 6    | 5    | Fragues        |
|------|----------|-------|---------|-------|--------|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----------------|
| 01   | armoni   | Ische | gi/qi   | -0,5  | 0,5    | -1     | 2    | -1,5 | 1,0  | -2   | 2    | -2,5 | 2,5  |      | 6    | -3,5 | 3,5  | -4   | 4    | -4,0 | 4,5  | -10  | 10   | Freque<br>[H7] |
| Wick | lunasfe  | elder | 1       | -5    | 7      | -11    | 13   | -17  | 19   | -23  | 25   | -29  | 31   | -35  | 37   | -41  | 43   | -47  | 49   | -53  | 55   | -59  | 61   | [112]          |
| a2   | nue1     |       | 3       | -15   | 21     | -33    | 39   | -51  | 57   | -69  | 75   | -87  | 93   | -105 | 111  | -123 | 129  | -141 | 147  | -159 | 165  | -177 | 183  |                |
| Ű    | nue2     |       |         |       |        |        |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |                |
| 0    |          | +     | 6       | -12   | 24     | -30    | 42   | -48  | 60   | -66  | 78   | -84  | 96   | -102 | 114  | -120 | 132  | -138 | 150  | -156 | 168  | -174 | 186  | 10             |
|      | 3        | -     | 0       | 18    | -18    | 36     | -36  | 54   | -54  | 72   | -72  | 90   | -90  | 108  | -108 | 126  | -126 | 144  | -144 | 162  | -162 | 180  | -180 |                |
| -1   |          | +     | -22     | -40   | -4     | -58    | 14   | -76  | 32   | -94  | 50   | -112 | 68   | -130 | 86   | -148 | 104  | -166 | 122  | -184 | 140  | -202 | 158  | -366,6         |
|      | -25      | -     | -28     | -10   | -46    | 8      | -64  | 26   | -82  | 44   | -100 | 62   | -118 | 80   | -136 | 98   | -154 | 116  | -172 | 134  | -190 | 152  | -208 | -466,6         |
| 1    |          | +     | 34      | 16    | 52     | -2     | 70   | -20  | 88   | -38  | 106  | -56  | 124  | -74  | 142  | -92  | 160  | -110 | 178  | -128 | 196  | -146 | 214  | 566,66         |
|      | 31       | -     | 28      | 46    | 10     | 64     | -8   | 82   | -26  | 100  | -44  | 118  | -62  | 136  | -80  | 154  | -98  | 172  | -116 | 190  | -134 | 208  | -152 | 466,66         |
| -2   |          | +     | -50     | -68   | -32    | -86    | -14  | -104 | 4    | -122 | 22   | -140 | 40   | -158 | 58   | -176 | 76   | -194 | 94   | -212 | 112  | -230 | 130  | -833,3         |
|      | -53      | -     | -56     | -38   | -74    | -20    | -92  | -2   | -110 | 16   | -128 | 34   | -146 | 52   | -164 | 70   | -182 | 88   | -200 | 106  | -218 | 124  | -236 | -933,3         |
| 2    |          | +     | 62      | 44    | 80     | 26     | 98   | 8    | 116  | -10  | 134  | -28  | 152  | -46  | 170  | -64  | 188  | -82  | 206  | -100 | 224  | -118 | 242  | 1033,3         |
|      | 59       | -     | 56      | 74    | 38     | 92     | 20   | 110  | 2    | 128  | -16  | 146  | -34  | 164  | -52  | 182  | -70  | 200  | -88  | 218  | -106 | 236  | -124 | 933,33         |
| -3   |          | +     | -78     | -96   | -60    | -114   | -42  | -132 | -24  | -150 | -6   | -168 | 12   | -186 | 30   | -204 | 48   | -222 | 66   | -240 | 84   | -258 | 102  | -130           |
|      | -81      | -     | -84     | -66   | -102   | -48    | -120 | -30  | -138 | -12  | -156 | 6    | -174 | 24   | -192 | 42   | -210 | 60   | -228 | 78   | -246 | 96   | -264 | -140           |
| 3    |          | +     | 90      | 72    | 108    | 54     | 126  | 36   | 144  | 18   | 162  | 0    | 180  | -18  | 198  | -36  | 216  | -54  | 234  | -72  | 252  | -90  | 270  | 150            |
|      | 87       | -     | 84      | 102   | 66     | 120    | 48   | 138  | 30   | 156  | 12   | 174  | -6   | 192  | -24  | 210  | -42  | 228  | -60  | 246  | -78  | 264  | -96  | 140            |
| -4   |          | +     | -106    | -124  | -88    | -142   | -70  | -160 | -52  | -178 | -34  | -196 | -16  | -214 | 2    | -232 | 20   | -250 | 38   | -268 | 56   | -286 | 74   | -1766          |
|      | -109     | -     | -112    | -94   | -130   | -76    | -148 | -58  | -166 | -40  | -184 | -22  | -202 | -4   | -220 | 14   | -238 | 32   | -256 | 50   | -274 | 68   | -292 | -1866          |

© 2007 Univ.-Prof. Dr.-Ing. habil. Dr. h.c. Kay Hameyer





#### Own software applied for entire simulation chain

# iMOOSE & iMOOSE.trinity Finite/Boundary Element Solvers and Tools







## iMOOSE – innovative and modern Object-Oriented Solver Environment



<page-header><page-header><page-header>













### **Electromagnetic computation**



electromagnetic computation FE-model current, speed transient simulation

- Modelling
  - 2D/3D possible in general
    - $\Rightarrow$  2D whenever possible, 3D requires huge computational cost
  - static, time harmonic, transient
  - with or without movement
- > This example: Induction Machine (IM) with squirrel-cage rotor
  - 2D, multi-slice model
  - · transient simulation
  - rotor movement
  - $\Rightarrow$  transient phenomenon must die out before analysis of the simulation results can start





### Skew of the IM is modelled with multi-slice technique



• each ≈ 15.000 triangular elements

© 2007 Univ.-Prof. Dr.-Ing. habil. Dr. h.c. Kay Hameyer

# **Electromagnetic computation**

#### Simulation parameters

| $f_1$      | 48.96 Hz   | stator frequency                |
|------------|------------|---------------------------------|
| n          | 1200 rpm   | rotor speed                     |
| $I_1$      | 85 A       | stator-phase current            |
| $\Delta t$ | 243.153 ms | simulation-time step            |
| Δα         | 0.875 °    | rotational step angle           |
| N          | 4200       | number of simulation-time steps |

- Results from each simulation time step
  - magnetic vector potential
    - $\Rightarrow$  flux-density distribution:  $\vec{B} = \text{curl} \vec{A}$
  - derived from the flux density (Maxwell-Stress Tensor)
    - net-force F
    - torque T
    - surface-force density  $\sigma$

ASIM Workshop March 1, 2007, Aachen















ASIM Workshop March 1, 2007, Aachen

with  $S = \begin{bmatrix} \frac{\partial}{\partial x} & 0 & 0 & \frac{\partial}{\partial y} & 0 & \frac{\partial}{\partial z} \\ 0 & \frac{\partial}{\partial y} & 0 & \frac{\partial}{\partial x} & \frac{\partial}{\partial z} & 0 \\ 0 & 0 & \frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{bmatrix}^{T}$ 

© 2007 Univ.-Prof. Dr.-Ing. habil. Dr. h.c. Kay Hameyer

#### Structure-dynamic calculation

> Tension  $\sigma$  is coupled by Hooke's law with strain  $\varepsilon$ 

 $\sigma = H \cdot \mathcal{E},$ 

$$H = \frac{E(1-\mu)}{(1-\mu)(1-2\mu)} \begin{vmatrix} 1 & \frac{\mu}{1-\mu} & \frac{\mu}{1-\mu} & 0 & 0 & 0 \\ \frac{\mu}{1-\mu} & 1 & \frac{\mu}{1-\mu} & 0 & 0 & 0 \\ \frac{\mu}{1-\mu} & \frac{\mu}{1-\mu} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1-2\mu}{2(1-\mu)} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2\mu}{2(1-\mu)} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1-2\mu}{2(1-\mu)} \end{vmatrix}$$

*E*: Young's modulus,  $\mu$ : Poisson's ratio

# Structure-dynamic calculation



- System equation by Threshold-Accepting Method:
  - potential energy

$$\Pi_{p} = \int_{\Omega} \varepsilon^{T} H \varepsilon \, \mathrm{d}\Omega - \int_{\partial \Omega} \vec{u} \cdot \vec{\sigma}_{s} \varepsilon \, \mathrm{d} \, \partial\Omega,$$

• kinetic energy

$$T = \int_{\Omega} \frac{\rho}{2} \cdot \dot{\vec{u}} \, \mathrm{d}\Omega \,,$$

• Lagrange function

$$L = T - \Pi_{\mu}$$

• Minimisation of Lagrange function

$$0 = \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\vec{u}}} \right) - \left( \frac{\partial L}{\partial \vec{u}} \right) + \left( \frac{\partial F}{\partial \dot{\vec{u}}} \right),$$

• F is the damping

© 2007 Univ.-Prof. Dr.-Ing. habil. Dr. h.c. Kay Hameyer

Structure-dynamic calculation

Discretisation results in the differential equation of motion:  $V = D + C \quad \dot{D} + M \quad \ddot{D} = E$ 

$$K \cdot D + C \cdot \dot{D} + M \cdot \ddot{D} = F.$$

- K: global stiffness matrix
- D: vector of nodal deformation
- C: damping matrix
- M: mass matrix
- F: exciting force matrix
- Time derivative

$$\dot{D} = \frac{dD}{dt} = j\omega D$$

$$(K + j\omega C - \omega^2 M) \cdot D = F$$

ASIM Workshop March 1, 2007, Aachen





### Structure-dynamic calculation

ASIM Workshop March 1, 2007, Aachen





### Structure-dynamic calculation

![](_page_15_Picture_1.jpeg)

![](_page_15_Figure_2.jpeg)

![](_page_15_Picture_3.jpeg)

![](_page_15_Picture_5.jpeg)

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

- Three sources for acoustic noise:
  - broad band fan and ventilation noise (500 1000 Hz)
  - single tones from the bearings > 3000 Hz
  - vibration and oscillations excited by electromagnetic forces
    - $\rightarrow$  single tones in the entire audible spectrum
- Acoustic simulation considers electromagnetically excited vibration as noise source

![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_1.jpeg)

- Acoustic noise:
  - vibration is decoupled from the surface of the machine ⇒ Boundary Element Method (BEM)
- Sound pressure derived from Helmholtz equation:

$$\Delta \underline{p} + k^2 \cdot \underline{p} = 0$$

Discretisation results in the system equation for solving:

$$H \cdot \underline{p} = G \cdot \vec{\underline{v}} \,.$$

*H* and *G* are system matrices and *v* the vector of the local surface velocity

![](_page_17_Picture_10.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

Deformation is transformed from the mechanical model onto the surface of the acoustic model

![](_page_18_Picture_4.jpeg)

![](_page_18_Picture_5.jpeg)

![](_page_18_Picture_6.jpeg)

Acoustic sound pressure is calculated on an analysis surface, e.g. a sphere (1 m distance from surface of SRM) sound pressure [dB]

![](_page_18_Picture_8.jpeg)

![](_page_19_Figure_0.jpeg)

![](_page_19_Picture_2.jpeg)

#### Automotive generator's deformation

![](_page_20_Picture_1.jpeg)

![](_page_20_Figure_2.jpeg)

© 2007 Univ.-Prof. Dr.-Ing. habil. Dr. h.c. Kay Hameyer

![](_page_20_Figure_4.jpeg)

ASIM Workshop March 1, 2007, Aachen

![](_page_21_Picture_0.jpeg)

ASIM Workshop March 1, 2007, Aachen

![](_page_21_Picture_2.jpeg)

![](_page_21_Figure_3.jpeg)

![](_page_21_Picture_5.jpeg)