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Abstract

In this paper a two dimensional simulation model of an electrostatic force microscope
(EFM) is presented. An approach to couple several numericalmethods is proposed for
its calculation.

Introduction

Due to the rapid miniaturization of integrated devices intothe mesoscopic regime and the
increasing interest in very small structures, high resolution measurement instruments have
become very important within the last years. An example is the atomic force microscope
(AFM). Its ability to scan surfaces with nearly atomic resolution and it’s versatility make it
one of the most important measurement devices in nanotechnics. If the sample under inves-
tigation holds a charge distribution and the distance between the AFM tip and the sample
is kept large, other interaction forces can be neglected dueto the much larger influence of
the electrostatic force. In this case the AFM is called electrostatic force microscope (EFM)
[8]. Several approaches to calculate the electric field in order to model this interaction have
been made, such as in [7] the author carries out a multipole expansion by using the program
MMP. In this paper a two-dimensional model for an EFM is presented and several numerical
methods are applied to calculate the electrostatic field.

2D Model of the EFM

In order to develop a simulation model for the EFM (Fig. 1) it is evident to understand
its components and their interaction. During the scanning process the tip at the end of
the cantilever is run over the sample. The forces acting on the cantilever and the tip are
determined by the electrostatic field. The electrostatic fields and forces will be referred to
as the electrostatic part of the model in the following. The other part of the model will be
called the mechanical part. It is used to calculate the mechanical behavior. The approach
to calculate the electrostatic part and the mechanical partseparately requires a coupling
between both parts (Fig.2). For this purpose the electrostatic forces that are calculated by
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Figure 1: Two Dimensional EFM Model
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Figure 2: Mechanical and Electrostatic Part

the electrostatic part are passed to the mechanical part during a simulation. Using these
forces as input the mechanical part is able to calculate the deflection of the cantilever and
pass it to the electrostatic part. Taking into account this updated position of the cantilever
the electrostatic field has to be calculated again. To find a convenient numerical simulation
approach we will take a closer look at the electrostatic partand point out the difficulties
that may occur in the model. In an uncharged region the electrostatic potentialϕ can be
obtained by solving Laplace’s equation

∆ϕ = 0. (1)

In the sample charge distributions and possible nonlinearities of the dielectric properties
may have to be taken into account. Therefore a versatile numerical method as the finite
element method (FEM) has to be applied in region 2 (Fig. 3). For modeling the high val-
ues of the electric field near the tip (region 1) more accurately at low computational cost the
method of fundamental solutions (MFS) or alternately the charge simulation method (CSM)
will be used while the long distance interaction (region 3) can conveniently be treated using
the boundary element method (BEM). During the calculation of the electrostatic potential
the numerical methods mentioned above have to be coupled to each other. The FEM for-
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Figure 3: Simulation Regions



mulation of Eq. 1 in region 2 leads to
∑

j

Kijϕj +
∑

n

Kinϕn = 0 . (2)

Hereϕj are the values of the electric potential to be calculated andϕn are the potential
values on the nodes with Dirichlet boundary condition. The stiffness matrixK is defined
by
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wheren is the number of nodes andψ are the FEM shape functions [3].
The use of FEM in region 1 would require a very fine mesh to take into account the high
field values near the tip. In order to keep computational costlow two alternative numerical
methods are applied in region 1 and coupled to the FEM. One of these methods is the CSM
which is based on the fact that boundary conditions can be approximated by placing virtual
charges outside the calculation domain [10]. This leads to

ϕ(r) =
1

2πε0

∑

j

qj ln
‖r − rj‖

r0
, (4)

where the values of the virtual chargesqj can be obtained by using the boundary conditions
while their positionsrj are fixed.r0 is the radius with zero potential. The result of a CSM
calculation of the electrostatic potential near the cantilever is shown in Fig. 4.

Figure 4: Electrostatic Potential by CSM

Coupling between FEM and CSM is achieved by

ϕi =
1

ε

∑

l

qlG(||ri − rl||) −
∑

k

ϕk

∮

s
[G(ik)∇ψ(rk) − ψ(rk)∇G(ik)] n ds . (5)

Hereik = G‖ri − rk‖, ϕi are the boundary conditions,ϕk are the coupling nodes,G
is the associated Green function andn is the normal vector on the coupling surfaces [6].



The other approach investigated here to deal with the high field values near the tip is the
MFS. In polar coordinates the electrostatic potential at any point (ρ, φ) in region 1 can be
approximated by

ϕ(ρ, φ) = ϕ0 +
mmax
∑

m=1

amρ
mπ
β sin(

mπφ

β
). (6)

Heremmax is the number of ansatz functions andβ is the angle outside the tip [6]. The
coefficientsam can be found by using the boundary conditions. To couple the MFS to the
FEM Eq. 6 is applied to the coupling points and used in Eq. 2 [9]. This leads to
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)

)

=
∑

n

Kinϕn , (7)

where l are the coupling nodes andn are the nodes with Dirichlet boundary condition.
The sumj includes the nodes that are neither coupling nodes nor nodeswith Dirichlet
boundary conditions. Fig. 5 shows the electrostatic potential near the tip calculated by the
coupled FEM / MFS. For the use of FEM in region 2 the whole domain has to be meshed

Figure 5: Electrostatic potential simulated by coupled FEM/ MFS

and calculated. Therefore, to save computational cost, it is convenient to keep the FEM
simulation domain small and apply the BEM in region 3. For thecalculation both methods
have to be coupled. The BEM formulation of the setup can be written as

M
∑

i=1

N
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HereN andM are the total number of elements and nodes, respectively,ϕ is the potential,q
is the potential derivative,le is the length of the element,i andj are node indices. Since the
2D simulation by BEM requires 1D discretization, the discretization only on the boundary is
necessary. BEM provides improved accuracy in the calculation of electric field and exterior
problems. Now let us defineϕI

B , ϕB andqI
B , qB as the interface and the non-interface



potential and the flux of the BEM region respectively,ϕI
F andϕF as the interface and the

non-interface potential of the FEM region andqI
F as the interface flux of the FEM region.

The necessary coupling condition for potential isϕI
B = ϕI

F = ϕI and for flux isqI
B = - qI

F =
qI . Applying these coupling conditions and the converting matrix M the resulting coupling
equation for the whole system is
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, (11)

whereI indicates the coupling nodes,F andB indicate the nodes which are in the FEM
and BEM region respectively [1] [2]. Now implying all boundary conditions the unknown
potential and the flux can be determined from this equation. By using the BEM boundary
potential and flux the internal potential at any point in the BEM region can be determined
from

ϕi =
N
∑

j=1

Gijqj −
N
∑

j=1

Ĥ ijϕj . (12)

The result of the coupled FEM-BEM simulation is shown in Fig.6.

Figure 6: Electrostatic potential simulated by coupled FEM-BEM

Since the scanning process of an EFM is dynamic, the FEM mesh in region 2 has to be
changed during the calculation which is achieved by using the arbitrary Lagrangian Eulerian
(ALE) method [5] and modeling the mesh as a massless elastic.The resulting vector Laplace
equation for the mesh deformation is solved by FEM [3]. In Fig. 7 the deformation of the
mesh can be observed.
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Figure 7: ALE



Conclusion

In this paper a concept of physical and numerical electrostatic modeling of a 2D EFM is
presented. The simulation domain is divided in three parts in each of which a different
numerical method is applied in order to combine the advantages of each method. Some
typical simulation results obtained by a coupled FEM-MFS and FEM-BEM are presented.
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