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Abstract

The Algebraic Reconstruction Technique (ART), which isdzhen Kaczmarz's projection
algorithm, is one of the most important tools for tomograptonsistent image reconstruc-
tion. Moreover, in the inconsistent case, an extension aizierz's method (KERP, for
short) has been obtained by one of the authors in a previquer.pBut, although theoreti-
cally very general, this extension cannot always produanaagh accurate reconstruction.
In this respect, we consider in the present paper a regethxiersion of KERP algorithm
(RKERP, for short), which demonstrates a very weak sudaiéfytito noisy perturbations
in the data. The regularization is achieved through a pgtalin in a least-squares objec-
tive to which the Kaczmarz's method is applied. This termxigressed with a Gibbs prior
that incorporates nearest neighbor interactions amorarenf pixels. A special attention
is drawn to a quadratic clique energy function that makesGhus prior equivalent to a
Gaussian prior. Our results demonstrate a high efficiendyeafegularized KERP algorithm
with such a prior as regards to a quality of the reconstrustexjes and a computational
cost. In the simulations, we used the data from borehole goapdy in which the inversion
is very ill-posed due to a limitation of an angular range @f pinojections.

1 Introduction

In many image processing techniques the aim is to find a ggspitod approximation to
the true solution of the problem that can be often definedrindeof a linear least-squares
problem. In this paper, we are dealing with tomographic ieneggonstruction in which a
discretized forward projection model forms a system ofdimequations

Ax+n=0>b, Q)

whereA € RM*N is the system matrixy € IRY an unknown image vectob, ¢ IR a
measurement vector ande IR is a noise vector that accounts for all kind of perturbations
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(measurement and discretization errors) which obviousliarhis system inconsistent, i.e.
b ¢ R(A), whereR(A) is a range ofdA. Due to the intrinsic model of tomographic obser-
vations, A is usually very ill-conditioned or rank-deficient, and suetage reconstruction
is in its nature very ill-posed. In our tomographic techrigd is rank-defficient even if
we have more observations than pixels in the image, ife.> N. Assuming the linear
least-squares problem: find € IRY such that

Az* — b|| = min ||Az — b]|, 2
|Az” —b|| = min ||Az —b]| )

its minimal norm solution, which we denote by g, will be different that the true one (we
shall denote by - ||, (-,-) the Euclidean norm and scalar product, respectively). Ehis
becauseN (A) (the nullspace ofd) is non-trivial, and some true image components that
belong toN (A) cannot be recovered from the observations (see e.g. [8]).

In this paper we consider the regularized linear least+&guproblem in application to to-
mographic image reconstruction. The regularization ternmot only to stabilize the solution
of anill-posed problem but, this term is to enforce a locabsthness in the image, and thus,
itis modelled by a prior (like in statistical methods). We@ased the Gibbs prior associated
with the MRF model. This approach is widely used in Bayesiaage processing methods,
e.g. MAP-EM [2, 3, 4, 6], which are usually classified as sitawaous techniques. How-
ever, in some applications of tomography the data are gadhsrquentially, and sequential
image reconstruction techniques like ART-like algorithane more suitable.

2 Theregularized KERP algorithm

The KERP algorithm, introduced in [7] can be written as fako
Algorithm KERP. Letz° € IRV 4 = b;fork =0,1... do

yk+1 — (I)(Oé;yk); bk+1 —b— ykJrl; karl — F(w;bk+1;$k). (3)

Herea, w are relaxation parameters and the applications involvé®)iare defined by (see
[7] for details)

filwsbyz) = (1 —w)z +wfi(b;z), F(w;b;z) = (fro---o far)(w;b; ), 4)

pilazy) = (1 —a)y + ap;(y), (azy) = (p1o- - 0pn)(a;y), (5)
(z,ai) —b; (y,aj)

ibz) =0 — ———=—ai, ¢j(y)=y— o, 6

f( ) HaZH2 @J(y) Yy HajHQ J ( )

where bya; € IR",o; € IR™ we denoted thé-th row and;-th column of A, respectively
(which we suppose to be nonzero vectors). We have the failpwésult (see [7]).

Theorem 1 For any2° € RY and anyw,a € (0,2), the sequencéz”);>o generated
by the algorithmKERP converges always to a least-squares solution of the proBm
Moreover, forz? = 0 the limit is exactly its the minimal norm solutiarn, g.



Remark 1 The aboveKERP can eliminate in only one step the noise vector components
from N (A?) (see [1]), but unfortunately this is not always enough inesrth obtain a good
image reconstruction (see e.g. [9]).

In order to eliminate the above mentioned bad aspect we lmavedrporate the prior in-
formation to the solution. This will be described in whatldals. In this respect, we first
consider the regularized weighted least-squares vergitreqroblem (2): findc* € RY
such that

min ¥(z*) = min ¥(z), U(z)=|lAz —b|[3-, + BR(x), (7)

zeRN

whereX is a symmetric and positive definitel x M matrix which attributes weights to
data, 3 is a regularization parameter, aftix) is functional that measures the roughness
in the image. Assuming the image modelled by the Markov Ran&eeld (MRF) that is
associated with the Gibbs prior

)= _CLAUG)
[ exp{—BU(z)}dz’

whereU (z) is a total energy function, and the data that are modellechbyGaussian
statistics, the discrete smoothing norm in (7) has the fdiita:) = 2U (). Then, following
the same way as we proposed in [9], the regularized versitimeadibove KERP algorithm
can be written as follows.

Algorithm RKERP. Letz® € IRV, 3% = b;fork =0,1... do

(8)

yk+1 — (I)(Oé, yk)’ karl —p— ykJrl; .,L,kJrl — F(w, karl;.’I]k) _ 2/BVU(.%'k) (9)

A common choice fof/(x) in (8) is the measure of a total roughness in the image, i.e.

Ux) = Z Z winV(xj; — xy,0) (10)

J mEN;

whereN; denotes a set of the pixel indices from the nearest neigbbdrbf thej-th pixel,
wjp IS a weighting factor, and’(z; — xz,,d) is a clique energy function that is scaled
with 6. Many clique energy functions have been proposed to imagenstruction [2, 3,
4, 9]. Lange in [6] discussed their properties in the contéxpplication to the MAP-EM
algorithm. In our approach, we apply the quadratic function

V(z; — 2, 8) = (%)2 (11)

which leads to considerable simplifications of the algonittNote that the Gaussian prior
usually does not work well with the well-known MAP-EM algttmin due to oversmoothing.
However, in our application we assume only the first-ordégractions, which obviously
decrease a local smoothness, and we use the ART-like &lgaritConsidering this and (11)
we get in (10)

U(x) = %xT (I — —) x, (12)



wherel € RV*N is the unit matrix, and

1, forvn e {N,E,W, S},

. (13)
0, otherwise

W = [wjn] S BNXN, Win = {

where{N, E,W,S}; C N; (see (10)) are the corresponding neighbours of the pixel
Then, the appropriate step in the RKERP algorithm (9) besome

2t = F(w b ah) — (I - %) =" -

with y = 3.

Remark 2 The Hessian of the minimization functionsi(x) from (7) is given byH =
V2U(z) = ATE 1A+ 25 (1 - W). By construction the matrix — 4 is symmetric and
irreducible diagonally dominant, thus invertible. Frora g&ymmetry and Gershgorin’s theo-
rem it then result that it ia also positive definite. This,atiger with the positive definiteness
of the matrixX tells us that the Hessia®/ is symmetric and positive definite, thus the
functional ¥ is strictly convex. This means that the regularized probi{@mhas a unique
solution which satisfy the "normal equatior¥’ ¥ = 0. This is an argument for considering
the regularized Kaczmarz stép4) in (9) (see some details in [5]). But, unfortunately, we
have not yet other systematic arguments for the convergerogeerties of the algorithm
RKERP(the work in this direction is in progress).

3 Numerical experiments

The tests presented here are performed on the same tomiagiiagdas in [9]. The data are
perturbed with a zero-mean Gaussian noise WithiR = 30dB. The true image and the
minimal-norm least-squares solution and presented in Figeft and right, respectively).
Fig. 2 (top) shows the the images reconstructed withKiERP for 50, 150, and 250
iterations. The images obtained with tRKERP with the same numbers of iterations
are shown in Fig. 2 (bottom) . The measures of distance aativelerrors between the
true image and the reconstructed image versus iteratiansteown in Fig. 3. All the
reconstructions are performed for optimally adjusted patersy = 0.6 anda = 0.065.
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Figure 1: True image (left), and minimal-norm least-sgadright)



Figure 2: Image reconstructed witERP (top) andRK ERP (bottom) fory = 0.5 within
50, 150 and 250 iterations, respectively
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Figure 3: Distance (left) and relative errors (right) betwehe true image and®

4 Conclusions

The reconstructed images illustrated in Fig. 2 with RI€SERP are very good approxi-
mations of the minimal-norm least-squares solution (Fig- right). The slight artifacts
at the top and bottom result from the restriction of the MR® first-order interactions.
Fig. 3 shows that the RKERP convergences monotonicallygkiewy all the related parame-
ters @, v andw) must be well adjusted. This can be also observed compdrmgrtages
reconstructed with thEk ERP andRK ERP (Fig. 2).
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