
Optimizing Performance of the Lattice
Boltzmann Method for Complex Structures on

Cache-based Architectures

Stefan Donath1, Thomas Zeiser, Georg Hager, Johannes Habich, Gerhard Wellein
Regionales Rechenzentrum Erlangen (RRZE), Martensstr. 1, 91058 Erlangen, Germany

Abstract

Delivering high sustained performance for memory-intensive applications in computa-
tional fluid dynamics on cache-based microprocessors is a long-standing challenge. In
particular, non regular data access patterns, as arising from porous media flow within
lattice Boltzmann codes, can lead to poor performance. To address this problem, we
combine a 1-D list data representation with advanced code optimizations and are able
to achieve a high performance level, which is mostly independent of geometry and
obstacle/fluid ratio. The idea of traversing memory using space-filling curves is tested
as well, but our results indicate that this approach alone can not compete with standard
techniques, i.e. blocking and data layout optimization, which become architecture de-
pendent if an indirect memory addressing scheme is being used.

1 Introduction

For high end applications in numerical simulation vector computers have long been the ar-
chitecture of choice. In the past decade, owing to rapid advances in technology, commodity
“off-the-shelf” (COTS) cache-based microprocessors have become an interesting alterna-
tive due to their unmatched price/peak performance ratio. These processors, however, show
a large and rapidly growing gap between peak performance and memory bandwidth. To
reduce this bottleneck, modern COTS architectures use sophisticated hierarchies of small
but fast caches. Thus, performance optimization should aim both at the reduction of data
transfer from/to main memory and at the increase of spatial and temporal locality, i.e. the
increase the reuse of cached data.
A recent method for computational fluid dynamics (CFD) is the lattice Boltzmann method
(LBM) [1, 2, 3], a promising alternative for numerical simulation of time-dependent incom-
pressible flows. Compared to other methods the advantages of the LBM are computational
speed, high accuracy and the capability to handle the flow through and around complex ge-
ometries efficiently. The algorithm allows for an easy implementation and thus comparison
of different data layouts as well as optimization approaches as shown previously for simple
geometries [4, 5, 6] is feasible.
Owing to the scientific and commercial interest, some of these aspects are now discussed
with regard to complex geometries, i.e. domains with large solid parts and many fluid-solid
interfaces, e.g. porous media. Due to the overhead of handling boundary conditions near

1E-mail address: Stefan.Donath@rrze.uni-erlangen.de

1



obstacles and the non consecutive memory accesses, performance per fluid cell is much
lower than for simple systems, e.g. empty channel. Thus, it is worth to investigate sparse
memory layouts that both save memory and provide good cache utilization.
We first give a brief introduction to the lattice Boltzmann method in Section 2. After de-
scribing the implementation of an LBM solver which processes the domain using a one
dimensional data structure (Section 3) we study several possibilities of traversing the do-
main (Section 4) and discuss the results for different platforms in Section 5.

2 Basics of the Lattice Boltzmann Method

A widely used class of lattice Boltzmann models is based on the BGK approximation of the
collision process [1, 2, 3] and the evolution equation

fi(~x + ~eiδt, t + δt) = fi(~x, t)− 1
τ

[fi(~x, t)− feq
i (ρ, ~u)] i = 1 . . . N. (1)

Here,fi is a particle distribution function which represents the fraction of particles located
in a cell at position~x at timestept, moving with the microscopic velocity~ei. The relaxation
time τ determines the rate of approach to local equilibrium and is related to the viscosity.
The equilibrium statefeq

i depends only on the macroscopic values of the fluid densityρ
and the flow velocity~u. Both can be easily obtained as the first moments of the particle
distribution function.
A typical discretization scheme in 3-D is the D3Q19 model [7] which usesN = 19 discrete
velocities~ei. It results in a computational domain with equidistant Cartesian cells (voxels)
as shown in Figure 1.

Figure 1: Lattice site and its discrete velocity vectors for the D3Q19 LBM model.

Each timestep(t → t + δt) of the LBM consists of the following steps which are repeated
for all cells:

2



• Calculation of the local macroscopic flow quantitiesρ and~u from the distribution
functions,ρ =

∑N
i=1 fi and~u = 1

ρ

∑N
i=1 fi~ei.

• Calculation of the equilibrium distributionfeq
i from the macroscopic flow quantities

(see [7] for the equation and parameters) and execution of the “collision” (relaxation)
process,f∗

i (~x, t∗) = fi(~x, t) − 1
τ [fi(~x, t)− feq

i (ρ, ~u)], where the superscript * de-
notes the post-collision state.

• “Propagation” of thei = 1 . . . N post-collision statesf∗
i (~x, t∗) to the appropriate

neighboring cells according to the direction of~ei, resulting infi(~x + ~eiδt, t + δt),
i.e. the values of the next timestep.

The first two steps are computationally intensive but involve only values of the local node
while the third step is just a direction-dependent uniform shift of data in memory. At fluid-
solid interfaces a fourth step, the so called “bounce back” rule [1, 2, 3], is performed which
“reflects” the distribution functions and thus leads to an approximate no-slip boundary con-
dition at walls.

3 Implementation of the LBM for complex structures

An efficient standard implementation for simple problems [4] uses a fully allocated grid for
the domain, including memory locations representing obstacles. It performs the collision
and propagation step in one loop, while handling of boundary conditions (bounce back) is
done by an extra routine that traverses all obstacle surfaces. With a high number of obsta-
cles inside the domain which is typical for porous media (see Figure 2) this approach wastes
memory and requires a significant overhead due to handling the bounce back rule.

Figure 2: Complex structure of a SiC foam with large number of interior obstacles.

To evade these problems, the implementation discussed in this paper uses a 1-D represen-
tation of the domain, skipping the obstacles by storing only data of fluid cells and their

3



Table 1: Part of the Table for Hilbert Curves Construction in 3D
Current Level Next Level

bne enb, b ben, n ben, f fse, e fse, b bws, s bws, f wnf
fws swf, f fsw, w fsw, b bes, s bes, f fne, e fne, b nwb
nwf fwn, n nfw, w nfw, s sef, f sef, n nbe, e nbe, s bws
enb bne, e ebn, n ebn, w wsb, b wsb, e efs, s efs, w fnw

connectivity (basis code by courtesy of [8]). A preprocessor generates metadata informa-
tion which describes the data of the distribution functionsfi as well as the grid connec-
tions and cell positions. Like our previous implementation [4] the LBM algorithm uses the
“push” scheme, meaning that the distribution functions of thecurrent cell are read and after
relaxation the updated values are written to theadjacent cells. In the case of the 1-D rep-
resentation of the domain, the solver traverses the array during collision cell by cell. The
updated values have to be propagated to the appropriate locations of the second part of the
array (used due to data dependencies). The connectivity is stored in an extra buffer. There-
fore, the bounce back rule can easily be defined implicitly by specifying either the adjacent
or the same cell as target.
Within this approach, the number of memory accesses solely depends on the number of
fluid cells in the domain. However, performance depends on the sequence of memory ac-
cesses, which is influenced by the number and location of obstacles. Consequently, different
approaches for traversing memory were tested.

4 Traversing Schemes for Locality Enhancement

To optimize the run-time performance we compared two different approaches:(1) Chang-
ing the scheme of traversing memory to find an enhanced path through the obstacles, and
(2) adapting the memory layout like in our previous work [4].
To ease the implementation of different memory traversing schemes the preprocessor rou-
tine was kept as modularized as possible. Thus, only one function had to be exchanged.
This function influences the location of the lattice site’s representation in memory. First,
we introduced a standard blocking scheme which subdivides the domain into blocks that fit
into cache. The second idea is based on a mesh reordering using space-filling curves (SFCs)
on discrete grids. Hereby, the substitution of the primitive curves to next higher levels is
only performed until the resolution fits to the grid size. Due to the recursive construction
by dividing the unit interval by a factor of2 for the Hilbert curve and3 for the Peano curve
(cf. [9]), only 3-D grid sizes of23n and33n, respectively, are supported at this time. For
construction of the SFCs we use the same table-driven approach as described in [10]: In
the left part of Figure 3 four of the overall48 possible primitive curves for the Hilbert curve
are shown. Table 1 lists their substitutions for constructing the next level. We are using
the same naming convention as in [10], where the first and second letters represent the first
and second move, respectively, and the third letter represents the fourth move, which is the

4



Figure 3: Hilbert primitive curves (left), Hilbert “bne” curve at level 2 (middle), Peano
primitive curve (right).

move between the two planes. “e”, “w”, “n”, “s”, “f”, “b” stand foreast, west, north, south,
front andback, respectively. The middle part of Figure 3 shows the first recursion of the
“bne” curve. Since there are always several possible combinations for replacing a primi-
tive curve, we paid attention to use constructions which assure that cells already touched
will be visited again as soon as possible, in order to improve data locality. When using the
Peano curve in 3-D these problems do not occur. Here, we use only eight different primitive
curves. The well-defined production rules use27 primitive curves for replacing one of the
previous level.
For LBM, data in memory can be represented in different ways. Most common is a multi-
dimensional array. For this case, Wellein et al. [4] pointed out that the structure-of-arrays
layout, the so-calledpropagation optimized layout, is to be preferred because it results in
higher performance than the array-of-structures layout (so-calledcollision optimized lay-
out) on most architectures. However, for the 1-D array implementation with indirect ad-
dressing additional optimization is in order: A block preload technique (described in detail
for the vector triad in [11]) was applied that effectively separates loading data to cache from
arithmetic operations. To avoid register spill and congesting the write combine buffers of
IA32 processors when storing the19 updated values, relaxation was split into several loops
(3 to 5). While the first loop reads the current cell’s values and calculates the macroscopic
quantities like density and velocity, the following loops calculate the relaxation and write
the values to the adjacent cells for only four directions, for example.

5 Comparison of Performance Results

The benchmarks were performed on three cache based architectures: Intel Itanium 2 (IA64),
Intel Nocona/Irwindale (IA32 compatible) and AMD Opteron (IA32 compatible). On all
systems, blocking and SFCs improve the spatial locality for both memory layouts. We
benchmarked systems of different sizes for both empty channels and porous media. Due to
the sensibility of the propagation optimized data layout to cache thrashing at sizes of powers
of two [4], the empty channels contain four obstacles to shorten the array length and thus

5



Table 2: Comparison of Different Optimization Techniques
Cache Arch. Best Prop. Opt. Coll. Opt. SFC influence

≤ 1 MB IA32 Prop. Opt. MBP Hilbert improves
Loop Splitting Coll. Opt. only

> 1 MB IA32 Coll. Opt. MBP Blocking improves
Loop Splitting Prop. Opt. only

> 1 MB IA64 Coll. Opt. Hilbert, w/o MBP, Blocking improves
w/o Loop Splitting Prop. Opt. only

Figure 4: Comparison of implementations
on IA64 and Opteron using MC geometry

Figure 5: Comparison of SFC-schemes
with best implementation on IA64

the stride of successive accesses. The porous media test case contains a huge number of
obstacles such that compression ratios of 30 to 60 percent (depending on system size) are
achieved.
Figure 4 and Table 2 clearly show, that the results depend on cache size and architecture: For
small caches (AMD Opteron and Intel Nocona with 1 MB L2 cache each) the propagation
optimized layout combined with manual block preload (MBP) and split loops outperforms
all other implementations. While SFCs cannot improve the propagation optimized layout,
traversion by a Hilbert curve accelerates the collision optimized layout stronger than the
implicit blocking technique.
Using larger caches (tested on Itanium2, 1.5 MB L3 cache, and Irwindale, 2 MB L2 cache),
the cache line saving property of the propagation optimized layout does not countervail
against the blocked collision optimized layout any more. Due to the eliminated loop over-
head of implicit data blocking, the collision optimized layout now yields the best results. On
IA64 the MBP technique must not be used as it prevents the compiler from more effective
prefetching.
Figure 5 points out that SFCs generally yield similar performance as blocking techniques
with practically no difference between Hilbert and Peano curves. With the collision opti-
mized layout, performance is very robust with respect to geometry, while the propagation

6



optimized layout shows instabilities depending on the number and surface of obstacles. (In
Figure 5 propagation optimized layout shows worse performance for the fine-grained SiC-
foam with many small obstacles (see Figure 2) than for coarse-grained foams with few and
large structures (MC).)
In general, the indirect addressing of the 1-D array yields stable performance behavior that
is independent of obstacle geometries for all described implementations. Only the prop-
agation optimized layout shows slight weaknesses in the case of few adjacent fluid cells.
Such geometries can lead to an inefficient cache line use and nullify the effect of automatic
hardware prefetchers (or compiler-generated prefetching on IA64) for this layout.

6 Conclusions and Outlook

We demonstrated optimization techniques for an LBM implementation which are able to
achieve high performance on cache-based microprocessors both on complex geometries
and for high obstacles ratio. The use of indirect addressing through 1-D array data repre-
sentation calls for architecture dependent optimization. While space-filling curves are an
interesting approach which is able to improve performance, there are other techniques that
lead to better results. For large caches, thecollision optimized layout combined with data
blocking shows best performance, while thepropagation optimized layout suffers from too
many obstacles (or too few adjacent fluid cells, respectively) and compiler optimization
problems due to array addressing. On systems with smaller caches manual block preload
and splitting of the collision into several loops can significantly improve the performance
of thepropagation optimized layout such that it supersedes thecollision optimized layout.
In our test cases the use of space-filling curves did not show any benefit compared to stan-
dard blocking techniques.
To maintain the idea of using space-filling curves, future work could include staggered
Hilbert curves for the different directions of the particle distribution function, such that data
loaded during the update of cells that are neighboring to lattice sites which are visited much
later does not lead to waste of underused cache lines. As a second possibility, a Galerkin-
discretization of LBM could enable a stack technique in combination with space-filling
curves as was demonstrated in [12] for Navier-Stokes solvers. However, before space-filling
curves can be applied in real-world problems, their construction on non-cubic grids has to
be investigated.

7 Acknowledgements

This work is financially supported by the Bavarian Graduate School for Computational
Engineering. Support from the Lattice Boltzmann Development Consortium, in particular
Jörg Bernsdorf (NEC CCRLE) who provided the initial implementation of the 1-D LBM
code, is gratefully acknowledged.

7



References

[1] D. A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models,
Vol. 1725 of Lecture Notes in Mathematics, Springer, Berlin, 2000.

[2] S. Succi, The Lattice Boltzmann Equation – For Fluid Dynamics and Beyond, Claren-
don Press, 2001.

[3] S. Chen, G. D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid
Mech. 30 (1998) 329–364.

[4] G. Wellein, T. Zeiser, G. Hager, S. Donath, On the single processor performance of
simple lattice Boltzmann kernels, accepted by Computers & Fluids, 2005 .

[5] T. Pohl, F. Deserno, N. Tḧurey, U. R̈ude, P. Lammers, G. Wellein, T. Zeiser, Perfor-
mance evaluation of parallel large-scale lattice Boltzmann applications on three su-
percomputing architectures, in: Proceedings of Supercomputing Conference SC2004,
Pittsburgh, 204, CD-ROM, 2004.

[6] S. Donath, On optimized implementations of the lattice Boltzmann method on contem-
porary high performance architectures, Bachelor’s thesis, Chair of System Simulation,
University of Erlangen-Nuremberg, Germany (2004).

[7] Y. H. Qian, D. d’Humìeres, P. Lallemand, Lattice BGK models for Navier-Stokes
equation, Europhys. Lett. 17 (6) (1992) 479–484.

[8] J. Bernsdorf, unpublished (2004).

[9] H. Sagan, Space-Filling Curves, Springer-Verlag, 1994.

[10] G. Jin, J. Mellor-Crummey, SFCGens: A framework for efficient generation of multi-
dimensional space-filling curves by recursion, ACM Transactions on Mathematical
Software Volume 31 (1) (2005) pp. 120 – 148.

[11] G. Hager, T. Zeiser, J. Treibig, G. Wellein, Optimizing performance on modern HPC
systems: Learning from simple kernel benchmarks, in: Computational Science and
High Performance Computing. Proceedings of the 2nd Russian-German Advanced
Research Workshop, 2005.

[12] F. Günther, Eine cache-optimale Implementierung der Finite-Elemente-Methode,
Ph.D. thesis, Fakultät für Informatik der Technischen Universität München (2004).

8


	Introduction
	Basics of the Lattice Boltzmann Method
	Implementation of the LBM for complex structures
	Traversing Schemes for Locality Enhancement
	Comparison of Performance Results
	Conclusions and Outlook
	Acknowledgements

