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Abstract

Due to high computational effort alternative approaches for simulating continuous
systems have not been performable after their development several years ago. Nowa-
days computation power is high enough but as continuous models have been used for
years and the solution of these is highly developed, alternative approaches still lack
of acceptance. In this study we want to demonstrate the equality of 2 different mod-
elling approaches (DE and CA) and also point out advantages of the alternative ones.
As conclusion, the generality of these approaches is shown and a similar example is
mentioned.

1 Introduction

Standard solutions for modelling continuous systems are differential equations. Depending
on the problem ODE or PDE systems are implemented. As far as one can not solve the
system analytically, implementations are solved by numerical algorithms, especially by
discretization of the system. Evident for systems in physics or technical control theory, it
is not so obvious to model all systems that way. Biology, Health Care or Social Sciences
are only three disciplines where it is at least worth to analyse and to compare with other
solutions. Because of faster computers also other approaches like Cellular Automata (near
to the Agent based Simulation) can be used again (theories were often developed in the 50s
and 60s of th@0*" Century but not computable in those days).

1.1 Motivation

A key question in developing alternative approaches for the modelling of real systems -
and to obtain acceptance in academic and commercial fields - is to analyse differences and
equivalencies and to show advantages and disadvantages of models. The idea is to develop a
deeper understanding for a system and its model by analysing the modelling process. With
a more or less simple example the equivalency of two different models shall be shown and
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furthermore the question where we can assume the end of the model and the begin of the
implementation is given. In every case modelling a system and implementing such a model
gives a structure to the model, which is not given in the system, also not for differential
equations.

In the following example one can see different characteristics for CA models as well as for
implementing differential equations. The latter ones encode the behavior in a “classic way”
in spite the necessity of temporal discretization for solving them numerically. This temporal
discretization is also necessary for CA but in addition, a spatial structuring of the system is
also performed. Different approaches for this structuring cause different characteristics as
can be observed for FHP and HPP models.

The idea is to describe the evolution of epidemic spread by means of a cellular automaton
and to compare it with the classical Kermack McKendrick epidemic-model, given through

a system of ordinary differential equations. The paper develops a cellular automaton model
whose properties represent the ones governed by the continuous model. By showing (under
certain assumptions) the equivalence of the models both in quality and quantity different
properties of the systems can be described. It can be shown that the part of modelling an
implementation can in a certain way be exchanged.

2 A Kermack McKendrick epidemic model

The simple SIR model for epidemic spread is based upon a system of non-linear ordinary
equations [KM27]. The abbreviation SIR stands for susceptible - infected - recovered and
it deals with an epidemiological model to investigate the theoretical number of people in-
fected with a contagious illness in a closed population over time. As to simplify the model,
several assumptions have been made. The resulting system is:

dS(t)/dt = —r - S(t) - I(t)
dI(t)/dt =1 S(t) - I(t) —a- I(t) @)
dR(t)/dt = a - I(t)

wherer is the infection rateyg the recovery rateS(t) the number of susceptible individuals,
I(t) the number of infected individuals arR(t) the number of recovered individuals, at
time ¢ respectively.

2.1 Cellular Automaton Modelling and Implementation

Cellular automata are based upon a discretization of space and time. Each cell can hold a fi-
nite number of states and the temporal evolution of the automaton is governed by transition
rules which act locally and simultaneously on the cells. The transition rules can either be
deterministic or probabilistic. Locality is introduced by a neighbourhood-function which
defines the cells being determinant for updating the cell state.

As we are studying epidemic spread, a LGCA has been chosen, allowing for the simula-
tion of diffusion processes. LGCA are two-dimensional cellular automata with particles
moving from cell to cell during each time-step of the automaton [WGO01]. Therefore, the



definition of different states for the cells becomes obsolete, rather each particle can hold
different states (in our case this will be susceptible, infected or recovered). Since LGCA
descend from fluid dynamics, basic physical quantities like mass and momentum are con-
served. Evolution (the motion of the particles) consists of propagation and collision. Con-
cerning the structure of the chosen implementation we have to distinguish between the HPP
[HPdP73] and the FHP [FHP86] model. The first one is composed of a square lattice which
contains no more than four particles per cell. Each particle is determinate by its lattice-
vector which connects the cells to its four nearest neighbours and defines the direction the
particle moves on. It is not possible that one cell contains two particles moving along the
same direction. If and only if two particles collide entering one cell from opposite directions
each particle changes direction 8§°.

The FHP model consists of hexagonal structure containing a maximum of six particles per
cell again being defined by its lattice-vectors connecting the cell to its six nearest neigh-
bours. Collision rules are more elaborated in that case; we chose the simplest ones, also
called FHP-I collision rules. A two-particle head-on collision redirects the particles by
changing the direction of their lattice vector 6§° randomly clock-wise or counter clock-

wise but equally for the two particles. A three-particle head-on collision again changes the
direction equally by60° either clockwise or counter clockwise but remaining the same for

all collisions of this type. According to [FLO1] we have assigned each particle of the cell
with one individual and furthermore that infection only occurs within individuals belong-
ing to the same cell. Each particle can either be of state susceptible, infected or recovered
and letSy, be the number of susceptible individuals in the entire lattice atkimdessuming

N to be the total number of nods (cells) in the lattice equality to qualitative behavior of the
system of ODEs can be shown as follows.

The probability of one susceptible individual to become infected in one single time step

(k—k+1)is1—(1- r)%“ and hence the expected number of susceptible individuals
who become infected S, (1 —(1- r)lﬁk). The expected number of individuals who
become recovered in a single time step id;,. For a well stirred population this yields to:
Sk = Sp(1—r)*
Iy
Toor = I + S (1—(1—7")W)—a~1k )
Ryyi=Rip+a-Ii

Taylor expansion for smat
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keeping only the first two terms and definipg(k) = 3 yields to

ps(k +1) = ps(k) —rps(k)pr(k)
pr(k +1) = pr(k) +rps(k)pr(k) — apr(k) (4)
pr(k +1) = pr(k) + apr (k)



The LGCA has been implemented in MATLAB and the results were opposed to that solving
the system of ODEs. The HPP-model is in so far not very good suited, as it comprises
spurious invariants (not decisive for our simulation) and furthermore decouples individuals
in two parts which will never meet (chessboard instability). Thus, if one assigns infectious
particles in only one of the two populations, the other half will remain in susceptible state
forever. This also influences the local building of areas with fast and severe epidemic spread
and other areas which may remain untouched of epidemic spread initially.

2.2 Scenarios and Results

Figure 1 shows results for the system of ODEs and for the implemented FHP-I model.
Qualitative consistency may easily be observed and hence we focus on the reasons for the
quantitative differences and their implications.
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Figure 1: The left figure shows the results for the solution of the system of ODEs applying
an explicit Runge-Kutta of orddH, 5). The right figure shows results for the FHP-LGCA
for a domain-size 0f00 x 100, periodic boundary conditions and averaging oM&sim-
ulation runs. Used parameters and initial conditioms= 0.2, = 0.6, Sy = 16000,

Iy =100,Ry =0

Considering the results one can see that epidemic spread seems to be slower in the CA
implementation compared to the solution of the continuous model. One reason for this be-
haviour is the spatial inhomogeneity of the CA model. The epidemic does not spread uni-
formly over the domain but spatial groupings of infected individuals arise. This definitely
slows down the epidemic spread. To avoid this behavior, homogeneity can be introduced by
rearranging all individuals after every time step of the automaton. Thus, the LGCA model
loses of its generality but the results converge to that of the continuous model which is by
definition a homogeneous one.

Another reason for emerging differences must be searched in the population density (num-
ber of particles per cell) of the cellular automaton. The derivation of the equality of the
approaches is only valid, if every cell holds at least one susceptible individual what means



that the domain has to be pretty packed. Otherwise, infected individuals being located in
cells without susceptible individuals would not have the chance to infect any other individ-
ual what again slows down the infection process. Figure 2 shows the fairly similar results
for the solution of the continuous system, the according difference equations and the FHP-
LGCA with a redistribution of individuals after every time step to assure homogeneous
distribution of infected individuals.
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Figure 2: Comparison of results for homogeneous models. Shown is the number of infected
individuals for solving the system of ODEs, the difference equations and the homogeneous
FHP-LGCA again for a domain size @60 x 100 and averaging over 10 simulation runs.
Used parameters and initial conditioas= 0.2, » = 0.3, Sy = 40000, I, = 1000, Ry = 0

The slight differences in the epidemic progression arise due to the big step size of 1 for the
discrete approaches. Dividing the parametesindr by a factor (e.g. 10) basically changes

step size of the according explicit Euler method and thus leads to even better concordance.
The number of infected individuals remains lower in the LGCA because the solution of the
difference equations serves as upper bound for the automaton. The reason for this property
is an increasing number of cells which do not contain any susceptible individuals in the
course of the simulation.

Assuring homogeneous epidemic spread one must be aware to loose basic properties of the
LGCA. In spite of the simple update rules of the CA the model is in a way more extensive
than the system of ODEs and allows for analysing spatial epidemic spread behaviour. If
one wants to gain similar results for a continuous model, systems of partial differential
equations (PDESs) have to be considered. Solving systems of this form usually demands for
a high computational effort.

Due to the simple evolution rules of the LGCA the computational effort for this system is
quite manageable with modern computers. It only depends on the size of the considered
domain. In order to obtain reasonable results, domain sizes should not be too small. The
limiting factor for domain sizes in two dimensions seems to be the generation of random
numbers as the update of particle states is probabilistic.



3 Discussion

With this study it is possible to show the adequacy of using alternative simulation ap-
proaches instead of classical continuous models. One has to be aware of properties, simi-
larities but also differences of different approaches at the very beginning of the simulation
cycle, the choice of a model to solve the system. So we have seen quite similar behaviour
of our discrete LGCA model compared to the classical approach for a limited range of
parameters. But analysing the reasons for differences beyond this ranges one can exploit
the model to obtain results being more detailed and even closer to really observed behav-
iour. Latest studies use similar probabilistic models to study SARS spread incorporating
the civilian aviation network [HBGO4]. This model incorporates the benefits of different
approaches and could be seen as “in-between” solution. Therefore, the population of the
domain is split up in cities being comparable to our cells. In difference to the here pre-
sented model, individuals now are able to move to distal locations by plane. Once again,
the relation between the probabilistic and the classical SIR model can be shown for large
population sizes.

To achieve reliability and credibility for all these models in the specific science community
(medical care, epidemic science...) formal and principle considerations like above have to
be made. Modelling and Simulation has to be positioned as a stand alone discipline and
not as a specific part of solving differential equations. Defining structures, verification,
validation and knowing about doing so are main characteristics of this discipline.
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