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Abstract

The Algebraic Reconstruction Technique (ART), which is based on Kaczmarz’s projection
algorithm, is one of the most important tools for tomographic consistent image reconstruc-
tion. Moreover, in the inconsistent case, an extension of Kaczmarz’s method (KERP, for
short) has been obtained by one of the authors in a previous paper. But, although theoreti-
cally very general, this extension cannot always produce anenough accurate reconstruction.
In this respect, we consider in the present paper a regularized version of KERP algorithm
(RKERP, for short), which demonstrates a very weak susceptibility to noisy perturbations
in the data. The regularization is achieved through a penalty term in a least-squares objec-
tive to which the Kaczmarz’s method is applied. This term is expressed with a Gibbs prior
that incorporates nearest neighbor interactions among adjacent pixels. A special attention
is drawn to a quadratic clique energy function that makes theGibbs prior equivalent to a
Gaussian prior. Our results demonstrate a high efficiency ofthe regularized KERP algorithm
with such a prior as regards to a quality of the reconstructedimages and a computational
cost. In the simulations, we used the data from borehole tomography in which the inversion
is very ill-posed due to a limitation of an angular range of the projections.

1 Introduction

In many image processing techniques the aim is to find a possibly good approximation to
the true solution of the problem that can be often defined in terms of a linear least-squares
problem. In this paper, we are dealing with tomographic image reconstruction in which a
discretized forward projection model forms a system of linear equations

Ax + n = b, (1)

whereA ∈ IRM×N is the system matrix,x ∈ IRN an unknown image vector,b ∈ IRM a
measurement vector andn ∈ IRM is a noise vector that accounts for all kind of perturbations
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(measurement and discretization errors) which obviously make this system inconsistent, i.e.
b 6∈ R(A), whereR(A) is a range ofA. Due to the intrinsic model of tomographic obser-
vations,A is usually very ill-conditioned or rank-deficient, and suchimage reconstruction
is in its nature very ill-posed. In our tomographic technique, A is rank-defficient even if
we have more observations than pixels in the image, i.e.M > N . Assuming the linear
least-squares problem: findx∗ ∈ IRN such that

||Ax∗ − b|| = min
x∈IRN

||Ax − b||, (2)

its minimal norm solution, which we denote byxLS , will be different that the true one (we
shall denote by|| · ||, 〈·, ·〉 the Euclidean norm and scalar product, respectively). Thisis
becauseN(A) (the nullspace ofA) is non-trivial, and some true image components that
belong toN(A) cannot be recovered from the observations (see e.g. [8]).
In this paper we consider the regularized linear least-squares problem in application to to-
mographic image reconstruction. The regularization term is not only to stabilize the solution
of an ill-posed problem but, this term is to enforce a local smoothness in the image, and thus,
it is modelled by a prior (like in statistical methods). We assumed the Gibbs prior associated
with the MRF model. This approach is widely used in Bayesian image processing methods,
e.g. MAP-EM [2, 3, 4, 6], which are usually classified as simultaneous techniques. How-
ever, in some applications of tomography the data are gathered sequentially, and sequential
image reconstruction techniques like ART-like algorithmsare more suitable.

2 The regularized KERP algorithm

The KERP algorithm, introduced in [7] can be written as follows.
Algorithm KERP. Let x0 ∈ IRN , y0 = b; for k = 0, 1 . . . do

yk+1 = Φ(α; yk); bk+1 = b − yk+1; xk+1 = F (ω; bk+1;xk). (3)

Hereα, ω are relaxation parameters and the applications involved in(3) are defined by (see
[7] for details)

fi(ω; b;x) = (1 − ω)x + ωfi(b;x), F (ω; b;x) = (f1 ◦ · · · ◦ fM )(ω; b;x), (4)

ϕj(α; y) = (1 − α)y + αϕj(y), Φ(α; y) = (ϕ1 ◦ · · · ◦ ϕN )(α; y), (5)

fi(b;x) = x −
〈x, ai〉 − bi

‖ai‖2
ai, ϕj(y) = y −

〈y, αj〉

‖αj‖2
αj, (6)

where byai ∈ IRn, αj ∈ IRm we denoted thei-th row andj-th column ofA, respectively
(which we suppose to be nonzero vectors). We have the following result (see [7]).

Theorem 1 For any x0 ∈ IRN and anyω,α ∈ (0, 2), the sequence(xk)k≥0 generated
by the algorithmKERP converges always to a least-squares solution of the problem(2).
Moreover, forx0 = 0 the limit is exactly its the minimal norm solutionxLS .



Remark 1 The aboveKERPcan eliminate in only one step the noise vector components
fromN(At) (see [1]), but unfortunately this is not always enough in order to obtain a good
image reconstruction (see e.g. [9]).

In order to eliminate the above mentioned bad aspect we have to incorporate the prior in-
formation to the solution. This will be described in what follows. In this respect, we first
consider the regularized weighted least-squares version of the problem (2): findx∗ ∈ RN

such that

min Ψ(x∗) = min
x∈IRN

Ψ(x), Ψ(x) = ||Ax − b||2
Σ−1 + βR(x), (7)

whereΣ is a symmetric and positive definiteM × M matrix which attributes weights to
data,β is a regularization parameter, andR(x) is functional that measures the roughness
in the image. Assuming the image modelled by the Markov Random Field (MRF) that is
associated with the Gibbs prior

π(x) =
exp{−βU(x)}

∫

exp{−βU(x)}dx
, (8)

whereU(x) is a total energy function, and the data that are modelled by the Gaussian
statistics, the discrete smoothing norm in (7) has the form:R(x) = 2U(x). Then, following
the same way as we proposed in [9], the regularized version ofthe above KERP algorithm
can be written as follows.
Algorithm RKERP. Let x0 ∈ IRN , y0 = b; for k = 0, 1 . . . do

yk+1 = Φ(α; yk); bk+1 = b − yk+1; xk+1 = F (ω; bk+1;xk) − 2β∇U(xk). (9)

A common choice forU(x) in (8) is the measure of a total roughness in the image, i.e.

U(x) =
∑

j

∑

n∈Nj

wjnV (xj − xn, δ) (10)

whereNj denotes a set of the pixel indices from the nearest neighborhood of thej-th pixel,
wjn is a weighting factor, andV (xj − xn, δ) is a clique energy function that is scaled
with δ. Many clique energy functions have been proposed to image reconstruction [2, 3,
4, 9]. Lange in [6] discussed their properties in the contextof application to the MAP-EM
algorithm. In our approach, we apply the quadratic function

V (xj − xn, δ) =
(x

δ

)2

, (11)

which leads to considerable simplifications of the algorithm. Note that the Gaussian prior
usually does not work well with the well-known MAP-EM algorithm due to oversmoothing.
However, in our application we assume only the first-order interactions, which obviously
decrease a local smoothness, and we use the ART-like algorithms. Considering this and (11)
we get in (10)

U(x) =
1

δ2
xT

(

I −
W

4

)

x, (12)



whereI ∈ IRN×N is the unit matrix, and

W = [wjn] ∈ IRN×N , wjn =

{

1, for ∀n ∈ {N,E,W,S}j

0, otherwise
(13)

where{N,E,W,S}j ⊂ Nj (see (10)) are the corresponding neighbours of the pixelj.
Then, the appropriate step in the RKERP algorithm (9) becomes

xk+1 = F (ω; bk+1;xk) − γ

(

I −
W

4

)

xk, (14)

with γ = 4β
δ2 .

Remark 2 The Hessian of the minimization functionalΨ(x) from (7) is given byH =
∇2Ψ(x) = AT Σ−1A + 2β

δ2

(

I − W
4

)

. By construction the matrixI − W
4

is symmetric and
irreducible diagonally dominant, thus invertible. From its symmetry and Gershgorin’s theo-
rem it then result that it ia also positive definite. This, together with the positive definiteness
of the matrixΣ tells us that the HessianH is symmetric and positive definite, thus the
functionalΨ is strictly convex. This means that the regularized problem(7) has a unique
solution which satisfy the ”normal equation”∇Ψ = 0. This is an argument for considering
the regularized Kaczmarz step(14) in (9) (see some details in [5]). But, unfortunately, we
have not yet other systematic arguments for the convergenceproperties of the algorithm
RKERP(the work in this direction is in progress).

3 Numerical experiments

The tests presented here are performed on the same tomographic data as in [9]. The data are
perturbed with a zero-mean Gaussian noise withSNR = 30dB. The true image and the
minimal-norm least-squares solution and presented in Fig.1 (left and right, respectively).
Fig. 2 (top) shows the the images reconstructed with theKERP for 50, 150, and 250
iterations. The images obtained with theRKERP with the same numbers of iterations
are shown in Fig. 2 (bottom) . The measures of distance and relative errors between the
true image and the reconstructed image versus iterations are shown in Fig. 3. All the
reconstructions are performed for optimally adjusted parametersω = 0.6 andα = 0.065.
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Figure 1: True image (left), and minimal-norm least-squares (right)
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Figure 2: Image reconstructed withKERP (top) andRKERP (bottom) forγ = 0.5 within
50, 150 and 250 iterations, respectively

50 100 150 200

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

iteration no.

d
is

ta
n

ce

γ = 0.02
γ = 0.05
γ = 0.1
γ = 0.5
γ = 1
KERP

50 100 150 200

0.08

0.1

0.12

0.14

0.16

0.18

iteration no.

re
la

ti
ve

 e
rr

o
r

γ = 0.02
γ = 0.05
γ = 0.1
γ = 0.5
γ = 1
KERP

Figure 3: Distance (left) and relative errors (right) between the true image andxk

4 Conclusions

The reconstructed images illustrated in Fig. 2 with theRKERP are very good approxi-
mations of the minimal-norm least-squares solution (Fig. 1- right). The slight artifacts
at the top and bottom result from the restriction of the MRF tothe first-order interactions.
Fig. 3 shows that the RKERP convergences monotonically, however, all the related parame-
ters (α, γ andω) must be well adjusted. This can be also observed comparing the images
reconstructed with theKERP andRKERP (Fig. 2).
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