Efficient and User-friendly Computation of
Local Stiffness Matrices

Jochen Hirdtlein, and Christopf Pflaum *
University of Erlangen-Nuremberg,
jochen.haerdtlein @informatik.uni-erlangen.de

Abstract
The finite element method is a way to discretize partial differential equations. The
problem is transformed to its weak formulation, approximated by ansatz and testing
functions, in order to reach a linear system of equations. Although, this method is very
flexible and powerful, many students and scientists of application ranges flee from the
finite element method, since it has a complex mathematical background.

Therefore, we introduce Colsamm. Starting from an interface very close to the weak
formulation of partial differential equations, Colsamm computes the local discretization
stencil restricted to an element. Further, users can assemble the global stiffness matrices,
by using their specific grid informations. Additionally, Colsamm provides many oppor-
tunities to adapt the finite element method to specific problems; e.g. easy changing of
ansatz and testing functions.

1 Introduction

1.1 Motivation

The finite element method (FEM) is a well-known way to discretize differential operators.
Thereby, a partial differential equation (PDE) is transformed to its weak formulation and
approximated by ansatz and testing functions. The result is a linear system of equations,
that has to be solved by suitable methods.

In comparison to other methods; e.g. the finite difference method (FDM), the FEM is more
powerful and more flexible in use. However, in opposite to FDM, that is based on a very in-
tuitional idea, the FEM base on more complex mathematical backgrounds; e.g. see [Bra97].
These backgrounds must be understood at least in parts, in order to be capable of apply-
ing and implementing the FEM. However, the complex mathematical base terrifies many
students and scientists of application ranges, just intending a fast solution of their problem.
Those users, that are more interested in results than in the method of discretization, ought to
benefit from the advantages of the FEM without concerning oneself with the mathematical
background in detail. The users only have to know, that this ansatz discretizes differential
operators and yields the local stiffness matrices. On that account, Colsamm (Computation
Of Local Stiffness And Mass Matrices) was developed to enable an easy use of the FEM
without an intensive study of the mathematical basics.

*Department of Computer Science 10, Systemsimulation, Cauerstr. 6, D-91058 Erlangen, Germany

1.2 Introducing Example

To offer a first impression of Colsamm, we present an example, computing the local stiff-
ness matrices for Poisson’s equation, based on a grid of non-regular hexahedrons. By trans-
forming the equation to the weak formulation, we yield

Vu-Vvduz/ u-vdu,

Q]L Qh

where (Q;, represents the discretized domain. First, a reference hexahedron is initialized,
containing the accuracy of the Gaussian quadrature formula as template parameter. Thereby,
the linear basis functions are defined. Extensions for more complex elements are presented
later on. Hence, the user can start the computations of the local stiffness matrix. Therefore,
the vertices of the actual hexahedron are assigned to my_element as array or STL vec-
tor, enumerated clockwise in the x-y-plane. v () and w () represent the ansatz and testing
functions, respectively.

Hexahedron<Gauss2> my_element;

for(int 1 = 0; 1 < number_elements; ++i) {

// put the verticies of the actual element in right order
vertices = element[i].get_vertecies_as_array();
// compute stiffness matrices of the element;
loc_stenc_1 = my_element (vertices) .int_all (grad(v())xgrad(w()));
loc_stenc_2 = my_element.int_all(v() * w());
for(int k = 0; k < size_of_ansatz_functions; ++k) {

global_k = element.loc_to_glob_numbering(k);

for(int 1 = 0; 1 < size_of_testing_functions; ++1) {

global_1 element.loc_to_glob_numbering(l);

global_AJfglobal_k][global_1] += loc_stenc_1[k][1l];
global_H[global_k][global_ 1] += loc_stenc_2[k][1];

}

The entries of the two element stiffness matrices 1oc_stenc_1 and loc_stenc_2
are added to the corresponding positions of the global discretization matrices. Applying
these steps to all hexahedrons of the grid, we yield the global discretization matrix. While
this was a very simple and common example, we further will present the implementation
techniques of the library, in order to point out the features realized in Colsamm.

2 Policies and Applications of Colsamm

2.1 C++ Template Libraries

Nearly all control parameters in Colsamm are template parameters, in order to evaluate
the problem specific decisions at compile-time. Since the computation of stiffness matrices

implies repeated calls of the library, every decision at run-time causes a significant lack to
performance. Thus, no object file of Colsamm can be achieved, as every template parameter
must be known at compile-time. Due to that fact, Colsamm just consists of header files, that
have to be included. The way the problem-specific parameters are set is presented below.
Operator overloading enables a programmer to build math-like and user-friendly interfaces.
Since traditional operator overloading suffers from several performance lacks, we apply the
Fast Expression Template technique (FET), see [HLPOS5]. As improvement of Expression
Templates, where temporary variables are already avoided, FET reach better performance
especially for small amounts data. Those occur during the computations for the basis func-
tions and the transformation formula for an element.

2.2 Local Stiffness Matrices

In order to keep Colsamm very flexible in use, the library does not work on the whole grid.
The user provides the vertices of one actual element in a local numbering, concerning the
reference element. The resulting matrix contains the computations of the integrals, in the
local numbering, as well. The mapping to the global numbering has to be realized by the
user. Due to this fact, Colsamm can be applied to any grids, even if they cover different
element types.

Concerning the FEM, the user has to know, how to combine these local stiffness matrices
restricted to an element to the complete local stencil. This is determined by the supports
of the used basis functions and the structure of the grid. A basis function is 1 at one dis-
cretization point and vanishes at every other point. The complete local stencil is computed
by adding all local restricted stiffness matrices of those elements, that build the support of
the basis function.

2.3 User-Defined Element Types

Colsamm covers all standard elements in 1D, 2D, and 3D, concerning linear basis functions.
The library also contains all formulas for the computations of the determinants, and the
dimension-dependent substitution formula. Therefore, it is easy for a user to realize any
other types of elements. An element is defined by

1. the shape of the reference element including the dimension and vertices,

2. the transformation formula defining the mapping from the reference element to a
gerneral element, and

3. the sets of the ansatz and testing functions defined on the reference element.

An user-defined element has to provide these informations in an appropriate element class.
Most parameters are delivered to the parent Element class, managing the storage and the
interface. Since the derivation from this parent element is realized at compile-time, the
parent class needs the type of the child as template parameter. In the following we present
the manner a triangle covering linear basis functions is defined:

template <Int_Mod t>
struct Triangle : public _Domain_<
Triangle<t>, // type of element

One_Set<3>, // # of basis functions
3, // # of vertices

2, // dimension
Gauss<t,triangle>,// Gauss quadrature
double >{ // real or complex

Triangle() { // Setting of the basis functions
Set (1.-X(1)-Y(1));

Set (X(1));
Set (Y (1)),
finalize (X ()xY()); //precomputations & initialization

}

inline static void Transformation(){ // Transformation

Mapping (C () , P_(0));

Mapping (X (1) , P_(1)-P_(0));)

Mapping (Y (1) ; P_(2)-P_(0));
Interior_2D(); // Starting computations

}
by

This very short example ought to show the syntax, for building a new element. Thereby, the
user has the opportunity to implement any element, by writing such a class. Every type of
basis functions, and every mapping of polynomial type can be realized; e.g. iso-parametric
elements. Standard boundary elements; e.g. a surface triangle or quadrangle in 3D, are
contained in Colsamm, too. In order to deal with mixed finite elements, the user changes
the One_Set<.>to Two_Sets<., .>. Thereby, one can define different sets for ansatz and
testing functions, respectively.

Hence, the trial and error of different basis function approaches is very easy. The user has
only to care about the varying assembling of the global stiffness matrices.

2.4 Integrands

Colsamm supports the common differential operations, that occur in the weak formula-
tions of PDEs. Starting from the basic arithmetic operations, the ansatz function v ()
and testing function w (), directional derivatives (d_dx(.), d_dy(.), d_dz(.)), and
the gradient (grad(.)). Due to the usage of FET, a unaesthetic side-effect arises: all
constants and user-defined functions have to be enumerated by a template integer, that
has to be unique inside the integrand. This enumerated constant is implemented by
D_<template int>(double). This list of possilble operations is not complete, since
the features provided by Colsamm are best described in precise examples. However, this
would blow the limit of this article.

Up to now, only integrands that describe scalar fields can be computed. This is not a hard
restriction, while the user can split the PDE into suitable parts, yet. However, to increase
the user-friendliness, we are working on computing vector fields, as well.

3 Computation and Performance Issues

The main topics arising during the implemention of Colsamm, were to reach user-
friendliness and high-performance, as well. Focusing on performance, we first faced
the problem, that same terms were computed multiple times. In order to get rid of re-
computations, we divided the computations in three layers. First, we need to know the
type and the accuracy of the Gaussian quadrature formula (see [SB02]) to be applied. The
three computation layers are:

1. During initializing the element: evaluation of the basis functions and derivatives at
the Gaussian points on the reference element. These values are stored as they neces-
sary for nearly all integral computations.

2. After the vertices of the actual element are set, the mapping of the actual element and
its derivatives are computed. Subsequently, the library again calculates the values at
the Gaussian points, which are stored, too, because they are fix for each element.

3. While starting the integration, Colsamm computes the expression-dependent inte-
grals using the corresponding precomputed values

Therefore, and due to the fact of the high grade of template programming, Colsamm be-
came a high efficient code for stencil computations. Applying FET to the performance
relevant parts we nearly reach the efficiency of hand-crafted C-code that has not any user-
friendliness.

The template evaluations, that are computed at compile-time, cause a longer time for compi-
lation. Compared to the compile-time for a whole reasonable problem, however, this yields
no significant delays. For tests without any performance issue, we suppose to omit the —03
option to decrease compile-time.

Colsamm is able to calculate with complex numbers, as well, however, performance ex-
tremely decreases. This is caused by the STL implementation of the complex numbers, that
uses traditional operator overloading. This implies creating, copying, and deleting tempo-
rary objects. One solution is to add a library-embedded complex number implementation,
to do the stencil computations in suitable time.

4 Downloading Colsamm

In order to ease the usage of FEM for everyone, we provide Colsamm for download. It is
a free software underlying the GNU General Public License (see [GNU91]). Colsamm can
be downloaded at the following address:

wwwlO.informatik.uni-erlangen.de/jochen/colsamm.html.

The zip-file contains, besides the Colsamm-library, an example file, that demon-
strates the usage Colsamm in different cases. Additionally, a how-to is enclosed,
describing the library in more detail. Remarks and improvements are welcome at
jochen.haerdtlein@informatik.uni.erlangen.de.

5 Conclusions and Future Work

Colsamm is already in use for many different application ranges; e.g. simulation of lasers,
simulation of bioelectric fields, global simulation of melting furnace. Motivated by these
applications we are working several extensions of Colsamm, that ease usage and realize
some user-specific requests.

e Extending the transformation formulas to any formula type, not restricted to polyno-
mials. This empowers Colsamm to compute local stiffness matrices on elements with
spherical segments.

e Integration of vector fields, matrices and tensors. Thereby, the usage of the library
would become much easier, since the integrands have not to be split in scalar-fields
anymore.

e Providing computations for second derivatives. Up to now, only first derivatives can
be calculated. This extension would open up more application ranges.

e Front-end for the calculation of the complete local stencil, to ease the use for users
with low experiences with FEM.

Besides, we permanently pay attention to the performance of the template library, to keep
it a rational way for computing the stiffness and mass matrices.

Thus, Colsamm is a senseful, efficient, and user-friendly software, that spares time while
designing a simulation. And scientists and students of application ranges can focus on
getting the solution, instead of implementing the suitable discretization method.

References

[Bra97] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid
Mechanics. Cambridge University Press, second edition, 1997.

[GNU91] Gnu general public license, 1991. Version 2, www.gnu.org/licenses/gpl.html.

[HLPO5] J. Hérdtlein, A. Linke, and C. Pflaum. Fast expression templates. In V.S.
Suneram, G.D.v. Albada, PM.A. Sloot, and J.J. Dongarra, editors, Computa-
tional Science - ICCS 2005, volume 3515 of LNCS, pages 1055 — 1063. Springer,
May 2005. ISBN-10 3-540-26043-9, ISBN-13 978-3-540-26043-1, ISSN 03-2-
9743.

[SBO2] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer, third
edition, 2002.

