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Abstract

Proxel-based simulation is a new and deterministic approach to analysing discrete sto-
chastic models and studying their behaviour. Unfortunately, as it is the case with the
deterministic approaches it suffers from the well-known state-space explosion prob-
lem, nevertheless having an advantage with respect to the other approaches. The proxel-
based method benefits from the way it generates and stores the state-space, which is
performed on-the-fly, meaning that only the truly reachable states are the ones that are
stored. This in turn means that on-paper inspection of the model (i.e. its graphical repre-
sentation in form of a Petri net or a reachability graph) does not determine how complex
its behaviour will be in practice, and correspondingly its proxel-based analysis. There-
fore, we needed a tactic to estimate the computational complexity of the proxel-based
simulation for different models, thus allowing a better strategy for organisation of the
data structures being used.

We refer to the factor that determines the actual state-space of one model (the one
that is stored and truly reachable) aslifetimeof the discrete states and formalise its im-
pact on the computational complexity of the proxel-based analysis of stochastic models.

1 Introduction

The proxel-based method is a relatively new method for analysing stochastic models which
was introduced in [Hor02], and is based on the method of supplementary variables [Cox55,
Ger00]. Until now there has not been developed an approach which would aid the process
of complexity prediction of the proxel-based analysis of a given model. In this paper we
present a paradigm for which we believe will provide a hint on the complexity of the proxel-
based simulation regarding the description of the model that is to be analysed. We refer to
this paradigm as alifetime of a discrete stateand it denotes the longest time that the model
can reside in a given discrete state. This is also the factor that determines the real complexity
of one model, as opposed to the discrete state space.
In the following, we provide a brief description of the proxel-based method, after which
we describe the lifetime factor and its role in predicting the complexity. Furthermore, we
present a simple example which supports and illustrates our claims.
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2 Proxel-Based Simulation

The proxel-based method works by observing all of the possible behaviours of the model,
each with a determined computable probability, based on the distribution functions which
describe the events, as well as the time they have been pending (denoted as age intensity).
The unit that stores all necessary information for turning a non-Markovian model into a
Markovian one is referred to asproxel, which stands for “probability element”. Among
others, it contains the discrete state, the age intensities of the possible events in that discrete
state, and the probability, resulting into the following structure:

Proxel = (State, Time, Route, Probability), whereState = (Discrete State, Age Intensity Vector).

TheRouteparameter contains the sequence of states via which the model has reached the
actual state. Time advances in discrete steps and the point where the simulation starts is
the initial discrete state. From there on, based on the possible state changes (associated
with events) new proxels are generated for the subsequent time step. The values of the
corresponding age intensities are updated with respect to the event that has caused the state
change.
Theprobability is approximated by the IRF (instantaneous rate function)µ(τ) [Tri02], in-
tegrated along the time step, whereτ is the age intensity of the active state change i.e.

probability =
∫ t+∆t

t

µ(x)dx, approximated byprobability = µ(t)×∆t, (1)

which in this case we interpret as the probability that the state change has happened within
the interval[t, t + ∆t). The IRF is computed from the distribution functions (CDF and
PDF) as follows:

µ(τ) =
f(τ)

1− F (τ)
. (2)

More on the proxel-based method can be found in [Hor02, LMH05, LM05].

3 Lifetime Computation

Prior to the proxel-based analysis, if the analysis is to be carried out on a bounded state
space (i.e. the model has a limited number of discrete states), then a preprocessing step can
be carried out for computing the lifetimes of the discrete states. The computed lifetimes
provide a preview of the computational complexity and the memory requirements of the
concrete proxel-based analysis, and are used for computing the keys of the proxels in the
binary tree which is the data structure used for storing the proxels. A unique key is assigned
to every proxel, which is computed based on the state that the proxel represents, i.e. the
combination of the discrete state and the age intensity vector. Therefore, it is very helpful
to be able to predict the largest value that each age intensity can have.
When finite support distributions are associated with the state changes in a model, then
it is predictable that the model can spend a limited amount of time in each discrete state.
However, when the state changes are distributed according to infinite support distributions,
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then theoretically the model can spend an infinite amount of time in each discrete state.
The probabilities for staying in the discrete states, in general, decrease as time increases.
At a certain point in time, they become so small that we can treat them as negligible. We
decide that the probabilities for staying in the discrete states are small enough when they
become smaller than the predefined minimum probability thresholdε, which is usually
around10−15. This makes it possible to determine simulation characteristic lifetimes of
the discrete states.
A lifetimeof a discrete state determines the longest time that the model can spend in that
discrete state regarding the concrete simulation parametersε, and is calculated based on the
distribution functions that are associated with the active state changes in the actual discrete
state. The procedure for the calculating the lifetimes is described in Algorithm 1. In this
algorithm for simplicity reasons we use the most simple approximation method for the IRF,
which is based on the starting point of each interval.

Algorithm 1 : Computing Lifetimes of Discrete States

Input : ∆t, tmax

foreachdiscrete stateDS in the modelM do1
t = 0;2
lifetime(DS) = 0;3
probexit(DS) = 0;4
probstay(DS) = 1.0;5
for t = 0 to tmax in steps of∆t do6

foreachactive state changeSC in DS do7
probexit(DS, SC) = µSC(t)×∆t;8
probexit(DS) = probexit(DS) + probexit(DS, SC);9

end10
probstay(DS) = probstay(DS)× (1.0− probexit(DS));11
if probstay(DS) < ε then12

lifetime(DS) = t;13
end14

end15
if lifetime(DS) = 0 then16

lifetime(DS) = tmax;17
end18

end19

The symbols used in the algorithm have the following meanings:

• tmax is the maximum simulation time and∆t is the size of the time step,

• probexit(DS) is the total probability for exiting the discrete stateDS,

• probexit(DS,SC) is the probability for exiting the discrete stateDS through the
state changeSC,

• probstay(DS) is the probability for not leaving the discrete stateDS,

• µSC(t) is the value of the instantaneous rate function of the random variable that
describes the state changeSC, having an age intensity oft.
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The algorithm works by calculating the probabilities for leaving the disrete states through
any of the state changes at every discrete time step (lines 8 and 9) and thereby the proba-
bility for not leaving the discrete state (line 11), until the end of simulation timetmax is
reached (line 6). If the probability for not leaving the discrete state is less thanε (line 12),
that means that at that point in time there is a probability of zero or negligible probability to
stay in the same discrete state. Therefore the point in time at which that happens is assigned
as the lifetime of the actual discrete state (line 13). If that point in time, where the probabil-
ity for staying in the same discrete state is negligible, is not reached within the maximum
simulation timetmax, then the maximum simulation timetmax is assigned as the lifetime
of the actual state for the actual proxel-based simulation (lines 16 and 17).
The lifetimes of the discrete states in a model directly influence and determine the complex-
ity of the simulation. The reason for that is that they are a factor that determines the real
state space of the model in terms of proxels, thereby considering only the truly reachable
states. If the model has no more than one concurrently active state changes with differ-
ent activation times, then we propose considering the sum of the lifetimes of all states in
a model as a measure for the complexity of that model’s proxel-based analysis. In cases
where this condition does not hold, the number of supplementary variables in each state
has to be considered too, as it increases the number of their possible combinations when
generating states i.e. proxels. The presence of age memory state changes is a typical case
of having more than one active state changes with different activation times. In that case
we define amaximum number of states generated from a discrete stateas follows.

Definition 1 (Maximum number of states generated from a discrete state (MNSDS))
Maximum number of states generated from a discrete state(MNSDS) is the maximum
number of combinations of the state vector, considering the lifetimes of the discrete states.

MNSDS is equal to the ratio of the lifetime of the discrete state and∆t when there are
no more than one active state changes with different activation times. If that is not the
case MNSDS is calculated as a product of the lifetime of the actual discrete state and the
lifetime(s) of the state(s) in which the age memory state change(s) is (are) active. MNSDS
is directly used for calculating the key of each proxel.
The effect that lifetimes have on the computational complexity of the proxel-based simula-
tion is supported and illustrated with concrete examples in the next section.

4 Experiments

As it is pointed out in the previous section, the number of concurrently active state changes
together with the characteristics and the parameters of the random variables affects the com-
putational complexity of the proxel-based simulation. Furthermore, the addition of concur-
rently active state changes is not a constraining factor of the proxel-based simulation. It
can be seen as a beneficial or neutral one, unless the state changes are activated at different
points in time.
The experiments presented in this section demonstrate the relation of the computational
complexity of the proxel-based simulation of one model and the sum of the lifetimes of its
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discrete states. The model that we choose for this set of experiments excludes age memory
state changes, which are present in the models from the experiments shown in [LM05] and
in that case the complexity is higher, as illustrated.

Figure 1: Two models with equal proxel complexities

Let us observe the models shown in Figure 1, excluding the state changes illustrated by
dashed lines. The model with two discrete states seems on the first view as less complex
than the four-state one. However, when analysed using the proxel-based method, both mod-
els have equal complexities because the sums of the lifetimes of their discrete states are
equal. We chose this example, because the uniform distribution function has the nice prop-
erty of having a finite support, making it simpler to determine the lifetimes of the discrete
states.
When chosen∆t = 0.05, then the lifetimes of both discrete states in the two-state model
are20∆t, resulting into a maximal number of 40 proxels. In the four-state model, the life-
times of the discrete states are10∆t resulting again into a maximal number of 20 proxels.
If we now add the state changes represented by the dashed lines to the four-state model,
then the lifetimes of the discrete statesA andC shorten insignificantly (because of the in-
creased probability of leaving the discrete state). This results again into almost the same
computational complexity i.e. number of proxels, which is 36. The computation times
of both simulations are same too. Transient solution of the four-state model excluding
the dashed state changes is shown in Figure 2a. The model has a steady-state solution:
Pr(A) = Pr(B) = Pr(C) = Pr(D) = 0.25.

(a) Solution values for the four-state model
from Figure 1 excluding the dash-lined state
changes

,
(b) Comparison of the numbers of proxels generated at

each time step for the two models from Figure 1, ex-
cluding the dash-lined state changes

Figure 2: Results from the experiments
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In Figure 2b the comparison of the number of proxels generated at each discrete time step
for the 2-state and 4-state models is shown. It is evident that the 4-state model reaches the
maximum number of proxels sooner than the 2-state one, which is because of the greater
number of state changes which generate accordingly more proxels at each time step.
This experiments show that the discrete state space of one model is not a measure for the
complexity of its proxel-based simulation. Instead, the distributions associated with the
state changes must be taken into account and this can be directly used for predicting the
complexity.

5 Summary and Outlook

The paradigm of a lifetime, as presented here, can be an important factor in predicting the
complexity of the proxel-based simulation of a given model. This in turn means that it aids
the completeness of the proxel-based method. We believe that the “a priori” computation
of lifetimes can also serve in optimising the data structures used for storing the proxels, as
well as for deciding when to use phase-type approximations for substituting some of the
distributions [IH05].
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