
System Co-Verification of Concurrent Designed
Heterogeneous Sub-Systems

Suad Kajtazovic, Christian Steger∗

{kajtazovic, steger}@iti.tugraz.at
Markus Pistauer†

m.pistauer@cisc.at

Abstract

This paper focuses on the integration of concurrent developed sub-systems and the
automatic setup of a distributed, heterogeneous verification platform to be used with
today’s popular simulators from the EDA industry for analog, digital and mixed signal
simulation. The sub-systems are mostly developed in different description languages
to gain best system performances and the required functionality. For the verification
of the system, the system integration requires either translating of foreign sub-systems
in a specific language, which causes lost of performances or using of cosimulation
techniques to bridge the gap between the sub-systems. A novel methodology presented
in this paper is applied in an application for automatic generation of heterogeneous,
distributed cosimulation frameworks. It is explained by an example taken from the
automotive industry, whereby analog, digital and software components are simulated.

1 Introduction

Verification plays an important role in the design of microelectronic systems. A designed
system can be verified using simulators. However, microelectronic embedded systems be-
come more and more complex. They can contain both digital and analog components. Most
ASICs do not only contain mixed-signal components but also MOEMS (MEMS/MOEMS:
Micro Electro Mechanical/Optical Systems) such as pressure sensors, acceleration sensors
etc. Complex systems are designed mostly separate using different modeling languages.
The sub-systems are probably optimized but to verify the functionality of the system they
need to be integrated into one simulation environment. The verification of a system is the
next problem. There are three possibilities to verify such as system in one environment:(1)
Homogeneous verification by translation of sub-system descriptions into a target language,
(2) Homogeneous verification by enhancement of the provided simulator to support re-
quired description languages, and (3) Heterogeneous verification, whereby a simulator is
used for each description language. Here, cosimulation interfaces are required for the data
exchange.
Translating a sub-system description into a target language often produces loss of perfor-
mances. The enhancement of simulators to support most of the used description languages
is desired by many EDA tool vendors. Design and integration of concurrent developed

∗Graz University of Technology, Institute for Technical Informatics, Inffeldgasse 16/1, A-8010 Graz, Austria
†CISC Semiconductor Design+Consulting GmbH, Lakeside B07, A-9020 Klagenfurt, Austria



sub-systems within an automatically generated cosimulation framework is a main issue
discussed in this work. The automation in system verification can decrease system design.
Especially design steps for setting-up a verification platform can be automated. In this paper
we present essential steps in a system design, which can be automated to decrease the sys-
tem design time as well as a method for the cosimulation data-exchange between involved
simulators. One important topic in this work is the generation of cosimulation interfaces.

2 Related work

In past years the automatic generation of cosimulation interfaces has been researched inten-
sively. Some of the cosimulation tools related to this work are presented here.
Jerraya et al. [ACFP96] describes CoSim, a tool for automatic generation of VHDL-C
interfaces. It is integrated into the COSMOS codesign tool, which allows a system speci-
fication in SDL and supports an automatic translation to the corresponding VHDL and C
code. CoSim uses a so called VCI compiler to generate the VHDL-C interface. From an
interface-description, the VCI compiler generates the needed VHDL entity and the C part
of the interface. Data exchange between both sides is realized using UNIX pipes.
A multilanguage distributed cosimulation platform can be created automatically by the
MCI (Multilanguage Cosimulation Interface) [HLV+98] tool. The MCI tool uses a con-
figuration file to generate interfaces to the common cosimulation bus automatically. All
involved sub-systems are connected to this bus. It serves as a common backplane for data-
communication. The MCI tool configures an untimed, event-controlled cosimulation, with-
out synchronization of involved simulators. It also generates interfaces for VHDL, C, SDL
and Matlab.
DCB (Distributed Cosimulation Backbone) [BW02] is based on the HLA (High Level Ar-
chitecture) method for the generation of distributed cosimulation interfaces. DCB serves
as common interface for different simulator types. Each simulator can be connected via
ambassadors to the DCB backbone. Ambassador controls the data exchange between DCB
backbone and connected simulator. DCB supports both synchronous and asynchronous sim-
ulation. Therefore, rollbacks are possible.

2.1 Summary

In contrast to tools described above, our methodology uses generation of channel-based
layered cosimulation interfaces, which are inserted into the system. Moreover, the inserted
interfaces control the cosimulation with an asynchronous mechanism. The implemented
synchronization method enables cycle-accurate cosimulations. The interface generation is
not only focused on the interfaces between two models but on the whole system design.
To solve problems, which occur when integrating sub-systems developed in different lan-
guages, we tried at first to describe the top-level of a system using a semantic that is lan-
guage independent. We present a complete solution for generating a verification platform
both for homogeneous and for heterogeneous configurations.

2



3 Design methodology

In this approach we used the IP (intellectual property) library to design a system. The IP
library provides verified and reusable models. Moreover, it enables us to define rules im-
portant for creating of a verification platform.
The most important factors, which depend the creation of a verification platform, are the
system description at the top-level, available cosimulation environment and their geograph-
ical configuration. The generation of a cosimulation platform can be automated. It has to
be considered at three design levels: (1) System design level - A system is described using
an intermediate description that enables integration of sub-systems described in different
languages, (2) Language level - The system has been enhanced and modified to meet the re-
quirements of the target simulation environment, and (3) Simulator level - The verification
platform has been generated. Involved simulators communicate via integrated cosimula-
tion interfaces. The dataflow and simulation of whole system is controlled by a synchro-
nization mechanism. The language level and simulator level are steps that are processed

Workstation 3Workstation 2Workstation 1

o0

o1

o2

o3

cnt

4bit

counter

i0

i1

i2

i3

Display

A

’

1

’

i0

i1

i2

i3

Display

B

Multi-HDL system design

System Design Level

i0

i1

i2

i3

Display

B

CsBlock

[0]

CsBlock

[0]

CsBlock

[1]
CsBlock

[1]

o0

o1

o2

o3

cnt

4bit

counter

CsBlock

[2]

CsBlock

[0]

i0

i1

i2

i3

Display

A

Language Level Simulator Level

Simulator A / Language A
Simulator B / Language B Simulator C / Language C

Sub-system CSub-system BSub-system A

Subsystem A

Simulator A

CsInterface

Data type

conversion

Synchronization

Communication

Interface Modules

Simulator B

Subsystem B

Simulator C

Subsystem C

CsInterface

Data type

conversion

Synchronization

Communication

Interface Modules

CsInterface

Data type

conversion

Synchronization

Communication

Interface Module

TCP/IP Channel TCP/IP Channel

CoVer_DE CoVer_LL CoVer_SL

Figure 1: Design levels for a co-verification

automatically. Figure 1 depicts different levels in a system design, which are considered
for automatic generation of a verification platform.

3.1 System design level

A system at the system design level (CoVerDE) can be fully described by definining blocks,
their parameters and connections between ports of the blocks (models). A behavioural de-
scription of a model at this level is not necessary since we are building our system by
using IP blocks provided from an IP-library. Each block contains a given number of ports
and parameters. The block has a hierarchical structure that can contain sub-blocks and
sub-connections. This additional information for the system integration as well as the hi-
erarchical structure of the system is described using XML (Extensible Markup Language).
Independent of used description language, XML enables us to describe the system’s hierar-
chical structure and its mapping. It also allows us to set model parameters. Moreover, it is
used for the model description and for the graphical representation.

3



3.2 Language level

At the language level (CoVerLL) the system has been described with the IP modules and
enhanced with interface modules, which are necessary to connect modules described with
different languages. At this level the XML description serves as an outline to generate the
system description in target languages of used IP modules. As depicted in figure 1 the mod-
ules are grouped by their language. For each language group a top-level module has been
created. To connect two modules, which are written in two different languages an interface-
module pair has been inserted between them. The functional behavior of the system is not
affected by inserting of the interface-modules. Moreover it enables a distributed parallel
cosimulation, which can increase the simulation speed.
The interface module transfers signals from one simulator to the other simulator. It uses an
open simulator interface to establish a connection to the simulator and to the signals that
should be transferred to other simulator. A cosimulation interface between VHDL and C
has been evaluated by many published projects. Mostly it is based on FLI (Foreign Lan-
guage Interface) [Tec01] provided by VHDL, which is used to build a wrapper written in
C. Signals connected to the entity of the interface module are available via the simulator’s

4Institute for Technical Informatics Diploma Thesis: Generic Interface Generator for Heterogeneous 
Simulation Framework Generation

Interfacing between Simulators (1/2)

Communication, synchronisation and data conversion is 
distributed across all simulators and implemented by means of 
cosimulation interfaces (CSI).

CSIs utilise open interfaces of simulators (FLI, PLI)
Adapters are necessary to adjust the CSI to simulator specific 
APIs

Simulation Process

Simulation Engine

Model

Cosimulation Interface

signals
control

A
PI

Communication System

Communication

Synchronization

Datatype Conv.

A
PI

A
da

pt
er

Simulator Kernel

Figure 2: A generic interface module connected to the simulation engine.

open interface. These signals are converted to a data format adequate for data transfer and
they are transferred to other interface module in an interface pair. An interface module
cares about the transfer of signals in both directions and proper conversion of signal values.
Furthermore it synchronizes the simulator, on which he is attached with other simulators in
a cosimulation.

3.3 Simulator level

The language groups build independent entities, which are simulated on the language spe-
cific simulators. At the simulator level (CoVerSL) the generated entities are adapted to
the target simulation environment. Using open interfaces provided by simulators, different
language groups are connected via interface modules. The interface modules are responsi-
ble for synchronizing involved simulators, for data conversion between different languages
and for data transfer. One of the important tasks in a cosimulation environment is to syn-
chronize involved simulators. The communication overhead and the cosimulation speed
are directly affected by the used synchronization mechanism. A decentralized conservative

4



synchronization method based on the BSP (Bulk Synchronous Parallel) [Cal95] model has
been used to synchronize simulators. Converting data types is the next step done by the
interface modules. This step is required to convert values from one data format to another.
The data type conversion is predefined during the code generation phase at the language
level. Communication is based on channels, which implements different protocols such as
TCP/IP, UDP, UNIX-Pipes etc. A peer-to-peer connection is used to connect two simula-
tors. The network topology is created by inserted interface-modules. No common interface
backplane has been used in order to reduce the communication overhead. The backplane
benefits the control of the entire cosimulation process at a central place and the dynami-
cally seamless coupling of simulators. The major drawback of the backplane approach is
the centralized communication topology that represents a performance bottleneck. The gen-
erated model sources are distributed to the proper locations and simulators are configured
to simulate the parts of the designed system.

4 Experimental example

An example of the code generation of a heterogeneous system using the methodology de-
scribed in section 3 is presented in this section. The system controls the power needs of
the automotive electromechanical loads and the charging of the battery and prevents that
the battery gets completely discharged at any time. The microcontroller developed in Sys-
temC as a state-machine represents a software part of the system. All other components
are coded in VHDL-AMS. The concurrent developed sub-systems are integrated using the
schematic editor in our application framework. Figure 3.a depicts a schematic overview of
the APMS system at the system design level. To overcome the problems of the integration

GEN

pi

ni

cur

A
p

n

dout

pi

ni

po

no

BATTERY

p n

an

dig

A

D

andig

A

D

an dig

A

D

andig

A

D

INTERFACE

MODULE PAIR

IN
T

E
R

F
A

C
E

M
O

D
U

L
E

P
A

IR

p

dout

speed_frequency

res_valuecurrent_vectorcommand

rotary

MICRO-CONTROLLER

p

n

val

SPEED

SENSOR

RESISTOR

LOAD

CURRENT

SENSOR

ADC1

DAC2

ADC2DAC1

C1

VOLTAGE

REGULATOR

RECTIFIER

GENERATOR

SystemC part of the system

VHDL-AMS part of the system

Automotive Power Management System

IN
T

E
R

F
A

C
E

M
O

D
U

L
E

P
A

IR

INTERFACE

MODULE PAIR

a) b)

Figure 3: System overview at the system design level (a) and at the language level (b).

of models written in different languages, four CsBlock pairs have been inserted between the
microcontroller unit and four converters. With the insertion of CsBlocks, the APMS system
has been subdivided into two language/simulator groups. Next step is generating the top-
level description of the generated language/simulator groups. In our example we have two
language groups: SystemC and VHDL-AMS. The SystemC system consists of the micro-
controller and four SystemC-interface modules. Respectively the VHDL-AMS sub-system

5



consists of VHDL-AMS components and four VHDL-AMS-interface modules. Figure 3.b
depicts the system overview at the language level with inserted interface modules.

4.1 Experimental results

We applied our methodology on this example very successful. To allow a comparison be-
tween a homogeneous and heterogeneous simulation we developed the MCU unit in VHDL
and in SystemC. The computed data of both simulations are identical, which verifies the
correctness of the inserted interfaces and the used synchronization method. Describing of
the top-level using XML semantic confirms that XML fulfil the requirements at this abstrac-
tion level. Inserting interface modules between functional modules described using differ-
ent languages is more flexible than creating wrappers around the foreign modules, which
have to be used in a specific language environment. The applied synchronization technique
can handle multiple simulator connections and it supports cycle-accurate cosimulation. The
presented solution enables parallel, distributed cosimulation or even simulation to increase
the simulation performance.

5 Conclusion

In this paper we presented a novel methodology for system verification of concurrent
developed sub-systems. A complete solution has been successfully validated with an ex-
ample from the automotive industry. We developed an application framework, which is
based on the described methodology. Currently it supports a system design in SystemC,
VHDL/AMS, SaberMAST languages. Future work in our project will be the evaluation of
the used methods in other complex cases and the enhancement of the developed application
to support other HDLs and EDA tools.

References

[ACFP96] A.A.Jerraya, C.A.Valderrama, F.Nacabal, and P.Paulin. Automatic generation
of interfaces for distributed c-vhdl cosimulation of embedded systems: an in-
dustrial experience. Technical Report Proceedings of IEEE, June 1996.

[BW02] Braulio Adriano de Mello and Flávio Rech Wagner. A Standardized Co-
Simulation Backplane.SOC Design Methodologies, pages 181–192, 2002.

[Cal95] Radu Calinescu. Conservative discrete event simulations on bulk synchronous
parallel architectures. Technical Report PRG-TR-16-95, Computing Labora-
tory, Oxford University, 1995.

[HLV +98] F. Hessel, P. LeMarrec, C. Valderrama, M. Romdhani, and A. Jerraya. MCI-
multilanguage distributed co-simulation tool, 1998.

[Tec01] Model Technology.Modelsim: Foreign Language Interface. Model Technol-
ogy, Portland, USA, 5.5f edition, August 2001.

6


