Hypergraphs in Scientific Computing

Rob Bisseling
Department of Mathematics
Utrecht University

Support from BSIK-BRICKS/MSV and NCF

Outline

1. Introduction

- Hypergraphs
- Motivation: parallel iterative solvers

2. Hypergraph partitioning

- Sequential: Mondriaan
- 1D and 2D sparse matrix partitioning
- Parallel: Zoltan

3. Hypergraph applications

- Parallel Google PageRank computation
- Call-graph partitioning

4. Conclusions and future work

1. Introduction: Hypergraph

Hypergraph with 9 vertices and 6 hyperedges (nets)

1D matrix partitioning using hypergraphs

nets
Column bipartitioning of $m \times n$ matrix

- Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{N})$
- Columns \equiv Vertices: $0,1,2,3,4,5,6$. Rows \equiv Hyperedges (nets, subsets of \mathcal{V}):

$$
\begin{array}{lll}
n_{0}=\{1,4,6\}, & n_{1}=\{0,3,6\}, & n_{2}=\{4,5,6\}, \\
n_{3}=\{0,2,3\}, & n_{4}=\{2,3,5\}, & n_{5}=\{1,4,6\} .
\end{array}
$$

Motivation: parallel iterative solvers

- Iterative linear system solvers for $A \mathrm{x}=\mathbf{b}$.
- Iterative eigensystem solvers for $A \mathbf{x}=\lambda \mathbf{x}$.
- Basic building block: sparse matrix-vector multiplication.
- Parallel computation: often, the matrix is distributed by rows.

Parallel sparse matrix-vector multiplication u := $A v$

A sparse $m \times n$ matrix, u dense m-vector, \mathbf{v} dense n-vector

$$
u_{i}:=\sum_{j=0}^{n-1} a_{i j} v_{j}
$$

u

$$
A
$$

$$
p=2
$$

phases: communicate, compute, communicate, compute

2. Hypergraph partitioning

Hypergraph with 9 vertices and 6 hyperedges (nets), partitioned in black and white vertices

Mondriaan 2D matrix partitioning

- Block distribution (without row/column permutations) of 59×59 matrix impcol_b with 312 nonzeros, for $p=4$
- Mondriaan package v1.0 (May 2002). Originally developed by Vastenhouw and Bisseling for partitioning term-by-document matrices for a parallel web search machine

Composition with Red, Yellow, Blue and Black

Piet Mondriaan 1921

Work imbalance criterion

$$
n z\left(A_{i}\right) \leq \frac{n z(A)}{p}(1+\epsilon), \quad 0 \leq i<p .
$$

The maximum amount of work should not exceed the average amount by more than a fraction ϵ.

Minimising communication volume

- Cut nets: n_{1}, n_{2} cause one horizontal communication
- Use Kernighan-Lin/Fiduccia-Mattheyses for hypergraph bipartitioning
- Multilevel scheme: merge similar columns first, refine bipartitioning afterwards
- Used in PaToH (Çatalyürek and Aykanat 1999) for 1D matrix partitioning.
Universiteit Utrecht

Quadratic sieving matrix MPQS30

Size 210×179, 1916 nonzeros, 30 decimal digits. Partitioned for 4 processors (red, black, blue, orange) by the Mondriaan package

Matrix: courtesy of Richard Brent, 2001.
Universiteit Utrecht

Left upper corner of MPQs30

Column distribution of matrix. Row spread over 4 processors causes 3 horizontal communications, hence: $\lambda-1$ metric (or connectivity-1 metric, Lengauer 1990)

A different hypergraph model: fine-grain

- Fine-grain model proposed by Çatalyürek and Aykanat, 2001
- $m \times n$ matrix A with $n z(A)$ nonzeros
- $(m+n) \times n z(A)$ matrix $F=F_{A}$ with $2 \cdot n z(A)$ nonzeros
- $a_{i j}$ is k th nonzero of $A \Leftrightarrow f_{i k}, f_{m+j, k}$ are nonzero in F

Communication for fine-grain model

- Cut net in first m nets of hypergraph of F : nonzeros from row $a_{i *}$ are in different parts, hence horizontal communication in A.
- Cut net in last n nets of hypergraph of F : nonzeros from column $a_{* j}$ are in different parts, vertical communication in A.

Recursive, adaptive bipartitioning algorithm

MatrixPartition (A, p, ϵ)
input: $\quad \epsilon=$ allowed load imbalance, $\epsilon>0$. output: p-way partitioning of A with imbalance $\leq \epsilon$. if $p>1$ then

$$
\begin{aligned}
& q:=\log _{2} p ; \\
& \left(A_{0}^{\mathrm{r}}, A_{1}^{\mathrm{r}}\right):=h(A, \text { row }, \epsilon / q) ; \text { hypergraph splitting } \\
& \left(A_{0}^{\mathrm{c}}, A_{1 \mathrm{p}}^{\mathrm{p}}:=h(A, \text { col, } \epsilon / q) ;\right. \\
& \left(A_{0}^{\mathrm{f}}, A_{1}^{\mathrm{f}}:=h(A, \text { fine }, \epsilon / q) ;\right. \\
& \left(A_{0}, A_{1}\right):=\text { best of }\left(A_{0}^{\mathrm{r}}, A_{1}^{\mathrm{r}}\right),\left(A_{0}^{\mathrm{c}}, A_{1}^{\mathrm{c}}\right),\left(A_{0}^{\mathrm{f}}, A_{1}^{\mathrm{f}}\right) ;
\end{aligned}
$$

$$
\max n z:=\frac{n z(A)}{p_{n}}(1+\epsilon) ;
$$

$$
\epsilon_{0}:=\frac{\operatorname{maxnz}}{n z\left(A_{0}\right)} \cdot \frac{p}{2}-1 \text {; MatrixPartition }\left(A_{0}, p / 2, \epsilon_{0}\right) \text {; }
$$

$$
\epsilon_{1}:=\frac{\operatorname{maxazn}}{n z\left(A_{1}\right)} \cdot \frac{p}{2}-1 \text {; MatrixPartition }\left(A_{1}, p / 2, \epsilon_{1}\right) \text {; }
$$

else output A;

Parallel hypergraph partitioning: Zoltan

- Parallel hypergraph partitioner has been released in Zoltan version 2.0 in April 2006 by Sandia National Laboratories (Devine, Boman, Heaphy, Bisseling, Çatalyürek 2006).
- Internally: 2D Cartesian matrix distribution
- Performs parallel coarsening and refinement, and replicated initial partitioning on small hypergraph.
- Dynamic repartitioning recently added (2007), by adding fixed vertices representing partitions and adding migration nets.

3. Hypergraph applications

Web searching: which page ranks first?

hypergraph - Google zoeken
$\square \rightarrow$ Apple (63) * Amazon eBay Yahoo! Nieuws (197) \geqslant

Het Internet
 Resultaten 1-10 van circa 588.000 voor hypergraph (0,11 seconden)

Hypergraph - Hyperbolic graphs and trees: Home
HyperGraph visualizes hyperbolic trees and graphs. It is used to show topic maps, sitemaps or hierarchies.
hypergraph.sourceforge.net/-7k - In cache - Gelijkwaardige pagina's
Hypergraph - Hyperbolic graphs and trees: Installation applet code="hypergraph.applications.hexplorer. HExplorerApplet" align="baseline" archive="path-to-jar/hyperapplet.jar" width=" 500 " height=" 500 " > ... hypergraph.sourceforge.net/installation.html - 8 k - In cache - Gelijkwaardige pagina's

Hypergraph - Wikipedia, the free encyclopedia

A hypergraph is also called a set system or a family of sets drawn from the universal set X.
... The collection of hypergraphs is a category with hypergraph ...
en.wikipedia.org/wiki/Hypergraph - 22k - In cache - Geliikwaardige pagina's

HyperGraph

HyperGraph. A project of the ACM SIGGRAPH Education Committee, the Hypermedia and Visualization Laboratory, Georgia State University, and the National ...
www.siggraph.org/education/ materials/HyperGraph/hypergraph.htm -3 k -
In cache - Geliikwaardige pagina's

HyperGraph Table of Contents

HyperGraph Table of Contents ... HyperGraph Home page. Last changed January 7, 2006,
G. Scott Owen, owen (at) siggraph.org.
www.siggraph.org/education/materials/HyperGraph/toc.htm - 4k -

The link matrix A

- Given n web pages with links between them. We can define the sparse $n \times n$ link matrix A by

$$
a_{i j}= \begin{cases}1 & \text { if there is a link from page } j \text { to page } i \\ 0 & \text { otherwise. }\end{cases}
$$

- Let $\mathbf{e}=(1,1, \ldots, 1)^{T}$, representing an initial uniform importance (rank) of all web pages. Then

$$
(A \mathbf{e})_{i}=\sum_{j} a_{i j} e_{j}=\sum_{j} a_{i j}
$$

is the total number of links pointing to page i.

- The vector A e represents the importance of the pages; $A^{2} \mathrm{e}$ takes the importance of the pointing pages into account as well; and so on.
Universiteit Utrecht

The Google matrix

- A web surfer chooses each of the outgoing N_{j} links from page j with equal probability. Define the $n \times n$ diagonal matrix D with $d_{j j}=1 / N_{j}$.
- Let α be the probability that a surfer follows an outlink of the current page. Typically $\alpha=0.85$. The surfer jumps to a random page with probability $1-\alpha$.
- The Google matrix is defined by (Brin and Page 1998)

$$
G=\alpha A D+(1-\alpha) \mathbf{e e}^{T} / n .
$$

- The PageRank of a set of web pages is obtained by repeated multiplication by G, involving sparse matrix-vector multiplication by A, and some vector operations.

Comparing 1D, 2D fine-grain, and 2D Mondriaan

- The following 1D and 2D fine-grain communication volumes for PageRank matrices are published results from the parallel program Parkway v2.1 (Bradley, de Jager, Knottenbelt, Trifunović 2005).
- 2D fine-grain means: every nonzero becomes a vertex in the hypergraph.
- The 2D Mondriaan volumes are results for new features to be incorporated in v2.0.
- 2D Mondriaan means: in row-wise splits, every row becomes a vertex in the hypergraph. Similar for columns.
- All methods are hypergraph-based.

Communication volume: PageRank matrix stanford

- $n=281,903$ (pages), $n z(A)=2,594,228$ nonzeros (links).
- Represents the Stanford WWW subdomain, obtained by a web crawl in September 2002 by Sep Kamvar.
Universiteit Utrecht

Communication volume: Stanford_Berkeley

- $n=683,446, n z(A)=8,262,087$ nonzeros.
- Represents the Stanford and Berkeley subdomains, obtained by a web crawl in Dec. 2002 by Sep Kamvar.
Universiteit Utrecht

Discussion of results

- 2D methods save an order of magnitude in communication volume compared to 1D.
- Parkway fine-grain is slightly better than Mondriaan, in terms of partitioning quality. This may be due to a better implementation, or due to the fine-grain method itself. Further investigation is needed.
- 2D Mondriaan is much faster than fine-grain, since the hypergraphs involved are much smaller:
7×10^{5} vs. 8×10^{6} vertices for Stanford_Berkeley.

Call-graph partitioning

System with $N=158$ vertices (programs, Java classes) provided by Software Improvement Group, Amsterdam.

Universiteit Utrecht

Motivation: legacy code

- Huge Cobol systems with 1000s of programs calling each other.
- Today, more programs are written in Cobol than ever.
- Cobol programs are also written in Java ...
- Software Improvement Group tries to split systems into manageable modules.
- Size of interfaces to other modules should be minimized.

Graph formulation of the problem

- Program i is vertex in directed graph (V, A).
- Call from i to $j(i$ uses $j)$ is an arc,

$$
(i, j) \in A \equiv i \rightarrow j .
$$

- Partition the vertices of V into disjoint subsets, or modules, V_{1}, \ldots, V_{L}.
- A vertex $j \in V_{s}$ with an incoming edge $i \rightarrow j$, where $i \in V_{t}$ $(t \neq s)$, is an interface vertex. It represents a program that has to serve other modules.
- The problem: find a partitioning V_{1}, \ldots, V_{L} with a minimum number $|I|$ of interface vertices and a reasonable workload for each module, i.e., $\left|V_{l}\right| \leq K$ for all l.

The sparse matrix connection

If you are a hammer, everything looks like a sparse matrix

- For a directed graph with N vertices, we define the $N \times N$ adjacency matrix A by

$$
a_{i j}= \begin{cases}1 & \text { if } i \rightarrow j, \\ 0 & \text { otherwise } .\end{cases}
$$

- The matrix is square, unsymmetric, sparse.
- We also assume that each program calls itself, $a_{i i}=1$.

Adjacency matrix of Java1

158×158 adjacency matrix with 158 programs and 422 calls from programs to other programs. The matrix, including the unit diagonal, has 580 nonzeros.

Mondriaan in 1D mode

Piet Mondriaan, 1943 (detail)

- We partition the rows of the adjacency matrix into blocks of equal size. We are allowed to permute the rows.

Partitioned adjacency matrix, after permutation

8 modules (row blocks)

Universiteit Utrecht

Permutations

- Rows of the 158×158 adjacency matrix Java1 are permuted to bring programs (matrix rows) of the same module in the partitioning together.
- Columns are permuted by the same permutation.
- Each column j with nonzeros in different blocks represents an interface program.
- The permutation corresponds to a solution with $|I|=30$ interface programs produced by Mondriaan.

Hypergraph formulation

- Each row is a vertex in the hypergraph.
- Each column is a hyperedge (net).
- Each column j with nonzeros in different blocks represents a cut net.
- The total number of interfaces is the number of cut nets. This is the cut-net metric. (The number of parts involved in a column does not matter.)
Universiteit Utrecht

Results for hypergraph partitioning vs. optimal ILP

Problem	$\|V\|$	$\|A\|$	K	Interface size		Time (s)	
				ILP	HP	ILP	HP
Java1	144	422	23	26	30	103	0.06
Java3	837	5252	127	242	275	246456	0.54
Java4	15	39	2	11	11	0.22	0.001
Cobol1	947	1900	209	13	17	118	0.33
Cobol2	449	659	81	6	10	351	0.12
Cobol3	1145	2686	203	51	69	6452	0.34
Cobol4	1100	2951	167	32	52	742172	0.41

- Integer linear programming (ILP) using CPLEX v8.1, hypergraph partitioning (HP) using Mondriaan v1.01.
- 8 modules, 20% allowed imbalance.

Application: static 8×8 computational mesh

- Computation cost: corner point 3 flops, border point 4, interior point 5.
- Communicating one data word costs, say, 10 flops.
- Limit communication by short borders.

WARNING: A mesh is not a matrix!

Alhambra: diagonal cuts

August 2002

12×12 computational mesh: periodic partitioning

- Total computation: 672 flops. Avg 84. Max 90.
- Communication: 104 values. Avg 13. Max 14.
- Total time: $90+10 \cdot 14=230$.
- Rectangular 6×3 blocks: time is $87+10 \cdot 15=237$.

Hypergraph-based 1D Mondriaan partitioning

- Total computation: 672 flops. Avg 84. Max 91.
- Communication: 85 values. Avg 10.525. Max 16.
- Total time: $91+10 \cdot 16=251$.
- Can be improved manually. Current best solution is 199 [Bas den Heijer, March 2006, using simulated annealing].
Universiteit Utrecht

4. Conclusions and ...

- Hypergraphs are a powerful tool in scientific computing.
- Applications are everywhere:
- Parallel iterative solvers ($\lambda-1$ metric)
- Parallel Google Pagerank computation ($\lambda-1$ metric)
- Call-graph partitioning (cut-net metric)
- Hypergraph partitioning algorithms for parallel computing are an example of Combinatorial Scientific Computing, the area of combinatorial algorithms enabling scientific computation.
- Parallel hypergraph partitioner has been released in Zoltan version 2.0 in April 2006 by Sandia National Laboratories.

. . . future work

- We keep on improving the serial Mondriaan hypergraph partitioner.
- We also work (with Ken Stanley) on visualisation and Matlab interface. Movie by Sarai Bisseling.

