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Abstract

Tomographic reconstruction is the process of reconstructing a 3-D object or its cross section
from several of its 2-D projection images. The object is illuminated by a cone-beam of X-
rays, where the signal is attenuated by the object. Due to its speed filtered back projection
(FBP) still is state-of-the-art in 3-D reconstruction for clinical use where time matters. But
considering the accuracy and number of projections required for FBP, as shown in [1],
an algebraic reconstruction technique (ART) is superior. Our current focus lies on 3-D
angiography using C-arm systems. But this new approach should also be applicable on
many real world reconstruction problems. Within ART, the object is represented as a linear
combination of basis functions, typically voxels, with some unknown coefficients. The
observations can also be expressed as a linear combination of these coefficients. This results
in a linear system of equations with a sparse system matrix, because each X-ray intensity
observation is influenced only by the pixels on the corresponding beam path. If enough
measures are available, one has an over-determined system, which is solved in the least-
squares sense. On the other hand, if there are not enough measures in a region to determine
the coefficient values, one is faced with an under-determined problem. In this case, one
solves the regularized version of the problem which supplies the additional constraints.
Due to the large number of unknowns in real applications, an iterative instead of a direct
linear solver has to be used. Techniques such as Kaczmarz’s algorithm or CAV (component
averaging) are currently used as iterative solvers, but for large problems, their computational
costs are high. In addition, these solvers tend to improve the solution very much only in the
first few iterations. An efficient ART is therefore essential to compete with FBP successfully.

In this paper we think of these iterative methods as smoothers within a multigrid solver.
It should be noted that because of the structure of the system matrix, the standard multigrid

∗University of Erlangen-Nuremberg, Germany, pruemmer@informatik.uni-erlangen.de
†University of Erlangen-Nuremberg, Germany, Harald.Koestler@informatik.uni-erlangen.de
‡University of Erlangen-Nuremberg, Germany, Ulrich.Ruede@informatik.uni-erlangen.de
§University of Erlangen-Nuremberg, Germany, joachim.hornegger@informatik.uni-erlangen.de



theory is not applicable here. The additional ingredients of the multigrid method are coarser
versions of the problem on different levels, interpolation and restriction operators. For the
coarser problems, we uniformly reduce the number of rays and the number of voxels while
keeping the overall volume constant. Furthermore, we use trilinear interpolation and full
weighting as restriction. Full multigrid is then accomplished by starting on each level the
V-cycle with an initial guess for the solution that is interpolated from the next coarser level.
Our experiments show that we are able to reduce the relative error to a certain size by less
Kaczmarz smoothing steps on the finest level when using the multigrid method instead of
the common Kaczmarz algorithm. We present results for real medical datasets and compare
our multigrid method with Kaczmarz and CAV on a phantom. One of the next steps will
be to detail the theory for our multigrid method in order to get estimates for the asymptotic
convergence rates.

1 Problem Description

Fast and accurate cone-beam reconstruction for X-ray computed tomography is still a chal-
lenging task. FBP is state-of-the-art in nowadays clinics because of its fast non-iterative
solution scheme. But it is known that ART needs only one third of X-ray images compared
to FBP [2] to reconstruct an image of comparable quality in 3-D. Many different algebraic
reconstruction techniques like Kaczmarz (ART) [3], [4], Cimmino (SART), Censor and
Gordon (CAV) [5], [6] where presented in the past (here we refer to the given articles for
further details). The drawback of all iterative ART techniques is the complexity of the it-
erative formula applied on huge data sets. In practice, the reconstruction of a 2563 or 5123

volume from P = 150 X-ray images of 1024 × 1024 size is common. The practice shows
that for a sufficient image quality a minimal number of about five iterations is necessary.
To overcome this drawback, we introduce a full multigrid approach for the Kaczmarz algo-
rithm. This allows to speed up the reconstruction, increase the accuracy by doing most of
the work on coarser grids and only perform not more than three iterations on the finest grid.
The crux of the cone-beam multigrid approach is to find a proper 2-D restriction and 3-D
prolongation to alternate between different 3-D and 2-D grids.
In order to discretize the region of interest Ω, we introduce a Cartesian grid of cubes, called
voxels, Ωh that covers the whole volume that has to be reconstructed. We assume for sim-
plicity that the length of each side of a voxel is h and denote the number of voxels by N .
The X-ray attenuation function is assumed to take a constant uniform value xhj , for the voxel
j ∈ Ωh

j = {1, 2, . . . , N}. We denote the number of rays in one projection by R, the number
of projections by P and the number of rays in all projections by M = RP . The length of
the intersection of the ith ray with the jth voxel is then ahij for all i ∈ Ωh

i = {1, 2, . . . ,M}
and j ∈ Ωh

j . ah
ij therefore represents the contribution of the jth voxel to the total attenuation

along the ith ray and is computed via alpha-clipping. The total attenuation along the ith ray
is denoted by bhi , which represents the line integral of the unknown attenuation function
along the path of the ray. Thus the discretized model can be written as a system of linear



equations
Ahxh = bh ,

∑
j∈Ωh

j

ah
ijx

h
j = bh

i (i ∈ Ωh
i ) . (1)

We call bh ∈ R
M the measurement vector, xh ∈ R

N the image vector and Ah ∈ R
M×N

the projection matrix.
In order to solve the linear system (1), we cannot use a direct solver since A is very

huge. Instead, we are using iterative solvers. A has the property that it is very sparse,
since each of its rows contains the intersection length of one single ray that hits only a few
voxels. In addition, all entries of A are non-negative and two neighboring ray equations are
very similar because of a small angle between the rays. It should also be noted that (1) can
be an over-determined or under-determined system, depending on the number of rays and
projections. It does not have a unique solution in general. In such a case, we are looking for
a least squares solution, i.e. we solve the system

(Ah)T Ahxh = (Ah)T bh , (2)

shortly Ahxh = bh, instead.

2 The Multigrid Algorithm

Multigrid algorithms are known to be optimal in terms of computational costs for solving
sparse linear systems (cf. [7], [8]). But they were orignally developed for elliptic PDEs and
the design of a multigrid method for a new problem can be a difficult task, especially when
the application is far away from the classical multigrid setting. Therefore we started with a
standard multigrid method and tried to adapt it to equation (2) (cf. [9]).
Here, we analyse for simplicity only a two-grid multigrid. The recursive extension to a
hierarchy of several grids is straightforward. We split Ωh into two disjoint subsets Ωh =
Ch + F h, where Ch represents the variables contained in the coarse level and Fh is the
complementary set. Given such a splitting and defining the coarse grid ΩH = CH ⊂ Ωh

(H = 2h) we get the coarse-level system

AHxH = bH . (3)

The usual multigrid efficiency is achieved through the combination of two iterations, the
smoother and the coarse grid correction. It should be mentioned that the construction of
the coarse grid operator AH is based on direct discretization since our problem is defined
on a regular grid. That means we just skip every second ray on the coarser grid and bisect
the number of voxels in every dimension while preserving the physical volume size by
doubling the edge length of each voxel. Then, one multigrid V-cycle starts with one or
more smoothing steps. We describe a smoothing step with the smoothing operator Sh:

xh → x̄h , x̄h = Shxh + (Ih − Sh)A−1
h bh .



We consider a Kaczmarz iteration ([3]) as a smoother. It uses Sh = (Ih − (Ah)T λD−1Ah),
where

D−1 = diag

(
1

‖a1‖2
2

,
1

‖a2‖2
2

, . . . ,
1

‖aM‖2
2

)
,

with the rows ai, i ∈ {1, 2, . . . ,M} of Ah. This can be thought of as a damped Jacobi
smoother for equation (2).

With the exact solution xh∗ of (2) the error is defined by eh = xh∗ − xh. After the
smoothing operation we solve on the coarse grid the following equation

AHeH = IH
h rh = IH

h (bh −Ahx̄h) ,

by choosing both the 2-D restriction IH
h and 3-D prolongation Ih

H as full weighting. Then
the next step is the correction

xh
new = x̄h + Ih

HeH ,

and again several smoothing steps after correction if necessary. The error equation on the
coarse grid can now also be solved by a two-grid cycle recursively, which leads to the
multigrid method. We denote the pre-smoothing steps by (SFC) and the post-smoothing
steps by (SCF ) of a V-cycle. In practise we use a maximum number of L levels and do
not solve the error equation on the coarsest grid exactly, but perform only a fixed number of
smoothing steps (denoted by SE). For full multigrid (FMG) we start at the coarsest level
and compute there the solution. After that the solution is interpolated to the next finer grid
and used there as initial solution for one or more V-cycles. This process continues up to the
finest grid, where again one or more V-cycles are done.

3 Experimental Results

First, we evaluate the FMG (MG-Kaczmarz) on a phantom and second on real CT data
(N = 1283, M = 5122 × 133) (see Fig. 1). For the reconstruction we use the digitally
reconstructed radiographs (DRRs) from the phantom xPh (N = 643, M = 2562 × 133).
We compute the relative error ε(k) of the reconstruction to the ground truth xPh with

ε(k) := (
N∑

j=1
|xPh

j |)−1
N∑

j=1
|x(k)

j − xPh
j |.

The phantom contains spheres with decreasing radius, aligned along a helical trajectory.
The surrounding background describes soft tissue simulated by smoothed random inten-
sity values. In Fig. 2 we compare the relative error ε(k) of CAV, Kaczmarz and our new
MG-Kaczmarz after k workunits. For CAV and Kaczmarz one workunit implicates the pro-
cessing of all P = 133 projection images and for MG-Kaczmarz one V-cycle implicates the
workunits of SFC + SCF on the finest grid plus the work properly scaled on coarse grids
(including restriction and prolongation). We noticed in our experiments that the relaxation
λ is crucial. An unfavourable λ can lead to overshoots of the computed relaxation and the
convergence will be very slow because after adding the error to the current solution the re-
sult will not improve. With a well chosen λ the multigrid approach can beat the traditional
Kaczmarz, especially for large volume data.



Figure 1: In the top row from left to right: original center slice (CS) of xPh; CS Kacz.
(without MG after k = 5 iterations cone-artifacts are still visible); CS MG-Kacz. after one
V-cycle shows sufficient image quality without strong cone-artifacts (L = 4, SFC = 2,
SE = 15, SCF = 0, λ = 0.05); Bottom row: CS CAV (λ = 1.0, k = 10); Real CT
head CS: Kaczmarz (k = 5, P = 133, λ = 0.05) with comparable image quality to MG-
Kaczmarz (right) after one V-cycle (L = 5, SFC = 3, SE = 20, SCF = 0, λ = 0.05,
P = 133).

4 Conclusion and Outlook

We have shown the gain from using a multigrid method for solving the image reconstruction
problem. MG-Kaczmarz can beat both CAV and Kaczmarz after only a few workunits and
still provides an acceptable image quality. Next steps will be a detailed analysis of the used
solver and applying several techniques to improve the multigrid. For example one could
think of using extended versions of the Kaczmarz smoother (cf. [6]) or of using Galerkin
coarsening (cf. [7]) for constructing the coarse grid equations.
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Figure 2: Left: Relative error ε(k) of the reconstructed phantom. Kaczmarz becomes supe-
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