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Abstract

The new cellular automaton for diffusion presented in this paper is self-averaging and
free of overshooting errors. These properties make it appropriate for the evaluation
of the numerical methods which allow overshooting to optimize the efficiency. The
perspective of parallelization and the possible extension to reaction-diffusion make the
algorithm attractive as a tool for modelling complex transport processes.

1 Introduction

The Global Random Walk algorithm (GRW) is equivalent to a superposition of many parti-
cle tracking procedures. Starting with a given distribution ofN particles in a computational
grid, all the particles lying at a grid site are simultaneously spread, first by an advection
displacement, then by unbiased diffusion jumps, as shown in Fig. 1. GRW is a particular
cellular automaton (CA), i.e. it is a stochastic process in the space of configurations, de-
fined at a given time by the occupation numbers at each lattice site. In the GRW algorithm
the number of particles per grid site is not limited by an “exclusion principle” and there are
no limitations as to the total number of particles. Therefore, GRW is “self-averaging”in the
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sense that the solution given by a single simulation is practically the same as that obtained
after averaging over large ensembles of simulations. For instance, the GRW solution of the
heat equation converges to the Gaussian distribution asO(δx2) +O(1/

√
N), whereδx is

the lattice parameter andN is the total number of particles. Thus, for largeN the conver-
gence order isO(δx2), the same as that for the finite differences scheme. By working with
integers, GRW is free of round-of errors, avoids numerical diffusion and it is inherently
stable [1]. However, for variable drift and diffusion coefficients overshooting errors occur
when the particles jump over more than one lattice site (see Fig. 1).
To get rid of overshooting errors, we impose that particles jump only to the nearest
sites (Fig. 2). In this procedure the advection will be simulated by a bias in the random
walk jumps. Therefore, we call it “biased global random walk” (BGRW) algorithm. Since
BGRW moves all the particles of one lattice site in a single numerical procedure,N can be
as large as necessary to ensure the self-averaging, which is the main difference with respect
to other CA for diffusion without exclusion principle [2].
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Fig. 1 GRW state att = δt = 0.5 days.
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Fig. 2 BGRW state att = δt = 0.0025 days.

2 The BGRW algorithm

The 2-dimensional BGRW is defined by the CA rule

n(i, j, k) = δn(i, j | i, j, k) +
δn(i + 1, j | i, j, k) + δn(i− 1, j | i, j, k) +
δn(i, j + 1 | i, j, k) + δn(i, j − 1 | i, j, k), (1)

wheren(i, j, k) is the number of particles at the site(x, y) = (iδx, jδy) at the timet = kδt.
All the terms of (1) are Bernoulli random variables, computed as in the “reduced fluctua-
tions GRW” presented in ref. [1]. Corresponding to the components of the drift (velocity)
and diffusion coefficients of the transport problem,Vx(x, y, t), Vy(x, y, t), Dx(x, y, t) and
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Dy(x, y, t), we define the dimensionless parameters

vx = Vx
δt

δx
, vy = Vy

δt

δy
, rx = Dx

2δt

δx2
, ry = 2Dy

2δt

δy2
. (2)

The averages of the terms in (1) over an ensemble of simulations are related by

δn(i, j | i, j, k) = (1− rx − ry) n(i, j, k),

δn(i± 1, j | i, j, k) =
1
2
(rx ± vx)n(i, j, k),

δn(i, j ± 1 | i, j, k) =
1
2
(ry ± vy)n(i, j, k). (3)

Defining the particle densityρ(x, y, t) = n(i, j, k) and summing the contributions from the
first neighbors to a lattice site, from (1-3) one obtains

ρ(x, y, t + δt)− ρ(x, y, t)
δt

+

Vxρ(x + δx, y, t)− Vxρ(x− δx, y, t)
2δx

+
Vyρ(x, y + δy, t)− Vyρ(x, y − δy, t)

2δy
=

Dxρ(x + δx, y, t)− 2Dxρ(x, y, t) + Dxρ(x− δx, y, t)
δx2

+

Dyρ(x, y + δy, t)− 2Dyρ(x, y, t) + Dyρ(x, y − δy, t)
δy2

, (4)

which is just the forward-time centred-space finite difference scheme for the advection-
diffusion (Fokker-Plank) equation

∂tρ + ∂x(Vxρ) + ∂y(Vyρ) = ∂2
x(Dxρ) + ∂2

y(Dyρ). (5)

The equation which corresponds to Fick’s law

∂tρ + ∂x(V ∗
x ρ) + ∂y(V ∗

y ρ) = ∂xDx∂xρ + ∂yDy∂yρ,

is equivalent to (5) if the new drift coefficients are given by the relationsV ∗
x = Vx − ∂xDx

andV ∗
y = Vy − ∂yDy, of which the corresponding BGRW can be easily derived.

As it follows from (3), BGRW is subject to the restrictions

rx + ry ≤ 1, |vx| ≤ rx, |vy| ≤ ry. (6)

Adding the conditionsrx ≤ 0.5 andry ≤ 0.5, the von Neumann criterion for stability
is satisfied, implying that there is no numerical diffusion. The last two inequalities in (6)
ensures that the Courant numbers are sub-unitary, thus the algorithm also avoids the over-
shooting errors.
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3 Numerical examples

As a direct consequence of (6), we can see that removing overshooting errors requires high
computational costs. Let us consider an isotropic two-dimensional diffusion in groundwa-
ter (Dx = Dy = D = 0.01 m2/day) in a mean flow ofU = 1 m/day, oriented along
thex axis and with a standard deviationσ = 0.2 m/day. The velocity field is generated
as a realization of a periodic random field, consisting of a superposition of64 sin modes
which approximates a Gaussian field [4]. Admitting that the maximum velocity can be as
large asV max = U + 5σ = 2 m/day, from (2) and the second condition (6) it follows
that δx ≤ 2D/V max

x = 0.01 m. Since this space step also fulfils the third condition (6),
in the following we takeδy = δx. Correspondingly, from (2),δt = 0.0025 day (the case
represented in Fig. 2). The simulation of the transport over50 days, for a point instanta-
neous injection at the origin of the lattice, requires about3 cpu hours. For the same problem
and consuming the same cpu time, the unbiased GRW algorithm (UGWR) withδx = 0.1
m andδt = 0.5 day (Fig. 1) can perform the simulation of the transport over1000 days.
Nevertheless, the BGRW simulations are very helpful for the evaluation of other numerical
methods, mainly, as in the case presented here, when no analytical solutions are available.
We computed the 1st and 2-nd centered moments of the densityρ, defined by

µα(t) =
∫ ∫

αρ(x, y, t)dxdy, µαα(t) =
∫ ∫

(α− µα)2ρ(x, y, t)dxdy, (7)

whereα stands forx or y and the integrals are computed over the support ofρ. Further,
using (7), we computed the derivatives of the 1-st momentsVα = dµα/dt, which represent
the velocity components of the center of mass of the solute body, and the rates of increase
with time of the 2-nd momentsDαα = µαα/(2t), which in the large time limit define the
effective diffusion coefficients for this transport problem.
The self-averaging of the GRW simulations for the transport problem considered in this
paper is ensured if the total number of particles is of the orderN = 1010 [4]. Using this
value ofN in all cases, the numerical solutionρ = n was estimated by the actual number
of particlesn at the lattice sites.
The moments (7) were computed with BGRW for the parametersδx = 0.01 m andδt =
0.0025 day (case b1) and for a finer discretization,δx = 0.005 m andδt = 0.000625 day
(case b2), withrx = ry = r = 0.5 in both cases. The errors of BGRW simulation for the
case (b1) are estimated by

ε(Vα) =

√
1
T

∑k=T

k=0
(∆Vα)2(k), ε(Dαα) =

√
1
T

∑k=T

k=0
(∆Dαα)2(k) (8)

where∆Vα and∆Dαα are the deviations of the corresponding quantities computed in case
(b1) with respect to those obtained in case (b2) andT is the simulation duration.

ε(Vx) ε(Vy) ε(Dxx) ε(Dyy)
0.00033m/day 0.00026m/day 0.00075m2/day 0.00002m2/day

Table 1Error estimations for BGRW.
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The estimations presented in Table 1 are orders of magnitude smaller than the fluctuations
of the first two moments of the densityρ (governed by the physical parametersD = 0.01
m2/day andσ = 0.2 m/day). A numerical investigation on the convergence of BGRW
by comparisons with analytical solutions has not yet been done. However, since there are
no overshooting errors, it is expected that the convergence order for BGRW is the same as
in the case of the genuine diffusion (which was shown in [1] to beO(δx2)). Since, due to
conditions (6), this order is much smaller than for the particles methods with overshoot-
ing, BGRW solutions can serve as reference to evaluate the faster (but coarser) unbiased
algorithms.
As an illustration, we compare in Figs. 3 and 4 the deviations∆Vα and∆Dαα with respect
to BGRW (case b1) of the results given by UGRW for the sets of parametersδx = 0.1 m,
δt = 0.5 day, r = 0.25 (case u1) andδx = 0.01 m, δt = 0.1 day, r = 0.408 (case u2).
The corresponding error estimations via (8) are given in Table 2.
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Fig. 3 Comparison of∆Vα.

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0  10  20  30  40  50  60  70  80  90  100

m
2 /d

ay

days

∆Dxx:  (u1)
(u2)

∆Dyy:  (u1)
(u2)

Fig. 4 Comparison of∆Dαα.

ε(Vx) ε(Vy) ε(Dxx) ε(Dyy)
(u1) 0.02359m/day 0.01716m/day 0.01317m2/day 0.00257m2/day
(u2) 0.00612m/day 0.00524m/day 0.00312m2/day 0.00039m2/day

Table 2Error estimations for UGRW.

Even if the coarser discretization (u1) yields errorsε(Dxx) of the order ofD it is still
accurate enough to reproduce the behavior of the expectations (averages over ensambles of
velocity fields). In this case UGRW can be successfully used in investigations on the large
time behavior and self-averaging properties of the transport process [4]. Since for (u2) the
errors are one order of magnitude smaller, in this case UGRW can be used to simulate
the behavior in single realizations. But when higher accuracy is necessary (smaller times,
reaction-diffusion processes) BGRW should be used.
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4 Conclusions

The local CA character of the rule (1) makes the BGRW algorithm naturally parallel. There-
fore, large simulations are possible on massively parallel computers. Moreover, since only
a minimal amount of communication between physically neighboring processors is nec-
essary, the parallel computing implementation of BGRW could result in a considerable
reduction of the computing time.
The discrete stochastic process governing the movement of the particles on the BGRW
lattice is a ratchet-like mechanism which induces advection from asymmetric fluctuations
[3]. This provides a plausible physical description of the transport in natural porous media:
at the pores scale the solute molecules move along the erratic stream lines of the water flow
through the void space, under the forcing effect of an almost constant hydraulic pressure.
The equivalence of BGRW with the finite difference scheme (4) of the partial derivative
equation (5) also agrees with the experimental finding that, at a macroscopic scale, the
transport can be described by an advection-diffusion equation.
Owing to the simplicity of the reaction-diffusion CA [2] and to the fact that the number
of particles can be as large as the real number of molecules of various species involved
in chemical reactions [1], the extension of the BGRW algorithm to reaction-diffusion pro-
cesses appears to be a promising research direction in contaminant hydrology.

Acknowledgments:The research reported in this paper has been supported in part by
the Deutsche Forschungsgemeinschaft grant SU 415/1-1 awarded to the first author.

References
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[4] Suciu N., C. Vamoş, J. Vanderborght, H. Hardelauf, and H. Vereecken:Numerical
modeling of large scale transport of contaminant solutes using the global random
walk algorithm. Monte Carlo Methods and Appl. 10(2) (2004), p. 155-179.

6


