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Abstract

In a previous paper we proposed a simple and natural extension of Kaczmarz’s projection
algorithm (KE, for short) to inconsistent least-squares problems arising in ART image re-
construction in computerized tomography. In the present one we describe two versions
of this extension for a Tikhonov regularization of the original inconsistent least-squares
problem. The first version deals directly with an (augmented) equivalent formulation of the
Tikhonov regularization problem, whereas the second one uses the gradient of the Tikhonov
regularized functional. For both new versions of the KE algorithm we present some theo-
retical considerations together with numerical experiments and comparisons with the initial
KE method.

1 Introduction

Many problems in the field of tomographic image reconstruction are modeled by the linear
least-squares problem: findx ∈ IRn such that

‖Ax− b̃‖ = min!, (1)

whereA is anm× n real matrix and̃b ∈ IRm a given vector (‖ · ‖ and〈·, ·〉 will denote the
Euclidean norm and scalar product on some spaceIRq). Although from a theoretical view
point the problem (1) is consistent, i.eb̃ ∈ R(A), in real world applications, usually due to
measurements errors, the right hand side of (1) is perturbed as

b = b̃ + δb, δb = δbA + δb∗A ∈ R(A)⊕N(At) (2)

and the problem becomes inconsistent (R(A), N(A), At will denote the range, null space
and transpose ofA). In this case, the classical Kaczmarz projection algorithm (see [6])
can no longer be used, thus the extended version KE from [5] has to be applied. Ifai ∈
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IRn, αj ∈ IRm, denote thei-th row andj-th column ofA, respectively (which we suppose
to be nonzero vectors) the KE algoritm for the problem (1), withb̃ replaced byb, can be
written as follows.
Algorithm KE. Let x0 ∈ IRn, y0 = b; for k = 0, 1 . . . do

yk+1 = Φ(α; yk); bk+1 = b− yk+1; xk+1 = F (ω; bk+1;xk). (3)

Hereα, ω are relaxation parameters and the applications involved in (3) are defined by (see
[5] for details)

fi(ω; b;x) = (1− ω)x + ωfi(b;x), F (ω; b;x) = (f1 ◦ . . . ◦ fm)(ω; b;x), (4)

ϕj(α; y) = (1− α)y + αϕj(y), Φ(α; y) = (ϕ1 ◦ . . . ◦ ϕn)(α; y), (5)

fi(b;x) = x− 〈x, ai〉 − bi

‖ai‖2
ai, ϕj(y) = y − 〈y, αj〉

‖αj‖2
αj . (6)

According to the perturbation in (2), the above KE algorithm has the following property.

Theorem 1 If b̃ ∈ R(A), thenbk ∈ R(A),∀k ≥ 0, where(bk)k≥0 is the sequence gener-
ated during theKE algorithm(3).

Proof. If z ∈ IRm is a vector fromN(At), then〈z, αj〉 = 0,∀j = 1, . . . , n so (see (5))
Φ(α; z) = z. Thus, in the first KE iteration (see also (2)) we obtainΦ(α; y0) = Φ(α; b) =
Φ(α; b + δbA) + δb∗A, i.e. b1 = b − y0 = b − Φ(α; b) = b̃ + δbA ∈ R(A) and a recursive
argument completes the proof.
But, (according to the above result) although theN(At) component of the perturbation
vectorδb from (2) is completely eliminated during the KE algorithm, the other one,δbA ∈
R(A) can still play an unpleasant role (see e.g. the examples in [6]). In order to eliminate
also this bad influence, we have to consider a Tikhonov type regularization (for the perturbed
problem‖Ax− b‖ = min!) of the form (see e.g. [2])

‖Ax− b‖2 + γ2〈Rx, x〉 = min! (7)

whereγ ∈ (0,∞) andR is ann×n symmetric and positive semidefinite matrix constructed
with the local information involving neighbours pixels in the domain (picture) discretization
(this construction will be described in Section 3 of the paper). The problem (7) is still
inconsistent, thus we have to apply for it a corresponding algorithm. In this respect, two
versions of the above KE algorithm will be described in the next section.

2 The regularized extended Kaczmarz algorithms

The first version of the KE algorithm for the regularized problem (7), which will be denoted
by RKE-1, is based on the simple observation that, if the regularization matrixR is in



addition positive definite it will have a Cholesky decomposition of the formR = LLt and
the regularized formulation (7) will be equivalent with

‖Âx− b̂‖ = min!, (8)

where

Â =
A

γLt , b̂ =
b
0

, (9)

with Â : (m + n) × n and b̂ ∈ IRm+n. Then, the RKE-1 algorithm will be exactly KE
written for the problem (8)-(9).
Algorithm RKE-1. Let x0 ∈ IRn, ŷ0 = b̂; for k = 0, 1 . . . do

ŷk+1 = Φ̂(α; ŷk); b̂k+1 = b̂− ŷk+1; xk+1 = F̂ (ω; b̂k+1;xk), (10)

where the applicationŝΦ, F̂ are defined as in (4)-(6), but with respect toÂ, b̂ from (9). From
[5] we can derive the following convergence result for the algorithm RKE-1.

Theorem 2 For any x0 ∈ IRn and anyω, α ∈ (0, 2), the sequence(xk)k≥0 generated
by the algorithmRKE-1 converges always to a least-squares solution of the regularized
problem(8) − (9). Moreover, forx0 = 0 the limit is exactlyxLS(γ), i.e the minimal norm
solution of(8)− (9).

The second extension, was inspired by the construction from [4] (see also [6]). In this sense
we consider, instead of (7) the following regularized formulation

Ψ(x) =
1
2
‖Ax− b‖2

W +
1
2
γ2〈Rx, x〉 = min!, (11)

whereW = diag
(

1
‖a1‖2 , . . . , 1

‖am‖2
)
. Then, all the minimizers of the functionalΨ, i.e.

solutions of the regularized problem (11) satisfy the normal equation∇Ψ(x) = 0, where

∇Ψ(x) = At(Ax− b) + γ2Rx. (12)

This allows as to a simultaneous (Landweber-like) iterative algorithm of the form

xk+1 = xk − λk

(
AtW (Axk − b) + γ2Rxk

)
, (13)

whereλk is a relaxation parameter, generally depending on the iteration indexk . Then,
by using the ideas and procedure from the papers [4] and [6] and takingλk = 1,∀k ≥ 0,
we proposed the following successive version of (13) (corresponding to a Kaczmarz-like
iteration for (11); see also (4))

xk+1 = F (ω; b;xk)− γ2Rxk. (14)

This allows us to define the second regularized KE version, denoted by RKE-2 as follows.
Algorithm RKE-2. Let x0 ∈ IRn, y0 = b; for k = 0, 1 . . . do

yk+1 = Φ(α; yk); bk+1 = b− yk+1; xk+1 = F (ω; bk+1;xk)− γ2Rxk. (15)



Remark 1 Unfortunately, we have not yet a systematic convergence analysis for the above
algorithmRKE-2 (although some ”intuitive” arguments allow us to conjecture this). But,
it has very good reconstruction properties as we have reported in the examples described in
the next section.

3 Numerical experiments

We present here our results for four image reconstruction experiments. We want to recon-
struct the images from figures 1a (see [6]) and 2a. For each image we tested the previous
algorithms with two initial approximations:x0

i = 0 (ie. zero initialization) andx0
i = x̄ (i.e.

Herman’s [3] initialization),∀i = 1, . . . , n, where

x̄ =
∑m

i=1 bi∑m
i=1

∑n
j=1(A)ij

.

In order to create then × n symmetric and positive semidefinite matrixR we used the
following method (see also [6]): for eachi ∈ {1, . . . , n}, let Hi be the set of horizontally
neightbour pixels ofi, Vi – the set of vertically neightbour pixels ofi, andDi – the set of
diagonally neightbour pixels ofi. Now, for eachj ∈ {1, . . . , n},

(R)ij =



(R)ij = wh, if j ∈ Hi

(R)ij = wv, if j ∈ Vi

(R)ij = wd, if j ∈ Di∑n
k=1 |(R)ik|, if j = i, andk 6= i

0, otherwise

wherewh, wv, andwd are parameters of the construction procedure.
The parameters we used for our tests are presented in table 1. For the construction ofR

we usedwh = −1, wv = −1, wd = −1/
√

2. With these values, the algorithms performed
better than other values we tested (eg.wh = wv = wd = −1, or wh = 1/3, wv = 3,
wd = 1/

√
1/32 + 32). We also tested RKE-1 withγ = 10−2 andγ = 5 · 10−3, but the

results were less satisfactory.

Parameter KE RKE-1 RKE-2
α 0.5 0.5 0.5
ω 0.8 0.8 0.8
γ — 5 · 10−2 10−2

Table 1: Algorithm settings for the tests

The reconstruction results for Herman’s initialization are presented in figures 1 and 2,
subfigures b), c), and d). Due to space limitation, we did not include reconstructed images
for x0 = 0, but we can say that the final results — when the maximum number of iterations
was reached — were similar to those obtained with Herman’s initialization. For the image



a) Original b) KE c) RKE-1 d) RKE-2

Figure 1: Test 1 image and reconstructions

a) Original b) KE c) RKE-1 d) RKE-2

Figure 2: Test 2 image and reconstructions

from figure 1a we allowed the algorithm to run150 iterations, whereas for figure 2a only50
iterations.

In order to evaluate the quality of the reconstructed imagex relative to the original
imagexex we used the image error functionexex(x) = ||x − xex||. Figures 3 and 4 show
the evolution of the image errors for each iteration. As you may notice, the evolution of the
image error differs between the two initialization methods during the first iterations, but the
final errors are very close, thus the algorithm created similar reconstructions. Table 2 shows
the image errors of the reconstructed images at the end of the experiments.

x0
i = 0 x0

i = x̄

Figure 3: Test 1 reconstructions errors



x0
i = 0 x0

i = x̄

Figure 4: Test 2 reconstructions errors

Algorithm Initialization Reconstruction error
Test 1 Test 2

KE Zero 0.7959 11.5644
KE Herman 0.7949 11.5763

RKE-1 Zero 0.7187 11.3980
RKE-1 Herman 0.7187 11.3980
RKE-2 Zero 0.1125 8.3250
RKE-2 Herman 0.1127 8.3507

Table 2: Reconstruction errors
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