
Performance Analysis of the Lattice Boltzmann
Method on x86-64 Architectures

Jan Treibig, Simon Hausmann, Ulrich Ruede∗

Zusammenfassung

The Lattice Boltzmann method (LBM) is a well established algorithm to simulate fluid
flow. The complexity of todays 3D simulation problems resulting in long computation
times together with the fact that a standard implementation of the LBM only achieves a
small fraction of the potential of a modern CPU is the motivation for this performance
analysis. We show in our paper, that it is crucial to combine new CPU architectural fea-
tures as software prefetching and SIMD instruction set extensions, with the established
cache blocking techniques to utilize the computational power of modern CPUs.

1 Introduction

The Lattice Boltzmann method is an alternative approach to CFD based on a cellular auto-
mata approach. The core algorithm is well suited for implementation on a computer. From
the optimizer point of view the balance between arithmetical and memory demands ma-
ke it a challenging target [Kow04]. The computations consist exclusively of floating point
arithmetic. While a standard implementation is mainly memory bandwidth and latency limi-
ted after applying common optimization techniques and using different data layouts things
are not that clear anymore. In the core loop body also a lot of computation is done, causing
arithmetical limitations. Computer architectures continue to improve at a fast pace. Still the-
re is a large gap between theoretical peak performance and achievable performance. The
memory subsystem could not keep up with the huge improvements in raw computational
power. But also with an purely computational bound algorithm it is still difficult to reach
the theoretical peak performance on a modern CPU. Recent developments in the domina-
ting x86 based architectures include instruction set extensions, enabling SIMD Operations,
and hardware and software data prefetching. The SIMD instructions enable the CPU to
apply better optimizations while data prefetching hides the latency of memory access. The
newest incarnation of x86 is the x86-64 architecture introduced by AMD. It doubles the
number of registers introducing 64 bit wide general purpose registers (GPR). We focused
our efforts on this architecture. While many of these features are implemented for many
years the compilers still do not utilize these techniques to their full extent. Therefore we
decided to implement the code in assembler bypassing possible limitations of the compiler.

∗Lehrstuhl f̈ur Systemsimulation, Institut für Informatik, Friedrich-Alexander Universität Erlangen-N̈urnberg
D-91058 Erlangen, Germany



2 Arithmetical Analysis

In the following a brief summary of the Lattice Boltzmann method is given. A detailed
description along with a deep theoretical background can be found in [WG00]. The compu-
tational domain is mapped onto a regular grid with cells, the lattice. Each cell represents a
volume element of fluid particles. The motion of the particles in the fluid is described only
indirectly by distribution functions. A cell is divided into discrete directions of velocity,
and for each a particle distribution function is defined, representing the motion of particles
into that direction. These functions form the state of the cell. As discrete time advances
the flow of particles is simulated by moving the values of the distribution functions to the
neighboring cells and calculating the collision with particles from other directions. We im-
plemented a 3D Lattice Boltzmann Solver using a 3DQ19 model. The test problem used
is the lid driven cavity. It was used to verify the solver and do the performance measure-
ments. The arithmetical kernel of the algorithm is the so called collide step. The evaluation
depends on the previous calculation of the mass density and the velocity as well as the local
equilibrium distribution function. The new particle distribution functions do not depend on
each other. With regards to the x86-64 instruction set architecture it is possible to combine
always two particle distribution function updates into one sequence of instructions by the
use of SSE2packed operations. This reduces the amount of instructions needed to formu-
late the algorithm and results in faster execution. An important property of the Athlon-64
processors is that they have one unit for floating point addition and one for multiplication,
which can be execute in parallel. For highest performance it is therefore sensible to position
arithmetic operations in the stream of instructions in a way that independent multiplicati-
ons and additions can be scheduled for parallel execution. Unfortunately the calculation
for the update of the particle distribution functions is largely sequential. Due to direct de-
pendencies many instructions cannot be scheduled in parallel. With the ability to perform
a multiplication and addition in parallel in one clock cycle an Athlon-64 for example with
a clock frequency of 2.4 GHz has a theoretical peak performancePtheo of 4.8 GFlop/s.
The same applies to Pentium 4/Xeon processors, with the capability of two Flops per cycle
(SSE2). A simple synthetic benchmark that uses aggressive scheduling shows that it is ac-
tually possible to measure up to 94.7 % of this value on an Athlon-64 , which is roughly
4.55 GFlop/s. So the upper limit reduces to the “technical” maximumPtech. With regards
to the Lattice Boltzmann algorithm such a sequence however cannot be achieved as there
are more additions than multiplications. The minimum total amount of floating point opera-
tions per cell is approximately 156, with 90 additions/subtractions, 65 multiplications and
one division. The ratio of additions to multiplications reduces the approximation for the
theoretically reachable maximum GFlop/srate. Ifna is the number of additions andnm the
number of multiplications,1/2(na + nm) cycles are needed if two operations per cycle can
be executed. However, whenna 6= nm, max(na;nm)−min(na;nm) additional cycles are
required. As a result, the maximum reachable peak performance for the LBMPLBM in
comparison toPtech is given by

PLBM =
na + nm

2 ·max(na;nm)
· Ptech (1)



That corresponds to 87 % ofPtech, which is approximately 4.0 GFlop/s on the analyzed
machine. With regards to the Lattice Boltzmann algorithm, performance is often measured
in MegaLatticeSite Updates per second, or like in this case for the performance of on-
ly fluid cells FluidMLSUPS. With the reduced GFlop/s rate an upper bound can also be
approximated in MLSUPS:

PLBM ≈ 4.0 GFlop/s =
4.0 GFlop/s
156 Flops/cell

≈ 26 FluidMLSUPS

A more pessimistic boundary, based on the observations in the previous section that there
are no calculations that permit parallel usage of the multiplication and the addition unit,
would be to assume only 50 % of the peak performance, resulting in about 2.3 GFlop/s or
14 FluidMLSUPS.

3 Memory Performance Analysis

There are different approaches to improve the re-use of data stored in the CPU caches.
[Don04] presents a technique based on changes in the data layout. [Wil03] and [Igl03]
instead change the way the grid is traversed, commonly calledcache blocking. We have
implemented the best performing cache blocking from [Igl03], 4-way cache blocking. The
basic idea is to divide the domain into little cubes, perform multiple time steps inside one
and move on to the next cube. The cubes are supposed to fit in the CPU caches. The Lattice
Boltzmann algorithm has two distinct patterns of accessing memory. The streaming step
causes values to be gathered or pushed from the neighboring cells. What appears to be a
direct neighborhood in a grid by just an increment or decrement of the x, y or z coordinate
may result in a big distance from the current cell in the actual linear addressed memory. On
the other hand reading the current 19 cell values (collide-stream) or writing them (stream-
collide) results in a linear memory access pattern, as the cells are processed in order. So
in the algorithm either the cell read operations are scattered and the results are written in
linear fashion or the other way around. [Cor04] and [Dev04] explain that modern Intel
and AMD processors attempt to detect regular read access patterns and then start loading
memory further ahead into cachelines, thehardware prefetch mechanism. The idea is to
fetch the data needed in the next loop iteration while the processor is busy with arithmetic
operations in the current one. In stream-collide order in the Lattice Boltzmann algorithm
the scattered read operations are likely to prevent the CPU from seeing a pattern simple
enough for the hardware prefetcher. In that case software prefetch instructions were used to
to achieve a similar memory bus utilization as with sequential reads in collide-stream but
retain the linear writing pattern for the results.

4 Results

All measurements were done on a AMD Athlon-64 4000+ (2.4 GHz) and a Intel Xeon
Nocona (3.4 GHz). As a first step for comparison the core LBM calculation sequence was
extracted from the solver and on assembler level all instructions that result in memory



access were removed. The remaining code of course does not calculate an actual fluid
flow, but it consists of exactly the calculation sequence for doing so, minus memory access
though.
This version was compared to the complete fluid solver instream-collideorder with do-
main sizes where all allocated memory fits into at least the level 2 cache, with a size of
1 Megabyte on all machines. Anotherimportantproperty was that the domain consisted
entirely of fluid cells, as we are interested in comparing the arithmetic performance of the
fluid flow calculation, not how much time it takes for the processor to move data around
with the no-slip boundary condition handling.
Figure1 left shows the results on the Athlon-64. The results indicate a fairly constant per-
formance inside the cache, except when the grid size grows near to the total size of the
L2 cache. A size of143 · 19 (values per cell)· 2 (grids) · 8 (bytes per double) fills already
83 % of the L2 cache. Given how near thein-cacheunblocked plain solver is to the pure
arithmetic version it appears that the caches can deliver data reasonably fast on that machi-
ne. However the measured≈ 8 FluidMLSUPS are quite in distance to what the processor
could achieve in theory. The processor itself may be able to produce something in the range
of 14 to 26 FluidMLSUPS, depending on how good the instruction scheduler can feed the
floating point units.
As with the Athlon-64 the Xeon Nocona shows a reasonably constantin-cacheperforman-
ce, too (Fig.1 right). A difference to the Athlon-64 however is the significant distance
between the measured arithmetic fluid update performance and thein-cacheperformance,
almost 2 MLSUPS. One possible reason for this difference is the higher latency of the Xe-
on’s L2 cache, it may make stalls in the long pipeline of the Pentium core more expensive
than on the Athlon-64. In this section the results of the cache optimizations are shown, the

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Grid Size

6,5

7

7,5

8

Fl
ui

dM
L

SU
PS

Pure Arithmetic Version
Plain Unblocked

In-Cache Performance, Athlon-64 4000+
(64KB L1, 1024 KB L2)

(a) Athlon-64 4000+

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Grid Size

5

6

7

Fl
ui

dM
L

SU
PS

Pure Arithmetic Version
Plain Unblocked

In-Cache Performance, Xeon 4 Nocona
(16KB L1, 1024KB L2)

(b) Xeon Nocona

Abbildung 1: Comparison of in-cache version against measured arithmetic performance.

4-way blocking as well as the software prefetching on top of it. As with the in-cache measu-
rements in the previous section the domain consisted of fluid cells only and stream-collide
order was chosen.
Figure2 left shows the results on the Athlon-64 . As already shown in [Igl03] the 4-way
blocking provides a significant speed-up over the unblocked version. The software prefet-
ching cuts execution time in average by 15 %, resulting in one more MLSUPS. However



the 4-way blocked version of [Igl03] with a compressed grid and a block size of83 still
provides the best performance.
The key insight becomes apparent when comparing these results with the average in-cache
performance: The block techniques effectively reduce the high latency of main memory,
≈ 80− 90 % of the fluid in-cache performance is achieved on this machine.
The measurements on the Xeon Nocona are shown in Fig.2 right. Again an improvement of
the 4-way blocking can be seen, however the difference to the unblocked version is slightly
less than on the Athlon-64. The software prefetching on top of the blocked code brought
only little improvement. Again the cache optimized code is at approximately 84 % of the
in-cache results, showing the efficiency of the optimization.

0 20 40 60 80 100 120 140
Grid Size

4

5

6

7

8

Fl
ui

dM
L

SU
PS

4-Way Blocked With Prefetching
4-Way Blocked
Plain Unblocked
Average In-Cache Performance
4-Way Blocked, Compressed Grid

Performance Comparison, Athlon-64 4000+

(a) Athlon-64 4000+

0 20 40 60 80 100 120 140
Grid Size

2,5

3

3,5

4

4,5

5

Fl
ui

dM
L

SU
PS

4-Way Blocked With Prefetching
4-Way Blocked
Plain Unblocked
Average In-Cache Performance

Performance Comparison, Xeon Nocona (EM64T)

(b) Xeon Nocona

Abbildung 2: Comparison of cache blocking techniques within-cacheperformance

5 Conclusions

Under theoretical consideration the algorithm is limited by the data rate the memory can
deliver, as shown in [Don04] and [Kow04]. However comparing the efficiency of the ca-
che optimized code with the speed obtained within-cachefitting fluid domains produced
interesting results. In combination withsoftware prefetchingthe 4-way cache blocked code
was able to achieve 80-90 % of the FluidMLSUPS rates measured in the L2 cache. This
indicates that the cache optimization was efficient enough to hide large portions of the high
latency and slow data rate of main memory. In the next step the performance results from
the in-cachemeasurements were put into relation with a version of the code that had all
memory access instructions removed, in order to see how much the latency of the caches
influence the execution time. The comparison on the Athlon-64 showed little difference in
performance, the caches did not appear to be a limitation. On the Xeon Nocona a slight
drop was measured though. Given the efficiency of the cache optimization and the compari-
son ofin-cacheto “pure arithmetic” it appears the remaining limiting factor is somewhere
in the path from instruction decoding through scheduling up to the floating point execu-



tion units. For an estimation the raw floating point processing power can be reduced due
to an unbalance of multiplications to additions . When comparing that with the measured
performance a big gap remains. Less than 50 % of the estimated peak performance was
reached, on all platforms. It remains to be determined which factors exactly in the coding
of the Lattice Boltzmann algorithm have the biggest impact on the arithmetic performan-
ce. Despite the out-of-order execution capabilities of Athlon and Pentium processors the
actual placement of instructions in the machine code remains to have a big influence on
the performance. Compilers tend to be good in instruction scheduling but appear to have
problems in transforming the complex equations topackedinstructions. The combination
of both may possibly improve performance even more. One insight of our work also was
that todays architectures with out of order instruction scheduling and hardware prefetching
often behave intransparent and unpredictable to the programmer. Especially the Intel Xe-
on seems to have internal bottlenecks in his implementation, which are not obvious to the
programmer.

Literatur

[Cor04] Intel Corporation. IA-32 Intel Architecture Optimization Reference Manual,
2004. ftp://download.intel.com/design/Pentium4/manuals/24896611.pdf. 3

[Dev04] Advanced Micro Devices. Software Optimization Guide for AMD Athlon(tm)
and AMD Opteron(tm) Processors, November 2004.http://www.amd.com/us-
en/assets/contenttype/whitepapersand techdocs/25112.PDF. 3

[Don04] Stefan Donath. On Optimized Implementations of the Lattice Boltzmann Method
on Contemporary High Performance Architectures. Lehrstuhl für Informatik 10 ,
Institut für Informatik, University of Erlangen-Nuremberg, August 2004. Bache-
lor thesis. 3, 5

[Igl03] K. Iglberger. Cache Optimizations for the Lattice Boltzmann Method in 3D.
Lehrstuhl f̈ur Informatik 10 , Institut f̈ur Informatik, University of Erlangen-
Nuremberg, September 2003. Bachelor thesis.3, 4, 5

[Kow04] M. Kowarschik.Data Locality Optimizations for Iterative Numerical Algorithms
and Cellular Automata on Hierarchical Memory Architectures. PhD thesis, Lehr-
stuhl für Informatik 10 , Institut f̈ur Informatik, Universiẗat Erlangen-N̈urnberg,
July 2004. ISBN 3-936150-39-7.1, 5

[WG00] Dieter A. Wolf-Gladrow.Lattice-Gas Cellular Automata and Lattice Boltzmann
Models. Springer, 2000.2

[Wil03] J. Wilke. Cache Optimizations for the Lattice Boltzmann Method in 2D.
Lehrstuhl f̈ur Informatik 10 , Institut f̈ur Informatik, University of Erlangen-
Nuremberg, February 2003. http://www10.informatik.uni-erlangen.de.3

ftp://download.intel.com/design/Pentium4/manuals/24896611.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25112.PDF
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25112.PDF

	Introduction
	Arithmetical Analysis
	Memory Performance Analysis
	Results
	Conclusions

