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1. Introduction: Hypergraph
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Hypergraph with 9 vertices and 6 hyperedges (nets)
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1D matrix partitioning using hypergraphs
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Column bipartitioning of m × n matrix

Hypergraph H = (V ,N )

Columns ≡ Vertices: 0, 1, 2, 3, 4, 5, 6.
Rows ≡ Hyperedges (nets, subsets of V):

n0 = {1, 4, 6}, n1 = {0, 3, 6}, n2 = {4, 5, 6},

n3 = {0, 2, 3}, n4 = {2, 3, 5}, n5 = {1, 4, 6}.

Workshop ASIM, RWTH Aachen University, March 1, 2007 – p. 4



Motivation: parallel iterative solvers

Iterative linear system solvers for Ax = b.

Iterative eigensystem solvers for Ax = λx.

Basic building block: sparse matrix–vector multiplication.

Parallel computation: often, the matrix is distributed by
rows.
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Parallel sparse matrix–vector multiplication u := Av

A sparse m × n matrix, u dense m-vector, v dense n-vector

ui :=

n−1
∑

j=0

aijvj
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A p = 2

4 phases: communicate, compute, communicate, compute
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2. Hypergraph partitioning
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Hypergraph with 9 vertices and 6 hyperedges (nets),
partitioned in black and white vertices
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Mondriaan 2D matrix partitioning

Block distribution (without row/column permutations) of
59 × 59 matrix impcol_b with 312 nonzeros, for p = 4

Mondriaan package v1.0 (May 2002). Originally
developed by Vastenhouw and Bisseling for partitioning
term-by-document matrices for a parallel web search
machine.
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Composition with Red, Yellow, Blue and Black

Piet Mondriaan 1921
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Work imbalance criterion

nz (Ai) ≤
nz (A)

p
(1 + ǫ), 0 ≤ i < p.

The maximum amount of work should not exceed the average
amount by more than a fraction ǫ.
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Minimising communication volume
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Cut nets: n1, n2 cause one horizontal communication

Use Kernighan–Lin/Fiduccia–Mattheyses for hypergraph
bipartitioning

Multilevel scheme: merge similar columns first,
refine bipartitioning afterwards

Used in PaToH (Çatalyürek and Aykanat 1999) for 1D
matrix partitioning.
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Quadratic sieving matrix MPQS30

Size 210 × 179, 1916 nonzeros, 30 decimal digits.
Partitioned for 4 processors (red, black, blue, orange) by the
Mondriaan package

Matrix: courtesy of Richard Brent, 2001.
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Left upper corner of MPQS30

Column distribution of matrix. Row spread over 4 processors
causes 3 horizontal communications, hence: λ − 1 metric (or
connectivity−1 metric, Lengauer 1990)
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A different hypergraph model: fine-grain
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A F = FA

Fine-grain model proposed by Çatalyürek and Aykanat,
2001

m × n matrix A with nz (A) nonzeros

(m + n) × nz (A) matrix F = FA with 2 · nz (A) nonzeros

aij is kth nonzero of A ⇔ fik, fm+j,k are nonzero in F

Workshop ASIM, RWTH Aachen University, March 1, 2007 – p. 14



Communication for fine-grain model
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A F = FA

Cut net in first m nets of hypergraph of F :
nonzeros from row ai∗ are in different parts,
hence horizontal communication in A.

Cut net in last n nets of hypergraph of F :
nonzeros from column a∗j are in different parts,
vertical communication in A.
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Recursive, adaptive bipartitioning algorithm

MatrixPartition(A, p, ǫ)
input: ǫ = allowed load imbalance, ǫ > 0.
output: p-way partitioning of A with imbalance ≤ ǫ.

if p > 1 then
q := log2 p;
(Ar

0, A
r
1) := h(A, row, ǫ/q); hypergraph splitting

(Ac
0, A

c
1) := h(A, col, ǫ/q);

(Af
0, A

f
1) := h(A, fine, ǫ/q);

(A0, A1) := best of (Ar
0, A

r
1), (Ac

0, A
c
1), (Af

0, A
f
1);

maxnz := nz (A)
p

(1 + ǫ);
ǫ0 := maxnz

nz (A0)
· p

2
− 1; MatrixPartition(A0, p/2, ǫ0);

ǫ1 := maxnz

nz (A1)
· p

2
− 1; MatrixPartition(A1, p/2, ǫ1);

else output A;
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Parallel hypergraph partitioning: Zoltan

Parallel hypergraph partitioner has been released in
Zoltan version 2.0 in April 2006 by Sandia National
Laboratories (Devine, Boman, Heaphy, Bisseling,
Çatalyürek 2006).

Internally: 2D Cartesian matrix distribution

Performs parallel coarsening and refinement, and
replicated initial partitioning on small hypergraph.

Dynamic repartitioning recently added (2007), by adding
fixed vertices representing partitions and adding
migration nets.

Workshop ASIM, RWTH Aachen University, March 1, 2007 – p. 17



3. Hypergraph applications
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Web searching: which page ranks first?
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The link matrix A

Given n web pages with links between them.
We can define the sparse n × n link matrix A by

aij =

{

1 if there is a link from page j to page i

0 otherwise.

Let e = (1, 1, . . . , 1)T , representing an initial uniform
importance (rank) of all web pages. Then

(Ae)i =
∑

j

aijej =
∑

j

aij

is the total number of links pointing to page i.

The vector Ae represents the importance of the pages;
A2

e takes the importance of the pointing pages into
account as well; and so on.
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The Google matrix

A web surfer chooses each of the outgoing Nj links from
page j with equal probability. Define the n × n diagonal
matrix D with djj = 1/Nj.

Let α be the probability that a surfer follows an outlink of
the current page. Typically α = 0.85. The surfer jumps to
a random page with probability 1 − α.

The Google matrix is defined by (Brin and Page 1998)

G = αAD + (1 − α)eeT /n.

The PageRank of a set of web pages is obtained by
repeated multiplication by G, involving sparse
matrix–vector multiplication by A, and some vector
operations.
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Comparing 1D, 2D fine-grain, and 2D Mondriaan

The following 1D and 2D fine-grain communication
volumes for PageRank matrices are published results
from the parallel program Parkway v2.1 (Bradley, de
Jager, Knottenbelt, Trifunović 2005).

2D fine-grain means: every nonzero becomes a vertex in
the hypergraph.

The 2D Mondriaan volumes are results for new features
to be incorporated in v2.0.

2D Mondriaan means: in row-wise splits, every row
becomes a vertex in the hypergraph. Similar for columns.

All methods are hypergraph-based.
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Communication volume: PageRank matrix Stanford
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p = 4, 8, 16

n = 281, 903 (pages), nz (A) = 2, 594, 228 nonzeros (links).

Represents the Stanford WWW subdomain, obtained by
a web crawl in September 2002 by Sep Kamvar.
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Communication volume: Stanford_Berkeley

Parkway 1D          Parkway fine−grained Mondriaan 2D        
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p = 4, 8, 16

n = 683, 446, nz (A) = 8, 262, 087 nonzeros.

Represents the Stanford and Berkeley subdomains,
obtained by a web crawl in Dec. 2002 by Sep Kamvar.
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Discussion of results

2D methods save an order of magnitude in
communication volume compared to 1D.

Parkway fine-grain is slightly better than Mondriaan, in
terms of partitioning quality. This may be due to a better
implementation, or due to the fine-grain method itself.
Further investigation is needed.

2D Mondriaan is much faster than fine-grain, since the
hypergraphs involved are much smaller:
7 × 105 vs. 8 × 106 vertices for Stanford_Berkeley.
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Call-graph partitioning

System with N = 158 vertices (programs, Java classes)
provided by Software Improvement Group, Amsterdam.
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Motivation: legacy code

Huge Cobol systems with 1000s of programs calling each
other.

Today, more programs are written in Cobol than ever.

Cobol programs are also written in Java . . .

Software Improvement Group tries to split systems into
manageable modules.

Size of interfaces to other modules should be minimized.

⇓
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Graph formulation of the problem

Program i is vertex in directed graph (V,A).

Call from i to j (i uses j) is an arc,

(i, j) ∈ A ≡ i → j.

Partition the vertices of V into disjoint subsets, or
modules, V1, . . . , VL.

A vertex j ∈ Vs with an incoming edge i → j, where i ∈ Vt

(t 6= s), is an interface vertex. It represents a program that
has to serve other modules.

The problem: find a partitioning V1, . . . , VL with a minimum
number |I| of interface vertices and a reasonable
workload for each module, i.e., |Vl| ≤ K for all l.
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The sparse matrix connection

If you are a hammer, everything looks like a sparse matrix

For a directed graph with N vertices, we define the N ×N
adjacency matrix A by

aij =

{

1 if i → j,

0 otherwise.

The matrix is square, unsymmetric, sparse.

We also assume that each program calls itself, aii = 1.
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Adjacency matrix of Java1

158 × 158 adjacency matrix with 158 programs and 422 calls
from programs to other programs. The matrix, including the
unit diagonal, has 580 nonzeros.
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Mondriaan in 1D mode

Piet Mondriaan, 1943
(detail)

We partition the rows of the adjacency matrix into blocks
of equal size. We are allowed to permute the rows.
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Partitioned adjacency matrix, after permutation

8 modules (row blocks)
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Permutations

Rows of the 158 × 158 adjacency matrix Java1 are
permuted to bring programs (matrix rows) of the same
module in the partitioning together.

Columns are permuted by the same permutation.

Each column j with nonzeros in different blocks
represents an interface program.

The permutation corresponds to a solution with |I| = 30
interface programs produced by Mondriaan.

Workshop ASIM, RWTH Aachen University, March 1, 2007 – p. 33



Hypergraph formulation

Each row is a vertex in the hypergraph.

Each column is a hyperedge (net).

Each column j with nonzeros in different blocks
represents a cut net.

The total number of interfaces is the number of cut nets.
This is the cut-net metric. (The number of parts involved
in a column does not matter.)
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Results for hypergraph partitioning vs. optimal ILP

Problem |V | |A| K Interface size Time (s)
ILP HP ILP HP

Java1 144 422 23 26 30 103 0.06
Java3 837 5252 127 242 275 246456 0.54
Java4 15 39 2 11 11 0.22 0.001
Cobol1 947 1900 209 13 17 118 0.33
Cobol2 449 659 81 6 10 351 0.12
Cobol3 1145 2686 203 51 69 6452 0.34
Cobol4 1100 2951 167 32 52 742172 0.41

Integer linear programming (ILP) using CPLEX v8.1,
hypergraph partitioning (HP) using Mondriaan v1.01.

8 modules, 20% allowed imbalance.
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Application: static 8 × 8 computational mesh

(a) (b) (c)

Computation cost: corner point 3 flops, border point 4,
interior point 5.

Communicating one data word costs, say, 10 flops.

Limit communication by short borders.

WARNING: A mesh is not a matrix!
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Alhambra: diagonal cuts

August 2002
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12 × 12 computational mesh: periodic partitioning

8 processors

Total computation: 672 flops. Avg 84. Max 90.

Communication: 104 values. Avg 13. Max 14.

Total time: 90 + 10 · 14 = 230.

Rectangular 6 × 3 blocks: time is 87 + 10 · 15 = 237.
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Hypergraph-based 1D Mondriaan partitioning

8 processors

Total computation: 672 flops. Avg 84. Max 91.

Communication: 85 values. Avg 10.525. Max 16.

Total time: 91 + 10 · 16 = 251.

Can be improved manually. Current best solution is 199
[Bas den Heijer, March 2006, using simulated annealing].
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4. Conclusions and . . .

Hypergraphs are a powerful tool in scientific computing.

Applications are everywhere:
Parallel iterative solvers (λ − 1 metric)
Parallel Google Pagerank computation (λ − 1 metric)
Call-graph partitioning (cut-net metric)

Hypergraph partitioning algorithms for parallel computing
are an example of Combinatorial Scientific Computing,
the area of combinatorial algorithms enabling scientific
computation.

Parallel hypergraph partitioner has been released in
Zoltan version 2.0 in April 2006 by Sandia National
Laboratories.
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. . . future work

We keep on improving the serial Mondriaan hypergraph
partitioner.

We also work (with Ken Stanley) on visualisation and
Matlab interface.
Movie by Sarai Bisseling.
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