4. Workshop der Arbeitsgemeinschaft Simulation: Grundlagen und Methoden der Modellbildung und Simulation Aachen, 28. 2. - 1. 3. 2007

## Simulationsrechnungen in der geothermischen Reservoircharakterisierung

C. Clauser, M. Kühn, D. Mottaghy, V. Rath





#### Worum geht es?

Geothermischen Reservoircharakterisierung:

- Gekoppelte, nicht-lineare Prozesse
- Systemanalyse
- Parameterschätzung
- Systemoptimierung

#### Gliederung

- Reaktiver Transport: Chemische Reaktionen
  - chemische Reaktionen und Transport in Gesteinsporen
  - Erdwärmenutzung und CO<sub>2</sub>-Bindung
- {Reaktiver Transport: Phasenumwandlung
  - instationärer Wärmetransport mit Permafrost: Inversion des Paläotemperaturverlaufs an der Erdoberfläche}
- Parameterschätzung und Systemoptimierung
  - Gesteinswärmeleitfähigkeit und hydraulische Permeabilität
  - Optimierung der Exploration einer geothermischen Lagerstätte

# Reaktiver Transport: Chemische Reaktionen

 Hydrothermale Energiegewinnung aus Heißwasseraquiferen und geologische Randbedingungen eines Standorts

- Prinzipien der reaktiven Transportsimulation und besondere chemische und physikalische Grundlagen
- Validierung des numerischen Modells
- Reaktive Transportsimulationen (3 Konzepte) zur Erweiterung des Systemverständnisses

# Hydrothermale Energiegewinnung und CO<sub>2</sub> Speicherung



Reservoir-Randbedingungen: Porosität > 20 %; Permeabilität: 0.1 – 1 × 10<sup>-12</sup> m<sup>2</sup> Mächtigkeit > 20 m; Fördermenge > 50 m<sup>3</sup>/h

#### Hydrothermale Lagerstätten im Rhät







#### Systemanalyse

- Wie kam es zur Zementation des Porenraums?
  - Risikoabschätzung für zukünftige Projekte
- Gibt es Alternativen am Standort Allermöhe?
  - Kann die Bohrung ggf. stimuliert werden?
- Beantwortung dieser Fragen mit Hilfe der reaktiven Transportsimulation
- Computergestützte Systemanalyse: Minimierung von Risiken, Kosten und Zeit bei Exploration, Nutzung von Ressourcen und Erstellung von Sanierungskonzepten

### Konzeption – Mathematik - Numerik



nach Barzel, 1992

#### Komplexität des Systems

| von<br>Abhängigkeit<br>der / des | Strömung                                | Wärme-<br>transport                                     | Stoff-<br>transport                         | Chemische<br>Reaktionen                                | Mechanische<br>Deformation                     |
|----------------------------------|-----------------------------------------|---------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|------------------------------------------------|
| Strömung                         | Druck →<br>Wasser-<br>eigenschaften     | Temperatur →<br>Wasser-<br>eigenschaften                | Konzentration<br>→ Wasser-<br>eigenschaften | Porosität →<br>Permeabilität                           | Druck (Wasser)<br>Porosität →<br>Permeabilität |
| Wärmetransport                   | Konvektion                              | Temperatur →<br>Wasser- /<br>Gesteins-<br>eigenschaften | Salinität →<br>Wasser-<br>eigenschaften     | Reaktions-<br>wärme                                    | Porosität                                      |
| Stofftransport                   | Advektion                               | Diffusion<br>(T-Gradient)                               | Diffusion<br>(Konz-<br>Gradient)            | Quellen /<br>Senken<br>(Lösung /<br>Fällung)           | Permeabilität                                  |
| Chemische<br>Reaktionen          | Abhängigkeit<br>Reaktionen<br>vom Druck | Abhängigkeit<br>Reaktionen von<br>Temperatur            | Abhängigkeit<br>Reaktionen<br>von Salinität | Gekoppelte<br>Reaktionen                               | Abhängigkeit<br>Reaktionen vom<br>Druck        |
| Mechanische<br>Deformation       | Druck →<br>Gesteins-<br>eigenschaften   | Temperatur →<br>Gesteins-<br>eigenschaften              | Salinität →<br>Gesteins-<br>eigenschaften   | Änderungen<br>Mineralogie →<br>Änderungen<br>Rheologie | Gefüge-<br>entwicklung<br>Dilatanz             |

#### Anhydrit (CaSO<sub>4</sub>) – Löslichkeitsverhalten



## Porenraumgeometrie und k – $\Phi$ Kopplung







**Kozeny-Carman** 

glatte runde Kugeln

fraktaler Porenraum (Pape et al. 1999)

| <b>k</b> ∝ | Φ                                    | (Kozeny-Carman)                       |
|------------|--------------------------------------|---------------------------------------|
| k∝         | $\Phi$ <sup>3</sup>                  | (glattwandige Kugeln)                 |
| k =        | $A_1\Phi + A_2\Phi^2 + A_3\Phi^{10}$ | <sup>o</sup> (zementierte Sandsteine) |

#### Numerisches Modell - SHEMAT



## Validierung des numerischen Modells

- Kerndurchströmungsexperiment
- Geothermische Heizzentrale im Labormaßstab

- Präpariert mit Anhydrit (CaSO<sub>4</sub>, inhomogen)
- Auflösung von Anhydrit im Temperaturgradienten
- Dauer des Experiments 20 Tage (474 Stunden)



# Laborergebnisse ⇔ Numerische Simulation



### Keimbildung im Bentheimer Sandstein-Kern



# 1. Konzept – Ablaugung vom Salzstock



- Gips / Anhydrit in Diapiren
- Lösung / Ablaugung von CaSO<sub>4</sub> am Salzstock
- Transport von Ca<sup>2+</sup> und SO<sub>4</sub><sup>2-</sup> in tiefere Bereiche des Aquifers
- Ausfällung von Anhydrit und Zementation des Porenraums

#### Geologische Karte – Unterkreide



#### Konzeptioneller Modellaufbau



Specific heat flow: 60 mW m<sup>-2</sup>

#### Hamburg-Allermöhe 3D-Struktur



#### GIS-Modell: 11 km x 11 km, Tiefe 5000 m

### Konvektion - Großräumige Zementation



### Temperaturprofil – Hamburg-Allermöhe



#### Palinspastische Rekonstruktion



## 2. Konzept – Hochtemperaturereignisse



Wagner et al., 2005

### Punktquelle - Kleinräumige Zementation



#### 3. Konzept - Bohrlochstimulation



### Bildung präferentieller Fliesswege





# Laborergebnisse ⇔ Numerische Simulation





Kombination (in Arbeit)

Parmeterschätzung und Systemoptimierung

30/4

Beispiel:

Gesteinswärmeleitfähigkeit und hydraulische Permeabilität abgeleitet aus gemessenen Temperaturen und hydraulischen Potenzialen

#### Parameterschätzung mit SHEM\_AD

Vorwärtsproblem: von den m Parametern zu den n Daten Inversion: von den n Daten zu den m Parametern



#### Warum inverse Modellierungen?

- "Optimale" Werte für Systemparameter (Kalibrierung)
- Sensitivitäts- und Auflösung bei gegebener Datenbasis
- Unsicherheitsschätzung
- Modellbasierte Planung von Exploration und Nutzung

#### Bayes'sche Theorie

$$\Theta_B = (\mathbf{d} - \mathbf{g}(\mathbf{p}))^T \mathbf{C}_{\mathbf{d}}^{-1} (\mathbf{d} - \mathbf{g}(\mathbf{p})) + (\mathbf{p} - \mathbf{p}_a)^T \mathbf{C}_{\mathbf{p}}^{-1} (\mathbf{p} - \mathbf{p}_a) = \min!$$

 $C_d$  und  $C_p$ : A-priori Kovarianzmatrizen;  $r = d \cdot g(p)$ : Residuum. Differentiation nach p und Gauss-Newton-Methode ergibt Iterationsverfahren:

$$\mathbf{p}^{k+1} = \mathbf{p}^{a} + (\mathbf{J}^{T} \mathbf{C}_{d}^{-1} \mathbf{J} + \mathbf{C}_{p}^{-1})^{-1} \cdot \mathbf{J}^{T} \mathbf{C}_{d}^{-1} [\mathbf{d} - g(\mathbf{p}^{k})]$$
(Parameterraum)  
$$\mathbf{p}^{k+1} = \mathbf{p}^{a} + \mathbf{C}_{p} \mathbf{J}^{T} (\mathbf{J} \mathbf{C}_{p} \mathbf{J}^{T} + \mathbf{C}_{d})^{-1} \cdot [\mathbf{d} - g(\mathbf{p}^{k})]$$
(Datenraum)

$$J_{ij} = \frac{\partial g_i}{\partial p_j}, \qquad \mathbf{J} \in \mathbb{R}^n \times \mathbb{R}^m$$

*n* Daten und *m* Parameter
Berechnung der Jacobimatrix
J erfolgt durch AD

$$\mathbf{C}_{p}^{apo} = \left(\mathbf{J}^{T}\mathbf{C}_{d}^{-1}\mathbf{J} + \mathbf{C}_{p}^{-1}\right)^{-1}$$
$$= \mathbf{C}_{p} - \mathbf{C}_{p}\mathbf{J}^{T}\left(\mathbf{J}\mathbf{C}_{p}\mathbf{J}^{T} + \mathbf{C}_{d}\right)^{-1}\mathbf{J}\mathbf{C}_{p}$$

a-posteriori Kovarianz

Tarantola, 1982a,b, 2004; Hill, 1998

#### Automatisches Differenzieren (AD)

in out
foo(a,b,c,x,y,z)

1. Programmcode zur Berechnung einer Funktion f





Vorgabe von unabhängigen (→"Parameter") und abhängigen Variablen (→"Daten")

**g\_foo**(a,**g\_a**,b,c,x,y,**g\_y**,z)

3. Programmcode zur Berechnung von f und ihrer Ableitungen



- Code besteht aus wenigen elementaren Funktionen (+, -, , sin, ...) mit bekannten Ableitungen
- Anwendung der Kettenregel
- Akkumulation erzeugt Ableitungen ohne zusätzlichen Abschneidefehler

#### AD im "Reverse Mode"

Berechnung der Ableitung der Funktion f (des Rechenprogramms) bzw. der Zielfunktion  $F : \mathbb{R}^n \to \mathbb{R}$  (z. B. Varianz) nach den m abhängigen Parametern.

Die Zeit t zur Berechnung des *n*-dimensionalen Gradienten  $\nabla F$  relativ zu der von F ist <u>unabhängig von</u> n:  $t(F + \nabla F)/t(F) \approx const$ 

#### **Bemerkung:**

- Einige effiziente Optimierungsalgorithmen (Quasi-Newton, NLCG) erfordern nur Gradienten
- Modellbewertung, Sensitivitäts- und Auflösungsuntersuchungen profitieren von der expliziten Berechnung der vollständigen Jacobimatrix

|              | $\frac{t\left(F+\nabla F\right)}{t\left(F\right)}$ |
|--------------|----------------------------------------------------|
| Forward Mode | O(n)                                               |
| Reverse Mode | O(m)                                               |

## Verifikation mit analytischer Lösung für Wärmetransport gekoppelt mit Vertikalströmung



#### Beispiel: Freie Konvektion



- Zone 11: hochpermeabel; Zone 7 mäßig permeabel
- Parameter:  $\rho$ ,  $\lambda$ , k für alle Zonen
- Dichteströmung

#### Beispiel für Sensitivitäten



DOM: N

#### Inversionsergebnisse: Numerische

Experimente Inversion von T und h

Bohrungszahl



 Zufällig ausgewählte Bohrungen (Ort, Tiefe)

39/46

• Additives Rauschen  $\Delta T = N(0, 0.5)$  $\Delta h = N(0, 0.5)$ 

#### Parameterauflösungs-Matrizen (R<sub>p</sub>)

 $\mathbf{p}^{est} = \mathbf{R}_{p} \mathbf{p}^{true}; \qquad \mathbf{R}_{p} = \mathbf{I} - \mathbf{C}_{p}^{apo} (\mathbf{C}_{p}^{apr})^{T}$ 

#### Auflösungsmatrix für $\lambda$





## Parmeterschätzung und Systemoptimierung

41/4

Beispiel:

Optimierung der Exploration einer geothermischen Lagerstätte

#### Auslegung von Experimenten mit Hilfe 42/46 eines 3D-Modells



**Permeability** 





#### Qualitätsindikatoren der Auslegung



$$t_2 = \sum_{i=1}^{N} \frac{\lambda_i}{\lambda_{\max}} = \frac{\operatorname{Spur}(\mathbf{G}^+)}{\lambda_{\max}}$$

$$t_3 = \prod_{i=1} \lambda_i = \det(\mathbf{G}^+)$$

Verallgemeinerte Inverse G<sup>+</sup>:  $\mathbf{G}^{+} = (\mathbf{J}^{T} \mathbf{C}_{d}^{-1} \mathbf{J} + \mathbf{C}_{p}^{-1}) \mathbf{J}^{T}$ 

$$\begin{bmatrix} \mathbf{U} \mathbf{\Lambda} \mathbf{V} \end{bmatrix} = \mathbf{G}^+; \quad \mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n \end{bmatrix}$$



#### Zusammenfassung 1

#### **Direktes Problem**

- Analyse des Systemverhaltens für die in der geothermischen Reservoirsimulation typische nichtlineare Kombination mehrerer physikalischer und chemischer Prozesse
- Unterscheidung von wahrscheinlicheren von unwahrscheinlicheren Szenarien der Entstehung von Lagerstätten
- Prozessverständnis ist Voraussetzung f
  ür Erfolg versprechende Ma
  ßnahmen zur technischen Manipulation von Reservoiren

### Zusammenfassung 2

**Inverses Problem** 

- Schätzung wichtiger Reservoireigenschaften und ihrer
   Unsicherheiten
- Analyse der Systemsempfindlichkeit in Bezug auf die Variation Reservoireigenschaften
- Optimierung der Explorationsstrategie von Lagerstätten hinsichtlich der Anzahl, Lage und Tiefe teuerer Explorationsbohrungen

#### Danksagung

- Dr. Axel Baermann (Dr. Baermann & Partner)
- Dr. Jörn Bartels (RWTH Aachen, jetzt Geothermie Neubrandenburg)
- Dr. Andreas Günther (BGR Hannover)
- Jens Kröger (Umweltbehörde Hamburg)
- Reinhard Krug (RWTH Aachen)
- Dr. Volker Meyn (TU Clausthal-Zellerfeld)
- Darius Mottaghy (RWTH Aachen, jetzt Geophysica Beratungsgesellschaft mbH)
- Dr. Hansgeorg Pape (RWTH Aachen)
- Dr. Heinke Stöfen (TU Hamburg-Harburg)
- Dr. Roland Wagner (RWTH Aachen, jetzt GEOWATT, Zürich)
- Dr. Martin Zarth (Umweltbehörde Hamburg)

#### BMBF, BMU, BMWi, DFG für finanzielle Förderung