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Abstract

Platform independent data exchange plays a central role in the development of modular and
hybrid simulation tools. During the construction phase, concept finding and verification
of simulation results typically involves analysis in computer algebra systems, comparison
with existing prototypes, and visualization or animation. Besides the requirement that data
exchange must not harm data integrity, the chosen data format should not be obsoleted
by future releases of commercial software packages. W3C’s MathML language fits into
these requirements and is well suited to link proprietary developed software components
and commercial software packages for a moderate programming effort. This contribution
discusses the use of MathML and illustrates the concepts by development of a simulation
system for Metabolic Flux Analysis.

1 Introduction

Simulation tool development for research projects is typically an evolutionary process: in
subsequent episodes of research, documentation and programming the outcome of the dia-
log between developer and user often causes changes in system requirements and even the
model structures and simulation algorithms may change from time to time.

Because of limited manpower, and algorithm development in test bed environment, the
nascent software is typically a modular and hybrid system – possibly programmed in dif-
ferent programming languages. In spite of these conditions it is desirable to have operating
prototypes all the time. The MathML standard [1] supports rapid prototyping and the evo-
lutionary, modular design approach by providing a widely supported interface language for
the exchange of scientific mathematical data for a moderate programming effort.

The rest of this paper is organized as follows: the next section introduces the W3C’s
MathML standard and summarizes its most important aspects. Section 3 is a brief introduc-
tion into Metabolic Flux Analysis(MFA) as an example application which massively relies
on the exchange of algebraic and numerical data between proprietary developed applica-
tions and established scientific software.



Figure 1: MathML as universal interface language for model exchange between commercial
and self-developed application components

2 Mathematical Markup Language

MathML, the mathematical markup language specified by theWorld Wide Web Consor-
tium (W3C), is a XML language intended to facilitate encoding, platform-independent ex-
change, and re-use of mathematical content and notation. The MathML specifications from
version 1.0 (1998) through 2.02nd ed. (2003) show a fundamental dichotomy: because
MathML aims to encode mathematical semantics as well as mathematical typesetting, it is
divided into the two independent partsContent-MathMLandPresentation-MathML. While
Presentation-MathML aims at a human readable representation, and different types of sci-
entific documentation, Content-MathML is designed to encode mathematical semantics and
to facilitate automatic processing [1].

Because Content-MathML’s elements show precise semantics, MathML qualifies as an
interface language for computer algebra systems (CAS), and other applications dealing with
symbolic mathematics – the most popular examples are MAPLE and MATHEMATICA .

Thus, MathML can be very useful for coupling proprietary developed applications and
commercial software products from different vendors. Instead of specifying and implement-
ing a proprietary XML language, which can be a complex task and results in an incompati-
ble data format, the programming researcher benefits from the existing MathML framework.
The straightforward way to exchange model data between CAS, proprietary developed ap-
plications and MATLAB (see section 2.2) prevents time-consuming, error-prone conversion
of data formats and alleviates implementation and rapid prototyping.



2.1 Storing numerical Data in MathML

Although it might surprise, storing numerical data in a textual format like MathML is not a
trivial task. MathML discriminates real, rational, integer and complex number types. Real
numbers have to be encoded as decimal fractions and there is no way to store a floating-
point number in its lossless binary representation. The programmer has to take care that
the textual representation in the MathML file is as short as possible, and represents a cor-
rectly rounded, decimal version of the binary floating-point number, from which the original
number can be reconstructed. A classical algorithm solving this problem is presented in [3].

2.2 Integrating MathML into Software Projects

Mathematica & Maple Since version 4.2 in 2002, Mathematica provides full support for
MathML 2.0. Maple supported an evolving MathML support since version 7 (2001). In
their current versions, both systems provide a convenient support for MathML. MathML
structures can be loaded just by calling a library routine of the development environment.

Matlab Loading MathML structures into Matlab is not as easy as it is in CAS, because
there is no built-in support for MathML. One option is to use the MathML features of the
Maple-kernel available in the optionalSymbolic Math Toolbox. Another option is to install
freely availableMathMLIO library, developed for the ongoing MFA project, discussed in
section 3. TheMathMLIO class library is written in Java (a C++ implementation is also
available). MathML import and export in Matlab is handled by two additional wrapper-
scripts which use Matlab’s excellent Java interface. See [5] for more information.

Proprietary developed software Integrating MathML into proprietary developed soft-
ware generally involves some programming work. If a MathML library likeMathMLIO is
applicable this work can be reduced to a minimum. As there is a Java and C++ version of
MathMLIO available, it can be used to equip proprietary developed simulation tools with
MathML interfaces [5].

3 Case Study: Metabolic Flux Analysis

A micro organism’s metabolism can be seen as a tiny reactor where enzymes are work-
ing as highly efficient catalysts. InMetabolic Engineering, scientists seek to employ the
metabolism of micro organisms for the economically efficient production of raw materials
and drugs.

13C Metabolic Flux Analysis (MFA) merges biological knowledge with measured13C
labeling data to form a mathematical model of the carbon atom flow in a micro organ-
ism’s metabolism – theCarbon Labeling System(CLS). The model can be used to simulate
intra-cellular pool’s13C labeling enrichment. The metabolic flux maps resulting from MFA
subserve to compare different strains of micro organisms for productivity and to evaluate
and predict the effects of genetic manipulations [6, 4].



3.1 Hybrid Simulation Frameworks

MFA is a typical example for a hybrid simulation framework, where highly specialized
programs written in C, C++ or Java are mixed with scripts written in Matlab or a CAS.
Each of these development environments has its justification by the field is is used for:

C / C++ / Java Because compiled code is usually much faster than equivalent programs
run by the Matlab interpreter, it is preferred for high-performance computations and simu-
lations of large systems. The iterated solution of CLS during an optimization loop for flux
estimation is a typical example. Other examples are parallel cluster applications, where a
cluster’s specific communication libraries have to be used, and experimental design, a com-
putationally expensive statistical analysis, where an optimization algorithm searches the
specific input substrate mixture which results in the most expressive measurement data

Matlab Matlab’s strengths are a simple and powerful syntax and a huge library of highly
elaborated algorithms and toolboxes. In the context of MFA, Matlab is typically used for
prototypical implementations – e.g. the test of new numerical algorithms or the simulation
and validation of small scale metabolic models – like the instationarity simulation of small
models using ODEs. Other typical application fields are one-time computations, like sta-
tistical preprocessing of measured data. Matlab is usually avoided when computations rely
on elaborate data structures, because there is no replacement for the concept of thedata
reference, available in other languages. Together with the shortcoming that the language is
interpreted, Matlab is unsuitable for the development of larger software where high perfor-
mance is of importance.

Computer Algebra Systems CAS are used for statistics like error propagation analysis
and integer computations for identifiability analysis. Other topics are computation and val-
idation of steady state CLS, symbolic derivatives (for validation of C++ simulator results),
the analytic computation of the Jordan Normal Form for explicit solution of instationary
CLS, analytical eigen-analysis for modal analysis and diverse other functional transforma-
tions.

3.2 Encoding Algebraic Solutions of CLS in MathML

Being a widely accepted standard for the exchange of algebraic and numerical mathematical
data, the MathML language can be used to couple the applications found in stationary MFA.
This section discusses a typical example for the usefulness of MathML.

In [2] a new algorithm is presented for the analytic solution of CLS bypath-tracing.
This algorithm is part of a model generator implemented in C++ and produces algebraic
solutions for CLS which are stored internally in form of expression trees. Along with this
algebraic solutions also some numerical data is generated:

• the stoichiometric matrixN , stored in a sparse matrix data structure

• a vectorv containing the flux quantities of the network

• a vectorb containing labeling fractions of input pools



• cascaded systems of linear equations (thecumomer cascade[7]) of type:

0 =i A(v) · ix +ib
(
v,xinp,0x,1x, . . . ,i−1x

)
i = 1, 2, . . . (1)

This cascade can be used to solve the system numerically, and to obtain ODEs for
investigating the instationary behavior of the CLS.

Instead of using proprietary formats in the serialization of internal data structures for
algebraic and numerical data, the whole solution data set (i.e.iA, ix, ib and algebraic
solutions) is exported into platform independent MathML. The data produced in this step is
the starting material for different processing steps (cf. fig 1):

• Using a self-developed MathML lambda-expression compiler, the algebraic solutions
can be compiled into optimized assembler code. After assembly and linkage the user
obtains a highly efficient machine code plug-in for the simulator (a shared object
under Linux or a DLL under Win32) which can be loaded at run-time and establishes
the computation of labeling fractions with the ultimately fastest possible evaluation
speed.

• Algebraic solutions, matrices and vectors can be imported into a CAS for advanced
studies.

• Although Matlab without the optionalSymbolic Math Toolboxdoes only numerical
computations, not only the matrices and vectors stored in the MathML can be im-
ported, but also the algebraic solutions, which are imported as function handles –
optionally directly into the users workspace. Other symbolic expressions, e.g. found
in matrix elements, are imported as strings in infix notation into Matlab’s cell array
type.

3.3 Compiling Algebraic Solutions into a highly efficient Simulator

Probably the most exciting application of symbolic mathematics is code generation. Due
to the limited number of arithmetical operations used in the expressions generated by the
algorithm presented in [2], machine code generation is possible with little effort and results
in a highly efficient simulator suitable for the Intel x86 FPU. The compiler is written in C++
and uses the C++ implementation of theMathMLIO library.

Algebraic solutions are encoded in MathML in the form of lambda expressions which
are bound to names using declarations. A lambda expression consists of a list ofbound
variables(i.e. the parameter list) and an algebraic expression built from these variables.
Because MathML files may contain arbitrary many declarations, it is possible to encode a
complete network solution (i.e. eq. (1) with algebraic solutions) into a single MathML file.
The MathML lambda expression compiler is an isolated software component available as a
library or stand-alone application. This is a clear advantage because, for the compiler, there
is no need to handle decoding and integrity checking of XML network specifications or to
solve a CLS.

Compilation techniques used in the compiler include algebraic simplifications and the



reduction of expensive floating-point divisions to a minimum. Because the obtained ex-
pressions are typically still highly redundant, as they contain many identical or arithmetical
equivalent subexpressions, expression trees are converted into non-redundant DAGs (di-
rected acyclic graphs) – the actual basis for code generation.

4 Conclusion

This contribution demonstrated the usefulness of MathML for the flexible and platform in-
dependent exchange of symbolic and numerical data in a hybrid development environment.
As MathML is a publicly available standard of the W3C it is resistant against proprietary
extensions or version changes in commercial software packages. Its simplicity eases im-
plementation of software interfaces as it was done for the open-source libraryMathMLIO .
The Java and C++ version of this library can be used to add limited MathML support to
Matlab, as well as for exchange of symbolic and numerical mathematical content between
proprietary developed simulation tools.

BecauseMathMLIO is currently used only for data exchange between the application
components shown in fig. 1, it does not implement the full MathML standard. Future will
bring a more complete implementation of the standard and a cooperation with the open-
source community.
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