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1 Introduction 
Subject of this contribution is optimization problems for computer simulation of 

complex dynamical systems. Main goal is to investigate and develop different 
optimization methods and their modifications for solving parameter-fitting problems in 
process engineering and systems biology. The general similarities of the investigated 
models are a complex, nonlinear, multimodal objective function and large set of 
parameters and constraints. Such objective function’s behavior requires a global 
optimization task solving.  
. 

2 Implementation and testing system 
The development of a high-efficiency optimization subsystem requires not only 

implementation of directly optimization numerical methods, but also their testing, 
integration into simulation environment and preparation for the subsequent parallelizing. 
In this connection object-oriented model (OOM) of special software system has been 
developed (fig. 3.1). It includes: interfaces for the tasks definition, interfaces for the 
classes, which provide optimization, system for the reports forming and experiments 
statistics gathering, testing system, interface for simulation environment and interface for 
paralleling subsystem. 

For debugging and estimation of the developed optimization algorithms performance 
a special testing system has been developed. It allows to execute the predetermined sets 
of tests and to generate the detailed report on testing results. According to these results 
tester can make an objective choice of the necessary algorithm and its parameters. 
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Figure 3.1: OOM of developed software 



In a case when the global optimum with the given accuracy is successfully found, the 
primary assessment criterion of optimization algorithm is a number of objective function 
evaluations. But if we are testing stochastic methods like genetic algorithms, it is 
necessary to estimate average values of performance and probability of convergence. 
Therefore testing system supports multiple running of the same experiments to collect 
and gather experiments statistics. 

For a testing various artificial objective functions were chosen, that commonly 
accepted as a testing functions for global optimization [4, 6]: sphere, step function, 
Schwefel function and Ackley function. 
 

3 GA and testing results 
 
3.1  Algorithm basics and biological background 
The main idea of a Genetic Algorithm [3] is a search strategy in a multidimensional 

space that simulates the evolution of a population of biological individuals (i.e. the 
scientific approach based on Darwin's theory).  

Basic theory for GA is the schema theory [3]. A schema describes a subset of strings 
that have similarities at certain string positions. This theory specifies influence of GA 
operators on solution forming. 

For all these genetic operators there is a wide variety of modifications available in the 
literature [4, 5, 6]. Binary representation of the individuals may be different as well [4]). 

 
3.2 Representation 
All parameters of the objective function are encoded in GA into a bitstring. On a par 

with a simple base two representation, it is now common practice to use a Gray code 
interpretation of the bitstring segments [4]. Bethke was one of the first who indicated the 
advantages such a code might have on the search [8]. Series of experiments (5400 in all) 
were made to analyze this. In the majority of tests, Gray code showed a better precision 
of the found result at the cost of a minor evaluations’ increase. Therefore, Gray code was 
chosen as a default for an algorithm. 

 
3.3 Crossover 
The crossover operator is emphasized as the most important search operator of 

Genetic Algorithms [4]. The idea forming the background of crossover is that useful 
segments of different parents should be combined in order to yield a new individual that 
benefits from advantageous bit combinations of both parents. There are two main types of 
crossover: multi-point crossover and uniform crossover [4, 5, 6]. 

Crossover was tested on the artificial objective functions mentioned above (more then 
500000 experiments were made). As a result, genotype length dependence for crossover 
was derived (fig. 4.1a). These crossover settings provide the most effective global 
optimum search. Genotype length (length of the encoded bitstring of the parameters) is 
determined by parameters' count of the objective function and their discretization's 
precision. Results for crossover are presented together with the population size changes 
(fig. 4.1b), because they are related. According to the results, for the longer genotype 
higher crossover probability and more crossover points are needed (fig. 4.1a) to solve the 
global optimization problem successfully. Moreover, a higher population size is needed, 



but when the crossover probability increases, population size is somewhat lowered, but 
then keeps increasing until next crossover probability rise (fig. 4.1b). 
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Figure 4.1: Genotype length dependence for crossover (a) and population size (b) 

3.4 Mutation 
The mutation operator is a "background operator" that occasionally changes single 

bits of individuals by inverting them. Mutation may affect either single random bit or all 
the bits of individual with given probability pm per bit. 

The mutation operator contributes to the forming of new features of population 
members, which allows raising the probability of the global optimum search. On the other 
hand, high mutation level leads to the destabilization of the search process and, 
consequently, to the divergence of the algorithm. To solve this problem it is necessary to 
evaluate the threshold value of the mutation probability. As the mutation probability is 
given for an every single gene, and the divergence depends on the mutation probability 
and the selective pressure, the threshold of the mutation probability also depends on the 
genotype length. This dependence was derived from a series of tests (3000 experiments) 
and is presented on fig. 4.2(threshold values). 

In the foregoing series of experiments (see section 4.3) also an optimal genotype 
length dependency for mutation probability was derived (fig. 4.3, optimal values). 
Mutation with derived probabilities helps in global optimum search and at the same time 
does not lead to divergence of GA. This probabilities are smaller then threshold values, 
because the crossover influence is also considered. 
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Figure 4.2: Derived optimal and threshold values of the mutation probability 

3.5 Selection 
The selection operator forms the next generation from the new individuals generated 

by mutation and crossover operators [λ , μ] or from new individuals together with their 
parents [λ + μ]. Main selection methods are roulette wheel and its modification – 
universal stochastic sampling, which provides zero bias and minimum spread [4]. 
According to experimental results, universal stochastic sampling increases a probability 
of successful global optimum search. The selection probability for these methods is 
calculated proportionally to function fitness or according to the individual's rank, 
completely ignoring absolute fitness value (ranking selection). The ranking selection 
allows avoiding scaling approaches necessary for proportional selection, and selective 
pressure can be controlled more directly then by scaling parameters. Alternative method 
of selection is the tournament selection [7]. This method selects a single individual by 
randomly choosing some individuals from the current population and puts the best into 
the next generation. This process is repeated until the new generation will be completed. 

Analyzing results of various selection operators testing, best performance of 
algorithm is reached in a case of using tournament or linear ranking selection with large 
population size. Tournament selection has shown the best results in optimization of low 
complexity functions (sphere, step function), but at testing complex multimodal functions 
(Schwefel, Ackley) the best was ranking selection with the selective pressure value of 
1.7. Tournament and linear ranking with the high selective pressure value provide high 
intensity of selection. Comparing takeover time values [7] of these two selection 
mechanisms, the interesting conclusion is that they are close. Therefore, using linear 
ranking selection for the simple functions’ optimization does not lead to significant 
reduction of optimization productivity and can also be used as the method of selection 
chosen by default. 

 
4 Caching system 
An implemented to the system genetic method provides preservation of the objective 

function value for all individuals which are copied without changes from the previous 
generations. Due to this, objective function evaluations are reduced on the average by 
61%. System has also a built-in caching of objective function value. It allows avoiding 
objective function recalculation during optimization for reappeared individuals with the 



same parameters. The largest benefit of using cache is reached at the finishing stage of 
algorithm, when values of parameters are near to a point of a global optimum. According 
to the testing results, the cache usage in GA allows to reduce the objective function 
evaluation on the average by 41%. As a result, due to some particularly technical 
solutions, amount of evaluations is reduced on the average by 76%. 
 

5 Usage of the local deterministic methods 
These methods are used in developed subsystem to increase accuracy of solution after 

GA has finished. Local deterministic methods (LDM) proceed with optimization after GA 
has approximately found a global optimum and just search for a nearest local optimum. 
This will be the global optimum if GA has stopped in its neighborhood.  
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Ackley Results for Schema + Deterministic
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Figure 6.1: Effective formed schema percents for LDM start 

Thus, LDM not only increase the accuracy of the solution, but also might decrease 
the number of objective function evaluations, when GA stops earlier. Stopping criterion 
for GA is the forming of the schema percent specified. Schema percent is percent of fixed 
schema positions among all individuals (ratio of schema order [Bäck96] to the genotype 
length). A series of experiments (about 100000) for different complex functions 
(Schwefel and Ackley) were made to determine the schema percent when the GA can be 
stopped (i.e. the neighborhood of the global optimum has been found). The results are 
presented on fig. 6.1 and they show minimal schema percent, when a global optimum 



already can be found, and a maximal schema percent, when an evaluations decrease is 
still present. According to these diagrams, smooth enough functions (e.g. Schwefel) can 
be effectively solved with low schema percent formed (about 10-20%). It is already 
possible for a small genotype length (for a small number of parameters). Whereas for the 
functions with strong beating (e.g. Ackley) good efficiency can be acquired only for a 
large genotype length (for a large number of parameters) when at least 50% of the 
schema have been formed. 

Usage effectiveness of a combination GA + LDM compared to pure GA was derived. 
Although for small genotype length, effectiveness is not so big (particularly for functions 
with strong beating), but for a large genotype length decrease of objective function 
evaluations comes to 75% for Schwefel function and 45% for Ackley function on the 
average. 
 

6 Summary and outlook 
An optimization subsystem, which is based on GA, was implemented. There was 

performed an intense test of algorithm performance, analytical and experimental 
estimation of its modifications’ efficiency on various artificial objective functions. This 
algorithm was combined with local deterministic method to increase searching accuracy. 
Stopping criterion for GA is the forming of the schema percent specified. In most cases, 
that leads not only to solution accuracy increase, but also to objective function 
evaluations decrease. Developed algorithm can be used for high-performance global 
optimization and can be setup automatically as well as manually for solving specific tasks 
(derived genotype length dependences for GA parameters are used). For parallel 
computation of optimization task, we are planning to port parallel GA’s to supercomputer 
with MIMD architecture using MPI. We are planning to gather information about our 
optimization subsystem’s behavior to find new ideas. 
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