
Dynamic Particle Coupling for
GPU-based Fluid Simulation

Andreas Kolb, Nicolas Cuntz
Computer Graphics Group, University of Siegen, Germany

Email:{andreas.kolb,nicolas.cuntz }@uni-siegen.de

Abstract

The main research approaches in Computational Fluid Dynamics (CFD) are grid-based
(Euler) or based on particle motion (Lagrange). For interactive fluid simulation, tech-
niques have been developed to use the Graphics Processing Unit (GPU) to speed up the
computation using an Eulerian approach.

This paper describes an approach for setting up a Lagrangian particle based fluid
simulation on the GPU. This builds upon earlier results on simulation of uncoupled
particles. The major contribution of this work is a new approach for modeling dynamic
particle coupling solely based on individual particle contributions. This technique does
not need global sorting or an explicite solution of then-nearest neighbor problem.

1 Introduction

The simulation of fluid is important, e.g. in modeling physical systems (climate, ocean), but
also in interactive computer graphics applications. Reeves [Ree83] used particle systems in
the context of the motion picture Star Trek II. Further applications are the simulation and
animation of soft objects [DG96] and the control of implicit surfaces [WH94].
In Computational Fluid Dynamics (CFD) one main research approach is grid-based (Euler).
In contrast to the Eulerian approaches, the particle-based approach (Lagrange) makes mass
conservation equations and convection terms dispensable. This reduces the complexity of
the simulation and the particles can directly be used to render the fluids surface.
Smoothed particle hydrodynamics (SPH) was introduced by Ginhold and Mon-
aghan [GM77]. SPH models the dynamics of fluids based on particle motions applying
forces to ensure the Navier-Stokes equations. Müller et.al. [MCG03] present an optimized
software implementation allowing interactive simulations for a few thousand particles.
For interactive grid-based fluid simulation, techniques have been developed to use the
Graphics Processing Unit (GPU) to speed up the computation [Har03]. The simulation
of uncoupled particle motions on GPUs has been introduced recently [KSW04, KLRS04].
The main contribution of this paper is a dynamic particle coupling technique for GPU-
based simulation. As proof of concept, this technique has been added to the uncoupled
particles in [KLRS04] to realize SPH derived from Müller et.al. [MCG03] on the GPU.
The remainder of the paper discusses related research (Section 2) and describes the new ap-
proach to map SPH on the GPU (Section 3). Section 4 gives details on the implementation
and Section 5 shows some results.

2 Related Work

This section discusses the basic principles of Smoothed Particle Hydrodynamics (SPH),
some important aspects of GPU programming and gives an overview on the uncoupled
particle simulation on the GPU.

2.1 Smoothed Particle Hydrodynamics

The main concept of SPH is the usage ofradial symmetric smoothing kernelsto distribute
a quantityA j of a particlej at positionP j to its neighborhood

Ā(P) = ∑
j

mj
A j

ρ̄ j
W(

∣∣P−P j
∣∣ ,h), (1)

wheremj is the particle’s mass,W is the smoothing kernel with max. radiush and ρ̄ j =
ρ̄(P j) is the density given by the smoothed particle masses

ρ̄(P) = ∑
j

mjW(
∣∣P−P j

∣∣ ,h). (2)

Smoothing kernelsW ∈C2[0,h] must be normalized, i.e.
∫

W(P) dP = 1 in order to guar-
antee mass preservation.
The resulting pressure and viscosity forces for particlesi are deduced from the Navier-
Stokes equations (more details in Müller et.al. [MCG03]):

~fp(Pi) =−∑
j

mj
pi + p j

2ρ̄ j
∇W(

∣∣Pi −P j
∣∣ ,h),

(3)

~fv(Pi) = µ ∑
j

mj
~v j −~vi

ρ̄ j
∇2W(

∣∣Pi −P j
∣∣ ,h).

Here p j = k(ρ̄ j −ρ0) is the pressure with gas constantk and rest densityρ0 andµ is the
fluid viscosity constant.
To model the surface tension, Müller et.al. [MCG03] use the so-called color field ¯c. The
gradient of the color field yields the inward normal field of the fluid, whereas the divergence
of the normal field is a measure for the curvatureκ of the fluid surface

c̄(P) = ∑
j

mj

ρ̄ j
W(

∣∣P−P j
∣∣ ,h), ~n(Pi) = ∇c̄(Pi), κ =−∇2c̄

|~n|
. (4)

Müller et.al. [MCG03] deduced the surface traction force using the tension coefficientσ

~fs(P) =

{
−σ∇2c̄(P) ~n(P)

|~n(P)| |~n(P)|> ε

0 otherwise
, (5)

with a given thresholdε > 0 to avoid numerical problems in case|~n(P)| ≈ 0.

2

2.2 GPU Programming Aspects

From an algorithmic point of view, the programmable Graphics Processing Unit (GPU) can
be seen as afast, parallel 2D array processor. Its native array format is 2D (texture), where
each array element has up to 4 components (color components). For processing, the input
and output data array are distinct. The programmability of the GPU addresses two different
stages in the data processing on the GPU:

Vertex Program: Selects the data elements to be processed in the 2D output array.

Fragment Program: Performs the processing of the selected output data elements.

For more details scientific computation on the GPU see Strzodka et.al. [SDK05]
and theGeneral Purpose Computation Using Graphics Hardware (GPGPU)website
www.gpgpu.org .

2.3 Particle Simulation on the GPU

The key idea of performing uncoupled particle simulation on the GPU is to use a fragment
program to update 2D arrays storing the state parameters of all particles. The coordinates
of the 2D data elements serve as particle id over several 2D arrays carrying the state pa-
rameters.

(x,y,z)

(x,y,z)

(x,y,z)

(x,y,z)

(x,y,z)

double
buffer

double
buffer

array

array
position

velocity

static info
per particle
(type, time of
birth, ...)

Figure 1: Data storage concept for particle systems.

Because input and output ar-
rays are distinct on GPUs,
two arrays for the data
are needed to perform two
or more consecutive time-
steps. A flip-flop algorithm
exchanges the role of input
and output arrays (Figure 1).
In most cases, first order,
e.g. Euler integration is used
to compute the particle mo-
tion. Applying higher pre-
cision integration, possibly

more than two data arrays have to be used in a ring-buffer like manner.

3 Dynamic Particle Coupling

This section discusses the technique to model the dynamic particle coupling for the flow
simulation. Section 3.1 explains the general idea of handling the SPH equations. Section 3.2
discusses aspects of mapping this scheme onto the GPU.

3

3.1 Separable Summands

The general goal in computing the forces in Eq. (3) and (5) is to avoid the explicite deter-
mination of the particles in the neighborhood of a 3D positionP (Eq. (1)).
This is achieved by accumulating the individual contribution of each particle in a 3D array
which discretizes 3D-space. From an abstract point of view, a smoothed quantityĀ must be
represented as̄A(P) = ∑ j g(j,P) with an appropriate functiong yielding separable sum-
mands. Here, j gives access to all attributes of particlej. After having handled all particles,
the resulting quantity can be retrieved by sampling the 3D array.
The pressure force (3) and the color field (4) are separable, since all necessary quantities
for particle j are known or can be sampled in the density field. The viscosity force~fv is
only defined at a particle position, since the velocities of particlei and j are involved.
In order to compute the 3D force field based on Eq. (3) and (5), the following steps are
performed. First, the density field̄ρ is computed and stored. After computing the color field
c̄, its gradient∇c̄ and Laplacian∇2c̄ are stored as a second 3D array with four components.
Then, the separable part of the viscosity force~fsep

v and the pressure force~fp are computed
and stored in another 3D array (force field). Finally, during the velocity integration for
particlei, the surface force field and the missing part of the viscosity force~fpart

v is added to
the force sampled in the force field.

~fsep
v = µ ∑

j
mj

~v j

ρ̄ j
∇2W(

∣∣Pi −P j
∣∣ ,h), ~fpart

v =−µ~vi∇2c̄(Pi)

3.2 Computing 3D Quantities on the GPU

The goal is to compute the force fields described in Section 3.1 using the GPU. Since the
native output format of the GPU is a 2D array, the 3D discretization has to be formulated
as a stack of 2D arrays, calledslices. The contribution of a single particle will be present in
several slices.
In order to compute the 3D quantity, for each slice all particlesi that contribute to that
slice, are required. Therefore, a “point” with radiush (calledpoint sprite) is drawn at the
particle positionPi onto the slice. For each pixel on the point sprite the corresponding
3D positionP and the relevant particle positionPi are known, so that the contribution of
particlei at positionP can be computed. Particle that do not contribute to the current slice
are automatically clipped at properly defined clipping planes.

4 Implementation Details

The simulation renderer has been implemented in C++ using OpenGL and Cg for GPU
programming, using an NVIDIA GeForce 6800 GT with 256 MB graphics memory.
In order to perform the computation as pointed out above, 2D output arrays of type float
with accumulation functionality are needed. Additionally, during rendering of the point-
sprites, varying array coordinates are needed in order to properly compute the 3D locations
of each rasterized sprite pixel. Currently, only 16 bitATI float -textures in combination

4

h z

h

Pi

clipping planecurr. slice

clipped particle

}
array 1

array 3
array 2

array 0

slice id

1511

71410

6

5

139

4

128

0

0123 4567 89...

subregion 1

subregion 0

Figure 2: Set up of the clipping planes for a given slice (left) and referencing of 2D array
slices in four larger 2D arrays using subregions (right).

with thepoint sprite NV-extension [NVI05] fulfill this requirement. This texture for-
mat, however, can not use the so-called render-to-texture mechanism, which enforces the
use of an inefficient copy functionality to re-use the output arrays as input array later on.
Sampling the 3D quantity stored in a 3D array, i.e. in a 2D array stack, is done with linear
interpolation within the slices and between the two adjacent slices w.r.t. the 3D sampling
location, yielding a trilinear interpolation scheme.
In order to speed up the computation of the 3D quantities, so-called multiple-render-targets
(MRT) are used to compute four slices in parallel. Additionally, subregions are used to
represent several slices in a larger 2D array. This minimizes the number of arrays needed to
represent a 3D quantity. Since the MRT mechanism allows only computation at the same
output position for all four arrays, the slices reference to subregions in the four arrays in an
alternating manner. Thus, four adjacent slices can be computed in parallel (Figure 2).

5 Results & Conclusion

We have presented a method to realize a flow simulation based on the SPH approach
completely on the GPU. The current system is a prove of concept for the results of

Figure 3: The three images show different states when filling a cup with water. This example
runs at 12 FPS.

5

the presented approach. While there is much room for optimizations, it is already pos-
sible to simulate a liquid at a reasonable frame rate. The frame rate strongly depends
on several parameters: The number of particles, the resolution of the force field tex-
tures, the smoothing kernel radiush and the distribution of the particles in space.

 30

 25

 20

 15

 10

 5

 0

FPS

 600 1200 1800 2400 3000 3600 4200 4800

particles

 25

 20

 15

 10

 5

 0

 30
FPS

 0.15 0.2 0.25 0.3 0.4 0.35

kernel radius

Figure 4: The cup simula-
tion with kernel radius 0.2
and force field resolution 323,
with varying number of parti-
cles (top) and varying kernel
radius for 2400 particles (bot-
tom).

The example in Figure 3 runs at 12 FPS, where nearly
2400 particles are simulated in a 323 force field using a
kernel radius of 20% of the force field dimension (Fig-
ure 4). Increasing the resolution to 643, yields≈ 2.3 FPS,
whereas decreasing the resolution to 163 gives 14.5 FPS.
Further optimizations will probably result in a much bet-
ter performance. Apart from performance issues, the vi-
sual output could be improved considerably by integrating
a rendering of free fluid surfaces.

References

[DG96] M. Desbrun and M.-P. Gascuel. Smoothed particles : A
new paradigm for animating highly deformable bodies.
In Computer Animation and Simulation, pages 61–76,
1996.

[GM77] R.A. Gingold and J.J. Monaghan. Smoothed par-
ticle hydrodynamics: theory and application to non-
spherical stars.Notices of the Royal Astronomical So-
ciety, 181:375–389, 1977.

[Har03] M. Harris. Real-Time Cloud Simulation and Render-
ing. PhD thesis, CS Dep., University of N. Carolina at
Chapel Hill, 2003.

[KLRS04] A. Kolb, L. Latta, and C. Rezk-Salama. Hardware-
based simulation and collision detection for large parti-
cle systems. InProc. Graphics Hardware, pages 123–
131, 2004.

[KSW04] P. Kipfer, M. Segal, and R. Westermann. Uberflow: A GPU-based particle engine. In
Proc. Graphics Hardware, pages 115–122. ACM/Eurographics, 2004.

[MCG03] M. Müller, D. Charypar, and M. Gross. Particle-based fluid simulation for interactive
applications. InSym. on Comp. Animation, 2003.

[NVI05] NVIDIA Corporation. OpenGL extension. http://developer.nvidia.com/object/nvidia
openglspecs.html, 2005.

[Ree83] W. Reeves. Particle systems - technique for modeling a class of fuzzy objects. InACM
Proceedings SIGGRAPH, volume 2, pages 91–108, 1983.

[SDK05] R. Strzodka, M. Doggett, and A. Kolb. Scientific computation for simulations on pro-
grammable graphics hardware.Simulation Practice & Theory, 2005. to appear.

[WH94] A. Witkin and P. Heckbert. Using particles to sample and control implicit surfaces. InACM
Proceedings SIGGRAPH, pages 269–277, 1994.

6

