

Source Code Test by Simulation for Mobile Autonomous
Systems

Thomas-Peter Czudnochowski, Birgit Koch, Jochen Wittmann

czudnochowski@gmx.de, [koch|wittmann]@informatik.uni-hamburg.de
Universität Hamburg, Fachbereich Informatik, Arbeitsbereich Technische Informatiksysteme

Vogt-Kölln-Straße 30, 22527 Hamburg

KEYWORDS
code test, simulation, mobile autonomous systems,
mindstorms, LejoSim

ABSTRACT

The students of computer science have the

possibility in their studies, to gain virtual
experience in developing of embedded systems
in JAVA. They can go along with all the
phases, from the analysis of the program up to
the use of the system. Here the practice admits
that the extensive testing of the
implementations and the abolition of errors
constraints the quality of the results. This
contribution introduces a method of resolution
called LejoSim, which enables the students to
test their software in a comfortable and
economic way and allows them to focus on the
actual problem/exercise.

LejoSim makes an API for robot
programming available to the students to allow
them to embed the robot program
automatically into a simulation environment
and to test and debug it within the
development environment.

1 Test and Debug Methods in
Programming of LEGO
Mindstorms robots

The students develop the robot software

using an iterative and incremental
development process. The implementation and
test activities alternate. To test software in an
iteration loop, the software gets transmitted to
the robot, the robot gets started and the
behaviour of the robot gets observed. The
system presents itself as a Black-Box-System
to the developer while being tested when
running in a physical environment. The
software can only be evaluated according to
the visually observable behaviour of the robot.

During the tests, no information can be
gained about the actual internal state of the
system or the program flow during the
program execution. When the observed
behaviour of the robot differs from the
expected behaviour, there is at first only the
static code-analysis available to the developer.
In case, the developer is not able to find the
source of the misconduct by means of the
static code-analysis, he is forced to refine the
test with code-preparations and repeat it until
the source of the misconduct is classified as
found.

The code preparations serve the
containment of the potential source of defect.
They represent Output-Commands which
allow to bring out the value of a program
variable to a small display of the robot or to
send an acoustic signal for the passing of a
program branch. To pinpoint the source of the
defect in the program code with these
appliances, the student must plan each test
interaction very exactly with the appropriate
code-preparations.

condition

Sound.buzz()
...

Sound.beep()
...

then else

Figure 1: An Acoustic Outgo for the

Proceeding of a Program Path

Each test passage is associated with a time-

consuming transmission of the program to the
robot. The previous preparations must be
removed again for every transmission.
Provided that the developer was successful in

 1

finding a program error, all the previous code
preparations must be removed completely. To
assure that the code preparations do not bear
any side-effects, a final test must be carried
out.

error found with
test

preparation of the
sourcecodes with
output-commands

repeating the
test

error cause
confirmed?

fixing the
sourcecode

yes

repeating the
test

error removed

no

Removal of code-
preparation and
continuation of
development

yes

locating possible
error cause

no

Figure 2: Debug Process with Code
Preparations

2 Layer Model of the Robot
Application

During the apprenticeship, the LEGO

Mindstorms robots are driven with the virtual
JAVA-machine leJOS. LeJOS makes a class
library available, which the robot program can
use to address the hardware components of the
robot. These are above all the classes
Motor.java for the control of the motors and
Sensor.java, which allows to readout the actual

values of the attached sensors. Further classes
are LCD.java for the display of the integers to
the display of the robot and Sound.java for the
outgo of acoustic signals. These classes use the
class ROM.java to accomplish the native calls.

Figure 3: Layer Model of the leJOS Robot
Application

3 Demands on the Method of
Resolution

Section 1 points up the fussiness of the test

and debug process of the LEGO Mindstorms
robot programming. The disadvantages of the
method are in general:

• The system presents itself in

runtime as a Black-Box-System.
• Prevalent debug methods are not

available. To pinpoint the sources
of defect, improvisation with the
code preparations is necessary. The
tested code is thus not identical
with the code which is to be
applied when running the robot.

• The test- and debug operations are
very time-consuming.

The demands on the method of resolution arise
from inversion of these disadvantages:

• The system should be tested and
debugged as a White-Box-System.

• Prevalent debug methods should be
available. There should be no need for
code preparations.

• The test- and debug operations should
not be time-consuming.

In addition, the method of resolution should

not be a new burden for the students. Thus
there are also the following demands:

 2

• A smooth integration of the method

into the development process and
development environment should
be possible.

• For the students, the use of the
method should be simple and
intuitive with no need for
additional introduction.

• There should be no need for a
special regard for the method
during the implementation. Also,
there should not be differentiation
between the tested code and the
code which is to be run with the
robot.

4 The Method of Resolution
LejoSim

The method of resolution LejoSim is an

extension of the developing environment
Eclipse and was developed according to the
demands specified in section 2. It supplies a
Plug-In for the development environment,
which allows starting the robot programs
without any modifications as a desktop
application. Thereby, it escapes the time-
consuming transmissions of the source code to
the robots during the test- and debug-processes
while all the test- and debug-tools of the
development environment still can be used
without any constraints.

For the accomplishment of the function
tests, LejoSim supplies a GUI, which makes it
possible to observe the state of the robot
hardware components while running the
program, such as engines or sensors. To test
the reaction of the robot program concerning
the sensor values, you can put in values for the
sensor.

For the accomplishment of the acceptance
test and the system tests, LejoSim supplies a
simple simulator, which allows testing and
evaluation of the interaction between the robot
and the physical environment. For this
purpose, there is a simple robot editor for the
adaptation of the simulation to the robot
design. It is possible to set up the sensor
connection, sensor type, engine connection and
kinetics of the robot for the simulation. The
situation, which should be tested in a modelled
environment, can be simply made by

Drag&Drop, while placing the robot and other
objects such as a ball with a mouse into the
environment model.

5 Realisation of LejoSim

The reasons for the disadvantages of the

functioning as described in section 1 are to be
found substantially in the leJOS´s API
dependence on the hardware. The leJOS API is
placed as a middle layer between the robot
program and the robot hardware.

LejoSim removes the hardware

dependence of the robot program by supplying
a LejoSim API containing alternative classes
to all original leJOS classes which contain
ROM-calls. The LejoSim classes have an
identical signature to the original leJOS classes
but they don’t contain any ROM-calls. With
these LejoSim classes, the hardware-
depending classes of the middle layer leJOS
are replaced. This means that the hardware can
be dropped. Now it is possible to start the
robot program within the development
environment as a desktop-application and to
test it and to use all debug-features of the IDE.

Figure 4: Layer Model of a LejoSim leJOS
Application

The next main feature is to make functional

tests possible to the programmer. The
programmer is enabled to put in some certain
sensor values while running the program and
to watch the robots reaction by observing the
motor states. For this purpose LejoSim offers a
GUI containing input panels for the sensor
values and view panels for displaying the
hardware model states. The LejoSim
architecture is similar to the common MVC-
pattern. The classes of the LejoSim API are
used as models and corresponding SIM-classes
of LejoSim are used as related controller-
classes.

 3

Figure 5: Integration of a GUI for Function

Tests

Furthermore, the LejoSim layer acts as a

communication layer for the robot
application as the main-thread and the
concurrent simulation-thread of the simulator.

Figure 6: Communication between
LejoSim Simulator and Robot Application

The simulator is able to read the motor
states by using the controller-classes of the
LejoSim layer and also, to use them to
calculate the resulting model states of the
simulation models. The new sensor values of
the simulated models can now be calculated
and sent to the LejoSim API sensor models by
using the LejoSim layer. Finally the robot
application can use these values by reading
them out of the API’s sensor models.

6 Conclusion

With LejoSim there is a tool, students can

use in their projects during their studies for
testing and debugging the robot programs in an
uncomplicated and economical way. They can
not only get first programming experiences
with using JAVA and project experiences in
developing complex embedded systems by
using LEGO robotic kits. They also learn how
to use simulation systems as a supporting tool
for the development of complex embedded
systems. On the one hand, they learn about the

economical and technical advantage of using
simulation systems for testing purposes in a
complex project. On the other hand, they
might feel the restraints of the usability of
testing with a simulation system. Due to the
need of running the developed system with
real robots in a physical environment at the
end of the project, they can see that the quality
of function tests and system tests will strongly
depend on the quality of the simulation’s
model design.

7 References

• Czudnochowski, T.: „Dynamisches Testen

von Quellcode im Bereich mobiler
autonomer Systeme“, Diplomarbeit,
Universität Hamburg, 2005

• Ferrari, G.: „Programming LEGO
Mindstorms with JAVA“, Syngress
Rockland MA, 2002

• Koch, B.: „Einsatz von Robotikbaukästen
in der universitären Informatikausbildung
am Fallbeispiel 'Hamburger Robocup:
Mobile autonome Roboter spielen
Fussball’“, Diplomarbeit, Universität
Hamburg, 2004.

 4

